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Which Problems are Hard?

We want to prove that

1. Some problems L have a fast program to solve them

2. (Spoiler Alert: L ∈ P.)

3. Some problems L are unlikely to have a fast program to
solve them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.



Which Problems are Hard?

We want to prove that

1. Some problems L have a fast program to solve them

2. (Spoiler Alert: L ∈ P.)

3. Some problems L are unlikely to have a fast program to
solve them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.



Which Problems are Hard?

We want to prove that

1. Some problems L have a fast program to solve them

2. (Spoiler Alert: L ∈ P.)

3. Some problems L are unlikely to have a fast program to
solve them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.



Which Problems are Hard?

We want to prove that

1. Some problems L have a fast program to solve them

2. (Spoiler Alert: L ∈ P.)

3. Some problems L are unlikely to have a fast program to
solve them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.



Which Problems are Hard?

We want to prove that

1. Some problems L have a fast program to solve them

2. (Spoiler Alert: L ∈ P.)

3. Some problems L are unlikely to have a fast program to
solve them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.



Which Problems are Hard?

We want to prove that

1. Some problems L have a fast program to solve them

2. (Spoiler Alert: L ∈ P.)

3. Some problems L are unlikely to have a fast program to
solve them

4. (Spoiler Alert: L is NP-complete.)

We first look at some problems of interest.



Problems of Interest

Exposition by William Gasarch—U of MD



Graphs

Def A Graph G = (V ,E ) is a set V and a set of unordered pairs
from V , called edges. These can easily be drawn.

Example

2 3 4 5 6

1

V = {1, 2, 3, 4, 5, 6}.
E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}.
Def The degree (deg) of a vertex is how many edges use it.
In the above graph degh(1) = 5 and
degh(2) = degh(3) = degh(4) = degh(5) = degh(6) = 1.
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Weighted Graphs

Def A weighted graph G = (V ,E ) is a graph together with, for
each edge, a natural number.

Example V is the set of cities in America.
E = {(x , y) : ∃ a non-stop flight from x to y}.
Weight of (x , y) is price of the flight. (Cost is symmetric.)
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Another Example of a Weighted Graph
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Cycles in Graphs

Def Let G = (V ,E ) be a graph and k ∈ N.

1. A Cycle is a sequence of vertices v1, v2, . . . , vm such that
every adjacent pair has edge, and (vm, v1) is an edge.

2. An Eulerian Cycle uses every edge exactly once.

3. A Hamiltonian Cycle uses every vertex exactly once.

4. A Clique of size k is a set of k vertices such that every pair
is an edge.

5. A Ind. Set of size k is a set of k vertices such that no pair is
an edge.
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An Example of a Clique on 5 Vertices
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Problems

How hard are the following problems:

1. HAM Given a graph G does it have a Ham Cycle?
Discuss Algorithms To Solve HAM.

2. EUL Given a graph G does it have a Euler Cycle?
Discuss Algorithms To Solve EUL.

3. CLIQ Given (G , k), does G have a k-clique?
Discuss Algorithms To Solve CLIQ

4. IND SET (IS) Given (G , k), does G have a k-Ind Set?
Discuss Algorithms To Solve Ind Set.

Note G = (V ,E ) has a k-clique off (V ,E ) has a k-ind set.
So CLIQ has a fast alg iff Ind Set has a fast alg.

5. TSP Given a weighted graph G and a number k , is there a
Ham cycle that costs ≤ k?
Discuss Algorithms To Solve TSP.
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How Hard Are These Problems?

HAM, EUL, CLIQ, IS, TSP.

How hard are these problems?

To even ask this question we need two things:

1. A way to represent the input. To ask how hard
Given a graph G does it have a HAM Cycle? is,
you have to have a standard way to be Given a graph.
Also need a notion of length of input.

2. A model of Computation. A statement like
EUL can be solved in time O(n)
needs to say what device we are computing on.
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How to Talk About Speed

Speed for Engineers

BILL How fast does this program run?
ENG It usually takes 18 minutes.

For the Real World this is a fine answer.
However, we seek a more rigorous approach.
BILL How fast does this program run?
TODD On inputs of length n it takes roughly n2 steps.
BILL What is the length of the input? What is a step?
TODD Why ask me? The answers are on the next few slides that
YOUR wrote.
BILL Good point!
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Def A Turing Machine is a tuple (Q,Σ, δ, s, h) where

We are busy people!

We are not going to bother defining Turing Machines Until
we Need to!
In this talk we will not need to!

Here is all you need to know:

1. Everything computable is computable by a Turing machine.

2. Turing machines compute with discrete steps so one can talk
about how many steps a computation takes.
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Polynomial Time and Exp Time

Def Let A be a set of strings.

1. M decides A if

1.1 If x ∈ A them M(x) outputs YES.
1.2 If x /∈ A them M(x) outputs YES.

2. A ∈ P (Poly time) if there exists a poly p and a TM M such
that
(1) M decides A and,
(2) for all x , M(x) takes ≤ p(|x |) steps.
We take Poly Time to be our notion of Fast

3. A ∈ EXP (Exponential time) if there exists a poly p and a
TM M such that
(1) M decides A and,
(2) for all x , M(x) takes ≤ 2p(|x |) steps.

The algorithms you gave for HAM, etc were EXP.
The Question HAM ∈ P? The other problems in P?
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Why Polynomial Time? Reason I

1. HAM ∈ EXP, by brute force.

2. If I had a (1.618)n algorithm that’s just brute force with
some tricks.

3. If I had a n1000 algorithm then it’s NOT brute force. I would
have found something very clever.
Not practical. But that cleverness can probably be exploited
to get a practical algorithm.
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Back to our Problems

Exposition by William Gasarch—U of MD



HAM,EUL,CLIQ All Walk into a Bar

We rewrite HAM, EUL, CLIQ.

HAM = {G : (∃v1, . . . , vn)[v1, . . . , vn is a Ham Cycle]}.

EUL = {G : (∃v1, . . . , vn)[v1, . . . , vn is an Eul Cycle]}.

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

IS and TSP can also be written with a ∃ quantifier and something
easy-to-check.

Why is this interesting?
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We Look At CLIQ

CLIQ = {(G , k) : (∃v1, . . . , vk)[v1, . . . , vk are a Clique]}.

If (G , k) ∈ CLIQ then the (v1, . . . , vk) is a witness of this.
Note (v1, . . . , vk) is short: length is poly in the length of (G , k).

Note Verifying a witness is fast:
If (v1, . . . , vk) is a potential witness then verifying that
(v1, . . . , vk) is a witness is fast: time poly in the length of (G , k).

HAM, EUL, CLIQ are similar.
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NP

Def A ∈ NP if there exists a set B ∈ P and a poly p such that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.

Note HAM, EUL, CLIQ are all in NP.



NP

Def A ∈ NP if there exists a set B ∈ P and a poly p such that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.

Note HAM, EUL, CLIQ are all in NP.



NP

Def A ∈ NP if there exists a set B ∈ P and a poly p such that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.

So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.

Note HAM, EUL, CLIQ are all in NP.



NP

Def A ∈ NP if there exists a set B ∈ P and a poly p such that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.

Note HAM, EUL, CLIQ are all in NP.



NP

Def A ∈ NP if there exists a set B ∈ P and a poly p such that

A = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]}.

Intuition. Let A ∈ NP.

I If x ∈ A then there is a SHORT (poly in |x |) proof of this
fact, namely y , such that x can be VERIFIED in poly time.
So if I wanted to convince you that x ∈ A, I could give you y .
You can verify (x , y) ∈ B easily and be convinced.

I If x /∈ A then there is NO proof that x ∈ A.

Note HAM, EUL, CLIQ are all in NP.



All of Our Problems are in NP

HAM, EUL, CLIQ, IS, TSP are in NP.

1. This does not mean that any of these problems are easy.

2. This does not mean that any of these problems are hard.
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Def of NP-Complete

Def A set Y is NP-complete (NPC) if the following hold:

I Y ∈ NP

I If X ∈ NP then X ≤ Y .

Easy Lemma If Y is NP-complete and Y ∈ P then P = NP.

Honesty When I first saw the definition of NP-completeness I
thought (1) there are no NP-complete sets or (2) there are no
natural NP-complete sets.

The condition:
for EVERY X ∈ NP, X ≤ Y

seemed very hard to meet.
Cook and Levin in the early 1970’s showed that SAT, a problem in
logic, was NPC. They coded TM’s into formulas. We won’t do
that here.
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thought (1) there are no NP-complete sets or (2) there are no
natural NP-complete sets.
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that here.



NP-Complete Problems in Graph Theory

1. CLIQ

2. HAM

3. IS

4. TSP
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The good money says that None are in Poly Time.
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History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.
They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).



History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.
They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).



History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.

They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).



History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.
They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).



History: HAM and EUL

1736 Euler shows the Konigsberg bridge problem is unsolvable by
proving, in modern terms,
A graph is EUL iff every vertex has even degree. So EUL ∈ P.

1850? Hamilton poses, in modern terms, the question of
characterizing when graphs are HAM.

Note Mathematicians wanted a characterization of HAM
graphs similar to the characterization of EUL graphs.
They didn’t have the notion of algorithms to state what they
wanted more rigorously.

The theory of NP-completeness enabled mathematicians to state
what they wanted rigorously (HAM ∈ P) and also gave the basis
for proving likely it cannot be done (since HAM is NP-Complete).



Why Do We Believe P 6= NP?

1. The NP-complete problems have been worked on for a long
time (many predating the definition of P and NP) and none
have been shown to be in P.

2. Intuitively coming up with a proof seems harder than
verifying a proof.

3. P 6= NP has great explanatory power. See next slide.
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Example of Set Cover

Set Cover Example of the problem

The underlying set is X = {1, . . . , 1000}.
S1 = {x ∈ X : x is the sum of two primes }
S2 = {x ∈ X : x ≡ 0 (mod 5)}
S3 = {x ∈ X : x is a square}
S4 = {x ∈ X : x is a Fib Number}
S5 = {0, 1, 2, 3, 4, 5}
S6 = {6, 7, 8}
S7 = {7, 8, 9}
...
S998 = {998, 999, 1000}.
What is the LEAST number of Si ’s whose UNION covers
{1, . . . , 1000}.
I actually do not know.
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Approximating Set Cover

Set Cover Given n and S1, . . . ,Sm ⊆ {1, . . . , n} find the least
number of sets Si ’s that cover {1, . . . , n}.

1. Chvatal in 1979 showed that there is a poly time approx
algorithm for Set Cover that will return (ln n)×OPTIMAL.

2. Dinur and Steurer in 2013 showed that, assuming P 6= NP,
for all ε there is no (1− ε) ln n ×OPTIMAL approx alg for
Set Cover. (This was the last in a series of 7 papers, by
different authors, that went from 1994 until 2014.)

3. These two proofs have nothing to do with each other yet give
matching upper and lower bounds.

4. There are many other approx problems where P 6= NP
explains why they cannot be improved.
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My Opinions

My opinions

1. 1.1 IF P = NP that might be proven in the next decade.
1.2 IF P 6= NP this will not be proven until the year 2525.

2. P 6= NP. In fact, SAT requires 2Ω(n) time.
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What Do Theorists Think of P vs NP?

I have done three polls of what theorists think of P vs NP and
other issues.

P 6=NP P=NP Ind DK other

2002 61 (61%) 9 (9%) 4 (4%) 22 (22%) 7 (7%) )
2012 126 (83%) 12 (9%) 5 (3%) 1 (0.66%) 8 (5.1%)
2019 109 (88%) 15 (12%) 0 0 0
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