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1 Context Free Grammars and Languages

Definition 1.1 A Context Free Grammar is a tuple G = (N, %, R, S) such
that:

e N is a finite set of nonterminals

Y is a finite alphabet. Note X N N = ().
e RCN x (NUX)".
e S € N, the start symbol.

If S can generate w € (X U N)* we denote this S = w.

LG)={we ¥ |S=w}

Definition 1.2 A language L is a Context Free Language if there exists a
context free grammar G such that L(G) = L.

In this document we will show several languages are context free.
We will need the following definition for some of the proofs.

2 L={a"V":neN}isaCFL

Here is the context free language G:
S — aSh
S —e
The proof that L(G) = L is an easy induction on the number-of-steps in
a derivation, which we omit.



3 L=A{w:#,(w)=#y(w)} is a CFL

Theorem 3.1 Let the language L below is a CFL.

L ={w: #.(w) = #y(w)}

Proof:
Let G the the following context free grammar.
S —aSb | bSa
S — SS.
S —e.
We show that L(G) = L.
L(G) C L is an easy induction on the number-of-steps in a derivation,
which we omit.
We prove that, for all w € L, w € L(G) by induction on |w].
Base Case |w| =0 so w = e. This is clearly in L(G) using S — e.

Ind Hyp Let n > 1. For all w € L of length<n — 1, w € L(G).
Ind Step Let w € L, jw| =n. We show w € L(G). We assume n is even.

Case 1 w = aw'b. Then w' € L, |w'| = n — 2len — 1. By the IH, S = w'.
Hence we have

S — aSb = aw'b = w

Case 2 w = bw'a. Similar to case 1.

Case 3 w = aw'a. Let w = wyws - - - w,, where w; = w,, = a.
Forl <i<nletx; = w--w; and r; = % Note r{ = 0 and

Ppog = 21
Claim r_[:bhere exists 2 < k <n — 2 such that r, = 1.
Proof of Claim
Since r;1 < 1 and r,_; > 1 there exists a least k, 2 < k < m — 1, such
that r, > 1. If r, = 1 then we are done. So we assume r;, > 1. Since 7 is the

least such we have r,_; < 1. Hence
)
Tk—1 ; 3(#9(1()551@—1) <1
— 7o\Tk)
Ty = Ao (2r) >1



Since rp_1 < Tk, wr = b. Hence #,(zx_1) = #p(zr) — 1 and #,(zx) =

#a(xk)
Hence we have

_ #plzr)—1
Tk—1 = o) <1

_ #plzr)
T = Lo (z1) > 1 '
The first equation yields

#b(xk) —1< #a(ﬂik).

The second equation yields.

#o(Tr) > #alTr)

which we rewrite as

#a(wr) < #o(zp)

Combining the < inequalities we get

H#o(wr) — 1 < F#alwr) < FHo(an).

Since all of the quantities are natural numbers this cannot occur. Hence
the case where r;, > 1 cannot occur, so rp = 1.

So we have w = zy where z,y # e and #,(x) = #(x), so x € L. Since
w € L, we also have #,(y) = #,(y), so y € L. By the Induction Hypothesis
x,y € L(G). Hence S = y and S = x. Therefore w € L(G) as follows:

S =55 =2y =w.

Case 4 w = bw'b. Similar to Case 3. 1|

4 A Useful Lemma

In the proof of Theorem 3.1, Case 3, we had to show that a string w € L
that began with an a ended with a b must be of the form xy where x € L
and y € L. We prove a general lemma using the proof of that claim.



Lemma 4.1 Let m € N. Let

Lo = {w : #p(w) = m#fa(w) + 0}

Ly = {w: #a(w) = mpta(w) + 1},

L1 ={w : #4(w) = m#,(w) +m — 1}.
Let w € Ly. Let w = wy -+ Wny1yn- (There are n a’s and mn b’s.) For
1§k§(m+1)n letxkzwl---wk andrk:%.

1. If there exists 1 < i < j < (m+ 1)n such that r; < m, r; > m, and
#a(x;) > 1 then there exists k, i < k < j, where ry, = m. Hence there
exists x,y # e such that w = xy and x,y € Lo. (This follows since if
T, = m then xy € Lo, so the rest of the string is also in Lg.)

2. If there exists 1 < i < j < (m + 1)n such that r; > m, r; < m, and
#a(Tj - Tngn) = 1, then there exists k, i < k < j, where r, = m.
Hence there exists x,y # e such that w = xy and x,y € Ly. This can
be obtained by applying Part 1 to w'.

3. Ifw begins with an a and ends with a b then one of the following occurs.

(a) w = xy where x,y € Lyg.
(b) w = axb™ where x € Ly.

4. If w begins with a b and ends with an a then one of the following occurs.

(a) w = xy where x,y € Ly.
(b) w=0b"za where v € Ly.

This can be obtained by applying Part 3 to wk.
5. If w begins and ends with a b then either

(a) w = xy where x,y € Ly.



(b) w = bFaxb™* for some 1 <k <m — 1.
(¢c) FILL IN LATER

Proof:
1) Since r; < m and r; > m there exists a least k, i < k < j, such that
rr > m. If r, = m then we are done. So we assume 7, > m. Since k is the
least such number we know r,_; < m. Hence

The1 = #o@h1) gy (Note that #,(xr_1) > 1.)

#a(Tr-1)
T = % >1m
Since rp_1 < Tk, wr = b. Hence #,(zx_1) = #p(zr) — 1 and #,(zx) =
#a(ﬂsz)
Hence we have
Tp—1 = —#;Elgﬁ(';)kgl <m

The first kequation yields

#Ho(zr) — 1 < m#a(xg).

The second equation yields.

#o(zr) > m#ta (o)

which we rewrite as

m#a(xr) < #o(zr)

Combining the < inequalities we get

#o(zr) — 1< ma#ta(wr) < #o(zp).

Since all of the quantities are natural numbers and #,(x) > 1 this cannot
occur. Hence the case where r, > m cannot occur, so r, = m.

3) w begins with an a and ends with a b. Let ¢ > 1 be such that w = aw'ab’.
(The enumerated list here does not correlate with the one in the theorem:;
however, we always get one of the cases.)

1. If 1 <7 < m — 1 then we will be applying Part 1 to the prefix a and

the prefix aw’. The first ratio we need is ii—g‘;g = 0 < m. The second

ratio we need is



2.

#p(aw’) _ #y(w) — #p(ab") _mn—i
#a(aw/) #a(w) - #a(abi) n—1

Hence Part 1 applies and we get w = xy where x,y € Ly.

> m.

If i = m then the suffice y = ab’ € Ly, so the prefix x = aw’ € Ly.

3. If i > m+ 1 then w = aw't’ = aw'b"™b™. Let x = w'b" ™ and note

that w = axb™ and z € L.

5) w begins with a b and ends with a b. Let k,¢ > 1 be such that w =
VPaw'ab’. (The enumerated list here does not correlate with the one in the
theorem; however, we always get one of the cases.)

1.

E<m-—1and £ < m—1. We apply Part 1 with z; = b¥a and
z; = bPaw’. We have #,(z;) > 1. we need 7; < m and 77 > m.

#y(b*a) = i and #,(b*a) = 1 so ZZZZEZZZ)) =k <m.

#r(0Faw') = #y(w) — #p(ab’) = mn — € and #,(bFaw’) = #,(w) —
#a(ab") =n —1, s0

#b(bkaw’) _ mn—/¢
#a(bFw') T n—1

So Part 1 applies and w = xy with x,y € Ly.

> m.

k=mor {=m. If k=m then w = b"aw” so just take x = b™a and
y =w". Since x € Ly, y € Ly. The case of £ = m is similar.

k>m+1and ¢ >m+ 1.

Ek<m-—1orl>m+1 Sow = blawab "y * Let x = wa.
Then w = bFxb™ k.



5 L={w:m#,(w)=#y(w)} is a CFL

Theorem 5.1 Let m > 1. The language L below is a CFL.

L= {w:m#,(w) = #p(w)}

Proof:

Let G the the following context free grammar.
For every oy - --0,,.1 where m of the symbols are b and one of the symbols
is a, and for every 0 < i < m + 1 we have the production

S—o1--- UiSOi+l cOmad-

S — SS.

S —e.

S —= TaT.

T —bS |ST.
1) L(G) C L.

We show by induction no the number-of-steps in a derivation that, for all
w € {a,b, S, T}* that G generates,
m(F#a(w) + Fr(w)) = #(w).
Base Case If there is only one step them w = e so the conclusion holds.
Ind Hyp If w' € {a,b,S,T}* is generates by n — 1 steps then
m(#a(w') + #r(w')) = ().

Ind Step Let S = w in n steps. Then S = w’ in n — 1 steps and then some
rule R goes from w’ to w. By the TH.

m(#a(w') + #r(w')) = #(w').
If R replaces an S with one a and m 0's then

#Hao(w) = #4(w') + 1.

#b(w) = #b(w’) + m.
#s(w) = #s(w').
#r(w) = #r(w').
Hence

m((#a(w) = 1) + #r(w) = #p(w) —m

7



mita(w) —m+ #r(w) = #y(w) —m

mita(w) + #r(w) = #p(w)
BILL - DO THE REST LATER

is an easy induction on the number-of-steps in a derivation, which we
omit.

We prove that, for all w € L, w € L(G) by induction on |w].
Base Case |w| =0 so w = e. This is clearly in L(G) using S — e.

Ind Hyp Let n > 1. For all w € L of length< n — 1, w € L(G).
Ind Step Let w € L, |w| =n. We show w € L(G).

Case 1 w = aw'a.

1. For the prefix a we have j;:((‘;; = 0 < m. Also note that #,(a) =1> 1.

2. For the prefix aw’ we have e — _#e(w) #o(w)

Fol@) — Faw)—1 = Fa(w)

=1m.

By Lemma 4.1, there exists x,y € L such that w = zy. By the Induction
Hypothesis S = x and S = y. Hence
Case 2 w = aw'b. Let i be such that w = aw”ab’.
Case 2.10<i<m—1.
#u(a)

1. For the prefix a we have P = 0<m

" #o(a) _ #o(w)—i #o(w) _

2. For the prefix aw”a we have T = Few) > Hew) =M
By Lemma 4.1, there exists x,y € L such that w = zy. By the Induction
Hypothesis

S = x and S = y. Hence

S—>SS=zxy=w

Case 2.2 7 > m. So w = aw”ab’"™b™. Note that w = w”ab’™™ € L. By
the induction hypothesis
S = w”ab™™. Hence



S = aSh™ = aw"ab™™b" = aw™'b' = w
Case 3 w = bw'a. Similar to Case 3.
Case 4 w = bw'b. We cannot use Lemma 4.1 with the prefix b since #,(b) =
0. We need to find the first a. Let i be such that w = b'aw”b.
Case 4.1 1 <m—1.

1. For the prefix b'a we have i’:%zz)) = 1 =i < m. Note that #,(b'a) =
1>1.

#p(a) _ H#p(w)—i N #p(w)

"
2. For the prefix aw”a we have P = Flw) (o)

= m.
By Lemma 4.1, there exists x,y € L such that w = zy. By the Induction
Hypothesis
S = x and S = y. Hence
|



