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1 Context Free Grammars and Languages

Definition 1.1 A Context Free Grammar is a tuple G = (N,Σ, R, S) such
that:

• N is a finite set of nonterminals

• Σ is a finite alphabet. Note Σ ∩N = ∅.

• R ⊆ N × (N ∪ Σ)∗.

• S ∈ N , the start symbol.

If S can generate w ∈ (Σ ∪N)∗ we denote this S ⇒ w.

L(G) = {w ∈ Σ∗ | S ⇒ w}

Definition 1.2 A language L is a Context Free Language if there exists a
context free grammar G such that L(G) = L.

In this document we will show several languages are context free.
We will need the following definition for some of the proofs.

2 L = {anbn : n ∈ N} is a CFL

Here is the context free language G:
S → aSb
S → e

The proof that L(G) = L is an easy induction on the number-of-steps in
a derivation, which we omit.
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3 L = {w : #a(w) = #b(w)} is a CFL

Theorem 3.1 Let the language L below is a CFL.

L = {w : #a(w) = #b(w)}

Proof:
Let G the the following context free grammar.

S → aSb | bSa
S → SS.
S → e.

We show that L(G) = L.
L(G) ⊆ L is an easy induction on the number-of-steps in a derivation,

which we omit.
We prove that, for all w ∈ L, w ∈ L(G) by induction on |w|.

Base Case |w| = 0 so w = e. This is clearly in L(G) using S → e.

Ind Hyp Let n ≥ 1. For all w ∈ L of length≤ n− 1, w ∈ L(G).

Ind Step Let w ∈ L, |w| = n. We show w ∈ L(G). We assume n is even.

Case 1 w = aw′b. Then w′ ∈ L, |w′| = n − 2len − 1. By the IH, S ⇒ w′.
Hence we have

S → aSb⇒ aw′b = w

Case 2 w = bw′a. Similar to case 1.
Case 3 w = aw′a. Let w = w1w2 · · ·wn where w1 = wn = a.

For 1 ≤ i ≤ n let xi = w1 · · ·wi and ri = #b(wi)
#a(wi)

. Note r1 = 0 and

rn−1 = n−1
n

Claim There exists 2 ≤ k ≤ n− 2 such that rk = 1.
Proof of Claim

Since r1 < 1 and rn−1 > 1 there exists a least k, 2 ≤ k ≤ m − 1, such
that rk ≥ 1. If rk = 1 then we are done. So we assume rk > 1. Since i is the
least such we have rk−1 < 1. Hence

rk−1 = #b(xk−1)

#a(xk−1)
< 1

rk = #b(xk)
#a(xk)

> 1
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Since rk−1 < rk, wk = b. Hence #b(xk−1) = #b(xk) − 1 and #a(xk) =
#a(xk)

Hence we have
rk−1 = #b(xk)−1

#a(xk)
< 1

rk = #b(xk)
#a(xk)

> 1
The first equation yields

#b(xk)− 1 < #a(xk).

The second equation yields.

#b(xk) > #a(xk)

which we rewrite as

#a(xk) < #b(xk)

Combining the < inequalities we get

#b(xk)− 1 < #a(xk) < #b(xk).

Since all of the quantities are natural numbers this cannot occur. Hence
the case where rk > 1 cannot occur, so rk = 1.

So we have w = xy where x, y 6= e and #a(x) = #b(x), so x ∈ L. Since
w ∈ L, we also have #a(y) = #b(y), so y ∈ L. By the Induction Hypothesis
x, y ∈ L(G). Hence S ⇒ y and S ⇒ x. Therefore w ∈ L(G) as follows:

S → SS ⇒ xy = w.

Case 4 w = bw′b. Similar to Case 3.

4 A Useful Lemma

In the proof of Theorem 3.1, Case 3, we had to show that a string w ∈ L
that began with an a ended with a b must be of the form xy where x ∈ L
and y ∈ L. We prove a general lemma using the proof of that claim.
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Lemma 4.1 Let m ∈ N. Let

L0 = {w : #b(w) = m#a(w) + 0}.

L1 = {w : #b(w) = m#a(w) + 1}.

...

Lm−1 = {w : #b(w) = m#a(w) +m− 1}.

Let w ∈ L0. Let w = w1 · · ·w(m+1)n. (There are n a′s and mn b’s.) For

1 ≤ k ≤ (m+ 1)n let xk = w1 · · ·wk and rk = #b(xk)
#a(xk)

.

1. If there exists 1 ≤ i < j < (m + 1)n such that ri < m, rj > m, and
#a(xi) ≥ 1 then there exists k, i < k < j, where rk = m. Hence there
exists x, y 6= e such that w = xy and x, y ∈ L0. (This follows since if
rk = m then xk ∈ L0, so the rest of the string is also in L0.)

2. If there exists 1 ≤ i < j < (m + 1)n such that ri > m, rj < m, and
#a(xj · · · x(m+1)n) ≥ 1, then there exists k, i < k < j, where rk = m.
Hence there exists x, y 6= e such that w = xy and x, y ∈ L0. This can
be obtained by applying Part 1 to wR.

3. If w begins with an a and ends with a b then one of the following occurs.

(a) w = xy where x, y ∈ L0.

(b) w = axbm where x ∈ L0.

4. If w begins with a b and ends with an a then one of the following occurs.

(a) w = xy where x, y ∈ L0.

(b) w = bmxa where x ∈ L0.

This can be obtained by applying Part 3 to wR.

5. If w begins and ends with a b then either

(a) w = xy where x, y ∈ L0.
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(b) w = bkaxbm−k for some 1 ≤ k ≤ m− 1.

(c) FILL IN LATER

Proof:
1) Since ri < m and rj > m there exists a least k, i < k < j, such that
rk ≥ m. If rk = m then we are done. So we assume rk > m. Since k is the
least such number we know rk−1 < m. Hence

rk−1 = #b(xk−1)

#a(xk−1)
< m (Note that #a(xk−1) ≥ 1.)

rk = #b(xk)
#a(xk)

> m

Since rk−1 < rk, wk = b. Hence #b(xk−1) = #b(xk) − 1 and #a(xk) =
#a(xk)

Hence we have
rk−1 = #b(xk)−1

#a(xk)
< m

rk = #b(xk)
#a(xk)

> m
The first equation yields

#b(xk)− 1 < m#a(xk).

The second equation yields.

#b(xk) > m#a(xk)

which we rewrite as

m#a(xk) < #b(xk)

Combining the < inequalities we get

#b(xk)− 1 < m#a(xk) < #b(xk).

Since all of the quantities are natural numbers and #a(xk) ≥ 1 this cannot
occur. Hence the case where rk > m cannot occur, so rk = m.

3) w begins with an a and ends with a b. Let i ≥ 1 be such that w = aw′abi.
(The enumerated list here does not correlate with the one in the theorem;
however, we always get one of the cases.)

1. If 1 ≤ i ≤ m − 1 then we will be applying Part 1 to the prefix a and
the prefix aw′. The first ratio we need is #b(a)

#a(a)
= 0 < m. The second

ratio we need is

5



#b(aw
′)

#a(aw′)
=

#b(w)−#b(ab
i)

#a(w)−#a(abi)
=
mn− i
n− 1

> m.

Hence Part 1 applies and we get w = xy where x, y ∈ L0.

2. If i = m then the suffice y = abi ∈ L0, so the prefix x = aw′ ∈ L0.

3. If i ≥ m + 1 then w = aw′bi = aw′bi−mbm. Let x = w′bi−m and note
that w = axbm and x ∈ L0.

5) w begins with a b and ends with a b. Let k, ` ≥ 1 be such that w =
bkaw′ab`. (The enumerated list here does not correlate with the one in the
theorem; however, we always get one of the cases.)

1. k ≤ m − 1 and ` ≤ m − 1. We apply Part 1 with xi = bka and
xj = bkaw′. We have #a(xi) ≥ 1. we need ri < m and rj > m.

#b(b
ka) = i and #a(b

ka) = 1 so #b(b
ka)

#a(bka)
= k < m.

#b(b
kaw′) = #b(w) − #b(ab

`) = mn − ` and #a(b
kaw′) = #a(w) −

#a(ab
`) = n− 1, so

#b(b
kaw′)

#a(bkw′)
= mn−`

n−1 > m.

So Part 1 applies and w = xy with x, y ∈ L0.

2. k = m or ` = m. If k = m then w = bmaw′′ so just take x = bma and
y = w′′. Since x ∈ L0, y ∈ L0. The case of ` = m is similar.

3. k ≥ m+ 1 and ` ≥ m+ 1.

4. k ≤ m − 1 or ` ≥ m + 1. So w = bkaw′ab`+k−mbm−k. Let x = w′a.
Then w = bkxbm−k.
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5 L = {w : m#a(w) = #b(w)} is a CFL

Theorem 5.1 Let m ≥ 1. The language L below is a CFL.

L = {w : m#a(w) = #b(w)}

Proof:
Let G the the following context free grammar.

For every σ1 · · ·σm+1 where m of the symbols are b and one of the symbols
is a, and for every 0 ≤ i ≤ m+ 1 we have the production

S → σ1 · · · σiSσi+1 · · ·σm+1.
S → SS.
S → e.
S → TaT .
T → bS | ST .

1) L(G) ⊆ L.
We show by induction no the number-of-steps in a derivation that, for all

w ∈ {a, b, S, T}∗ that G generates,

m(#a(w) + #T (w)) = #b(w).

Base Case If there is only one step them w = e so the conclusion holds.
Ind Hyp If w′ ∈ {a, b, S, T}∗ is generates by n− 1 steps then

m(#a(w
′) + #T (w′)) = #b(w

′).

Ind Step Let S ⇒ w in n steps. Then S ⇒ w′ in n− 1 steps and then some
rule R goes from w′ to w. By the IH.

m(#a(w
′) + #T (w′)) = #b(w

′).

If R replaces an S with one a and m b′s then
#a(w) = #a(w

′) + 1.
#b(w) = #b(w

′) +m.
#S(w) = #S(w′).
#T (w) = #T (w′).
Hence

m((#a(w)− 1) + #T (w) = #b(w)−m
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m#a(w)−m+ #T (w) = #b(w)−m

m#a(w) + #T (w) = #b(w)

BILL - DO THE REST LATER
is an easy induction on the number-of-steps in a derivation, which we

omit.
We prove that, for all w ∈ L, w ∈ L(G) by induction on |w|.

Base Case |w| = 0 so w = e. This is clearly in L(G) using S → e.

Ind Hyp Let n ≥ 1. For all w ∈ L of length≤ n− 1, w ∈ L(G).

Ind Step Let w ∈ L, |w| = n. We show w ∈ L(G).

Case 1 w = aw′a.

1. For the prefix a we have #b(a)
#a(a)

= 0 < m. Also note that #a(a) = 1 ≥ 1.

2. For the prefix aw′ we have #b(a)
#a(a)

= #b(w)
#a(w)−1 >

#b(w)
#a(w)

= m.

By Lemma 4.1, there exists x, y ∈ L such that w = xy. By the Induction
Hypothesis S ⇒ x and S ⇒ y. Hence
Case 2 w = aw′b. Let i be such that w = aw′′abi.
Case 2.1 0 ≤ i ≤ m− 1.

1. For the prefix a we have #b(a)
#a(a)

= 0 < m

2. For the prefix aw′′a we have #b(a)
#a(a)

= #b(w)−i
#a(w)

> #b(w)
#a(w)

= m.

By Lemma 4.1, there exists x, y ∈ L such that w = xy. By the Induction
Hypothesis

S ⇒ x and S ⇒ y. Hence

S → SS ⇒ xy = w

Case 2.2 i ≥ m. So w = aw′′′abi−mbm. Note that w = w′′′abi−m ∈ L. By
the induction hypothesis

S ⇒ w′′′abi−m. Hence
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S → aSbm ⇒ aw′′′abi−mbm = aw′′′bi = w

Case 3 w = bw′a. Similar to Case 3.
Case 4 w = bw′b. We cannot use Lemma 4.1 with the prefix b since #a(b) =
0. We need to find the first a. Let i be such that w = biaw′′b.
Case 4.1 i ≤ m− 1.

1. For the prefix bia we have #b(b
ia)

#a(bia)
= i

1
= i < m. Note that #a(b

ia) =
1 ≥ 1.

2. For the prefix aw′′a we have #b(a)
#a(a)

= #b(w)−i
#a(w)

> #b(w)
#a(w)

= m.

By Lemma 4.1, there exists x, y ∈ L such that w = xy. By the Induction
Hypothesis

S ⇒ x and S ⇒ y. Hence
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