
Bounded Queries in Computability Theory
An Introduction

by
William Gasarch

1 Introduction

Notation 1.1 If A ⊆ N and x ∈ N then

A(x) =

{
1 if x ∈ A

0 if x /∈ A
(1)

Notation 1.2 K denotes the HALTING set. This is tradition.

The following is the definition of a very basic function that is used re-
peatedly in the study of bounded queries in computability theory.

Definition 1.3 Let n ≥ 1 and A ⊆ N. CA
n is the string-valued function

defined by
CA

n (x1, . . . , xn) = A(x1) · · ·A(xn).

(A(x1) · · ·A(xn) denotes the string of length n that consists of the bits
A(x1), . . . , A(xn), not multiplication. Hence CA

n : Nn → {0, 1}n.

Clearly, the function CA
n can be computed with n queries to A. Can it

be computed with fewer? The next theorem shows that if A = K (K is the
HALTING SET) and n ≥ 3, the answer is yes. The proof of the theorem
uses the following easy lemma, the proof of which we leave as an exercise.

Definition 1.4 If A ⊆ N and n ∈ N. Then GEA
n is the set of all tuples of

naturals (any length) such that at least n of them are in A.

Definition 1.5 If A,B ⊆ N then A ≤ B means that there is a computable
function f such that x ∈ A iff f(x) ∈ B. Note that this means that any
question to A can be answered by asking ONE question to B.

1



2 We CAN compute CK
3 with 2 queries

Lemma 2.1 Let n ∈ N.

1. Let A be any Σ1 set. Then GEA
n ≤ K. Hence any question to GEA

n can
be answered using ONE query to K.

2. GEK
n ≤ K. Hence any question to GEK

n can be answered using ONE
query to K.

Theorem 2.2 CK
3 can be computed with two queries to K.

Proof: The following is an algorithm that computes CK
3 with two queries

to K.

1. Input (x1, x2, x3).

2. Ask (x1, x2, x3) ∈ GEK
2 (using ONE query to K by Lemma 2.1). Note

that this is will tell if at least 2 of x1, x2, x3 are in K.

3. There are two cases depending on the answer to the first query.

(a) YES. So we know that at least 2 of {x1, x2, x3} are in K. Now ask
(x1, x2, x3) ∈ GEK

3 (using ONE query to K).

i. If the answer is YES then we know that ALL THREE of
{x1, x2, x3} are in K. Hence just output (1,1,1).

ii. If the answer is NO then we know that exactly TWO of
{x1, x2, x3} are in K. What do to? We can’t ask any more
questions! Here is what we do: WE RUN ALL THREE PRO-
GRAMS UNTIL TWO OF THEM HALT. Here is the KEY:
(1) we know that two of them WILL HALT, and (2) when
we find the two that do halt we KNOW the other one WILL
NEVER HALT so we need not run it anymore. Hence we
know exactly which of {x1, x2, x3} are in HALT. Output the
appropriate 3 bits.

(b) NO. So we know that at at most 1 of {x1, x2, x3} is in K. Now
ask (x1, x2, x3) ∈ GEK

1 (using ONE query to K).

2



i. If the answer is NO then we know that NONE OF {x1, x2, x3}
are in K. Hence just output (0,0,0).

ii. If the answer is YES then we know that exactly ONE of
{x1, x2, x3} are in K. What do to? We can’t ask any more
questions! Here is what we do: WE RUN ALL THREE PRO-
GRAMS UNTIL ONE OF THEM HALTS. Here is the KEY:
(1) we know that one of them WILL HALT, and (2) when we
find the one that does halt we KNOW the other two WILL
NEVER HALT so we need not run it anymore. Hence we
know exactly which of {x1, x2, x3} are in HALT. Output the
appropriate 3 bits.

3 We CANNOT Compute CK
2 with 1 query

to X

SO we have CK
3 can be computed with 2 queries to K. Yeah! Can we do

better? Can we compute CK
3 with 1 query to K? NO. In fact we will show

that we can’t compute CK
2 with 1 query to K. But wait! There’s more! We

will show that for ALL sets X, CK
2 cannot be computed with 1 query to X.

We need a new way to look at the notion of 2-queries-to a set.

Definition 3.1 A partial function f (partial means that it need not be de-
fined on all elements of N) is partial computable if there is TM M such that,
for all x:

1. If f(x) is defined then M(x) ↓= f(x).

2. If f(x) is not defined then M(x) ↑.

Lemma 3.2 Let X be a set, and let f be a function that can be computed
with one query to X. Then there are partial computable functions f1, f2 such
that

(∀x)[f(x) ∈ {f1(x), f2(x)}].

3



Proof: Choose an algorithm ALG that computes f with at most one
query to X. For x ∈ N, define f1(x) and f2(x) as follows:

f1(x): Run ALG on input x, and answer the query with YES;

f2(x): Run ALG on input x, and answer the query with NO.

Note that, for every x, at least one of f1(x) and f2(x) converges and
outputs f(x). Hence (∀x)[f(x) ∈ {f1(x), f2(x)}].

Note 3.3 Note that Lemma 3.2 also applies to any function f whose domain
is Nn for some n > 1. If n = 2, the lemma’s conclusion will be written as
(∀x, y)[f(x, y) ∈ {f1(x, y), f2(x, y)}].

Theorem 3.4 There is no set X such that CK
2 can be computed with one

query to X.

Proof: Let X be a set, and suppose CK
2 can be computed with one query

to X. We show that K is decidable, a contradiction.
By Lemma 3.2 there exists partial computable functions f1, f2 so that

(∀x, y)[CK
2 (x, y) ∈ {f1(x, y), f2(x, y)}].

We can assume that, for each i ∈ {1, 2} and all x, y ∈ N, fi(x, y) ↓ =⇒
fi(x, y) ∈ {0, 1}2. Either the following algorithm, A1, will decide K, or the
very reason why it fails to do so will yield an algorithm, A2, that works.

1. Input x.

2. Look for y ∈ N and b, c1, c2 ∈ {0, 1} so that f1(x, y) ↓= (b, c1) and
f2(x, y) ↓= (b, c2). (This step may not terminate.)

3. (If this step is reached, then y, b, c1, c2 were found in step 2.) Output b.

Let x ∈ N. We show that if A1(x) ↓, then A1(x) = K(x). So suppose
that A1(x) ↓. Since step 2 terminates, we have found y ∈ N and b, c1, c2 ∈
{0, 1} such that f1(x, y) ↓= (b, c1) and f2(x, y) ↓= (b, c2); hence CK

2 (x, y) ∈
{(b, c1), (b, c2)}, so K(x) = b.

Hence if (∀x)[A1(x) ↓], then K is computable. So suppose there is some x0

such that A1(x0) ↑. We use this x0 to devise a new algorithm.
Since A1(x0) ↑, note that, for every y, it cannot be the case that f1(x0, y)

and f2(x0, y) converge and their outputs agree on the first component. Let
b0 = K(x0).

4



1. Input y.

2. Compute the values of f1(x0, y) and f2(x0, y) simultaneously, stopping
when you find some b ∈ {0, 1} such that one of f1(x0, y), f2(x0, y)
converges to (b0, b).

3. (If this step is reached, then b was found in step 2.) Output b.

Let y ∈ N. We show that A2(y) ↓= K(y). Since

CK
2 (x0, y) ∈ {f1(x0, y), f2(x0, y)},

we know that (∃i, b)[fi(x0, y) = (b0, b)]. Hence A2(y) ↓. If in step 2 it is
discovered that (say) f1(x0, y) ↓= (b0, b), then it cannot be the case that
(∃b′)[f2(x0, y) ↓= (b0, b

′)], since this would imply that f1(x0, y) and f2(x0, y)
converge and their outputs agree on the first component, contrary to the
choice of x0. Hence either f2(x0, y) diverges, or it converges and is wrong on
the first component. It follows that f1(x0, y) = CK

2 (x0, y), so K(y) = b =
A2(y).

4 Questions to Ponder

The algorithm for CK
3 with 2 queries to K asked the queries sequentially.

That is, the algorithm asked a question, got the answer, and then based on
that answer asked another question. What if we demand the algorithm as
the questions in parallel?

Ponder the following questions (the answers are known).

1. Is then an algorithm for CK
3 that uses 2 parallel queries to K?

2. Is then a set X ⊆ N and algorithm for CK
3 that uses 2 parallel queries

to X?

5


