\documentclass[12pt]{article} \usepackage{amsmath} \begin{document} \centerline{\bf Homework 8, MORALLY Due April 1} \newcommand{\st}{\mathrel{:}} \newcommand{\goes}{\Rightarrow} \newcommand{\NSQ}{{\rm NSQ}} \newcommand{\into}{{\rightarrow}} \newcommand{\lf}{\left\lfloor} \newcommand{\rf}{\right\rfloor} \newcommand{\lc}{\left\lceil} \newcommand{\rc}{\right\rceil} \newcommand{\Ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} \newcommand{\Z}{{\sf Z}} \newcommand{\N}{{\sf N}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\D}{{\sf D}} \newcommand{\Rpos}{{\sf R}^+} \begin{enumerate} \item (30 points) Recall what induction is: {\bf From } \begin{itemize} \item $P(0)$ \item $(\forall n\ge 0)[P(n)\goes P(n+1)]$ \end{itemize} {\bf You have} $(\forall n)[P(n)]$. \bigskip Induction is great for proving theorems of the form $(\forall n\in\N)[P(n)]$. We want to prove theorems of the form $$(\forall z\in \Z)[P(z)].$$ \bigskip Give a scheme similar to the one above that will have the conclusion $(\forall z\in\Z)[P(z)]$. \newpage \item (35 points) Consider the recurrence $T(1)=10$ $T(2)=30$. $$ (\forall n\ge 3)\biggl [T(n) = \biggl (\floor {\frac{n}{a}}\biggr ) + T\biggl(\floor{\frac{n}{b}}\biggr ) + cn\biggr ].$$ Find an infinite number of triples $(a,b,c)$ of POSITIVE rationals such that $$(\forall n\ge 1)[T(n)\le 100n].$$ \newpage \item (35 point) Consider the following recurrence: $T(0)=1$ $T(1)=6$ $T(2)=21$ $(\forall n\ge 3)[T(n) = 2T(n-1) + 4T(\floor{\sqrt{n}}) + 5n.$ Show that, for all $n\ge 1$, $T(n)\equiv 1\pmod 5$. {\it Hint:} Use Strong Induction. \end{enumerate} \end{document}