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For this volume, I have combined columns I wrote for the June, 1997 and October,
1998 Bulletin. As both are brief, and the second column refers to the first, this
seemed appropriate. The first column discusses the general question of whether
asymptotic lower bounds are of any practical use. (My answer: They are.) The
second column is in the form of a dialogue between “Q” and “A” in the format
used so successfully by Yuri Gurevich in many of his columns for the Bulletin. The
reader will kindly pardon my attempts to inject a bit of humorous style (d la Dave
Barry) into this discussion of recent progress on the question of whether or not
all NP-complete sets are isomorphic. The serious message of this second part of
the article: there are some very practical reasons for being interested in the very
abstract notion of isomorphism of complete sets.

1 Some Pointed Questions Concerning Asymptotic Lower
Bounds

I am surprised at how often I encounter skepticism about the relevance of
an asymptotic lower bound on the computational complexity of a function.
Admittedly, the grounds for this skepticism may initially sound plausible, as
the following “straw man” argument may illustrate:

Let’s assume that you’ve shown that function f requires time
292(n) to compute, and also requires circuit size 22("). This still
doesn’t tell me that I won’t be able to compute f for my application.
I’'m never going to need to deal with inputs with more than a billion
bits, and your lower bound only says that there is some € > 0 such
that the circuit size is at least 2¢". But if € turns out to be one-
billionth, then this tells me nothing. In fact, the set I'm interested in
is finite, and all finite sets are regular, and hence they’re recognizable
in lineartime. I'm afraid that the sort of asymptotic bounds provided
by complexity theory miss the boat completely!

If you find this argument convincing, please read further.
It is true that lower bounds in complexity theory are usually stated in
terms of asymptotic bounds (in the rare cases when actual lower bounds are
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able to be presented at all, that is). And it is equally true that an asymp-
totic lower bound, by itself, tells us absolutely nothing about the difficulty of
computing a function on inputs of a specific given size. Yet, inside essentially
every asymptotic lower bound in complexity theory, there hides a concrete
statement about physical reality. It is best to illustrate this with an example.
Here’s my personal favorite:

In Larry Stockmeyer’s Ph.D. thesis, 4> he shows that any circuit that
takes as input a formula (in a certain logical system) with up to 616 symbols
and produces as output a correct answer saying whether the formula is valid,
requires at least 10'23 gates.

It is important to note that there is nothing asymptotic about this theo-
rem. Input sizes of 616 are well within the realm of real-world computation.
In contrast, circuit sizes of 10123 are not within the realm of real-world com-
putation, and they never will be.

Stockmeyer’s result can be proved by first proving an asymptotic lower
bound, consisting of two pieces:

1. The validity problem is shown to be hard for a complexity class under
efficient reducibilities.

2. Diagonalization is used to show that some problem in the complexity
class requires exponential-size circuits.

These two pieces are usually proved using the Turing machine model. Since
Turing machines can accept any finite set in linear time (via the “linear speed-
up theorem”) something more must be done in order to get a concrete result
about inputs of size 616. What has to be done is to look closely at the
proof of the asymptotic result, and remove all mention of Turing machines,
and carry out the same argument directly with circuits (which do not have
a “linear speed-up theorem”). It is fairly clear that this can be done, since
circuits can simulate Turing machines fairly efficiently. It’s a lot more work to
carry out a proof in this format, since you can’t just conveniently forget the
constants involved. However, at the end, you have an irrefutable statement
about the impossibility of a certain transformation from input to output being
computable in the real world.

It is worth noting that Stockmeyer’s analysis can be carried out to show
that the validity problem requires huge circuit size, even if quantum circuits
are allowed. The constants will be slightly different, but the flavor of the
theorem remains unchanged.

It is important to note that essentially any asymptotic lower bound can
be analyzed in this way to obtain concrete bounds for a given computing tech-
nology. However, it is almost never done. In fact, I am not aware of any other
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instance where concrete bounds of this sort were obtained. (Stockmeyer **

does mention the earlier work of Ehrenfeucht 16 which has a similar flavor.)
Why are results of this sort so rare?

The answer, of course, is that this approach first requires an asymptotic
lower bound, and we don’t have many of those, either! But this should be
seen as additional motivation for obtaining asymptotic lower bounds. The
question of whether or not NP has polynomial-sized circuits is not merely of
mathematical and philosophical interest. If problems in NP really do require
large circuits in the asymptotic sense, then it is almost certain that any proof
of this fact will yield concrete bounds on instance sizes that interest us.

2 Complexity Theory and Empirical Observations

Complexity theory has another role to play in understanding physical reality.
Curiously, it is not the role that one might originally have hoped for.

Is it possible to sort in linear time? Can a maximal matching in a graph
be found in time nlogn? Just as the goal of algorithm design is to find faster
programs, it once seemed reasonable to expect that a goal of complexity theory
should be to show that certain algorithms are essentially optimal. That hasn’t
happened.

For a very few problems in P, there are lower bounds on so-called “re-
stricted models of computation” (such as the model used by Edmonds et al '®
for example, or the comparison-based sorting model, as another example).
These bounds do provide an explanation for why some problems require lots
of resources if a certain kind of algorithm is used. However, this type of argu-
ment has been applied to only a handful of computational problems, and it
proves nothing about the complexity of these problems on unrestricted mod-
els of computation. There are some special subclasses of P (such as classes
studied in the work of Buss and Goldsmith, '3 or in the literature on Pa-
rameterized Complexity 22) that help explain our current lack of a linear- or
quadratic-time algorithm for a relatively small number of problems in P hav-
ing a special structure. However, for the overwhelming majority of problems
for which polynomial-time algorithms have been written, complexity theory
currently offers no help in understanding if the running-time of a given algo-
rithm is optimal.®

In contrast, complexity theory has been extremely successful in classifying
the complexity of problems, by associating them with complexity classes. For

@Of course, there is also the possibility that some of these problems have no optimal algo-
rithm. 10
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the overwhelming majority of computational problems that have been con-
sidered in the computing literature, one can find a complexity class for which
the problem is complete. In fact, in almost all cases, the problem is complete
for the complexity class using a very restrictive notion of reducibility (such as
ACP reducibility, or even projections). 23

Why is this significant?

First, I would like to argue that it is significant because it was unexpected.
The initial shock, of course, came with the papers of Cook and Karp 1429
showing that the notion of NP-completeness is wildly successful at explaining
the seeming intractability of many problems. Then there followed some results
with a similar flavor (such as Meyer and Stockmeyer and Jones 426 and
others), showing that some other problems are complete for larger and smaller
complexity classes. Over the course of the years, more complexity classes have
been defined and studied and been shown to capture the complexity of various
important computational problems. Today, it seems safe to say that, when
one is presented with a computational problem, the probability is quite high
that it is complete for some complexity class in the existing literature, under
ACO reducibility. (In fact, as is discussed in more detail later on in this article,
we now know that such problems are all isomorphic to the standard complete
set for the complexity class, under depth-three AC? reductions. ? That is, the
complete sets are all simple re-encodings of each other.)

Second, note that the current list of complexity classes is defined using
a fairly small number of basic concepts such as nondeterminism, counting,
circuits, and reducibility. The point is, that real-world computational prob-
lems have surprisingly close connections to these notions in complexity theory.
Complexity theory gives us the vocabulary to classify and understand this as-
pect of our world.

What is the practical significance of the fact that a problem is complete for
DLOG under AC? reductions? It tells us that the problem is not likely to have
NC! circuits or polynomial-size bounded-width branching programs (as this
would imply NC! = DLOG 7). But how significant is this for a practitioner?
There aren’t many people building bounded-width branching programs for
problems, and since any problem in DLOG has size n®™") circuits of depth
O(log®n), an w(logn) lower bound is of questionable significance for the real
world. The constants hiding in the “big Oh” are likely to be at least as
important.

I would argue that the real practical significance lies not in any partic-

bReminder for the reader: AC? refers to polynomial-size circuits of unbounded-fan-in AND
and OR gates, having depth O(1).
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ular completeness result, but rather in the fact that, taken as an ensemble,
completeness results present a coherent picture of the computational world.
The classification of computational problems using complexity classes and
reducibilities is so successful in describing observed reality, that it builds con-
fidence in our belief that this classification is actually telling us something
about the real world. (That is, since problems seem to announce themselves
as being complete for, say, NP or DLOG, surely this is because NP and DLOG
are not really the same thing!) In the absence of proof that complexity classes
such as P and NP are different, we have come to rely on the utility of the
scientific hypothesis “P # NP” in explaining our observations of apparent
intractability.

Seen in this light, it is clear why the breakthrough results of Immerman
and Szelepcsényi 2446 were shocking at the same time that they were exhil-
arating. It had seemed that many problems naturally classified themselves
as being complete for exactly one of {NLOG, coNLOG}. There seemed to
be as much empirical grounds for the belief that these classes were distinct
as for much of the rest of the framework provided by complexity theory.
(There were smaller tremors provided by the earlier discovery that the al-
ternating logspace hierarchy collapses; 2° some computational problems had
been thought to live on different levels of that hierarchy. ') If the “empirical
evidence” that NLOG # coNLOG was really just an illusion, how much can
we trust the rest of the classification given by complexity classes? We need
to understand these classes much better!

Let me summarize the points I'm trying to make.

1. We are presented with a bewildering universe. Many problems appear to
be difficult to compute, but we have not been able to prove that this is
the case.

2. Fortunately, complexity theory does provide the necessary tools to impose
order on this chaos. Using the notions of reducibility and completeness
for complexity classes, the computational world we observe can be under-
stood as consisting of a relatively small number of equivalent problems,
appearing in different guises.® Complexity classes are the fundamental
objects of study in complexity theory.

¢Of course, I am guilty of oversimplification here. Complexity theory also works with the
notions of average-case complexity and complexity of approximation. Although complexity
classes and reducibilities have been some of our best tools for understanding these aspects,
too, the “compartmentalization” provided by equivalence under interreducibility is not quite
as tidy when considering these aspects.
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3. The characterizations of complexity classes in terms of abstract models of
computation provide an intuitive “explanation” for perceived differences
in complexity. Sometimes this intuition has been misleading; some of the
most important theorems in complexity theory are those showing that
what had appeared to be distinct classes in fact coincide. Research in
complexity theory seeks to refine our intuition, and arrive at an accurate
understanding of this aspect of reality.

4. The theory of complexity classes is based on Turing machines and asymp-
totic bounds. This makes for a more elegant theory, but by itself it cannot
produce concrete bounds about the difficulty of computing transforma-
tions on inputs of a given size. Fortunately, the theory is closely enough
connected to reality, so that essentially any asymptotic lower bound can
be reworked to provide a concrete bound for a given computing technol-
ogy.

The good news is that we have actually learned quite a bit about many
complexity classes in the last few years. The following sections give more de-
tailed information about one particular arena where progress has been made:
isomorphisms between complete sets. This discussion takes the form of a
Question and Answer dialogue.

3 News from the Isomorphism Front

3.1 The Interview Begins:
Questions are Raised about Factorization

Q: In the preceding sections of this article, you gave a very persuasive and
highly readable account, arguing that the study of complezity classes offers
the best hope for understanding the computational complexity of important
computational problems.

A: You are too kind.

Q: Yes, I was being too kind. I'll try to make up for it now. Honestly, I
don’t think that the theory of complexity classes has anything to say about
some of my favorite computational problems. Consider the list:

e Factorization
e Graph Isomorphism
e Graph Automorphism

e Primality Testing
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o Greatest Common Divisor
e Perfect Matching

A: T see your point. None of these problems is known to be complete
for any complexity class. But this list simply supports my point: the very
fact that this list is so short is one of the unexpected triumphs of complexity
theory.

Q: But it is not short! There are infinitely many problems that are not
complete for any reasonable complexity class. Ladner’s construction 3° shows
how to construct such sets.

A: True, but the “computational problems” given by Ladner’s lovely con-
struction are very artificial. Empirically, the overwhelming majority of the
computational problems that people actually want to solve can be shown
fairly easily to be complete for one of a small number of natural complex-
ity classes, even under very restrictive notions of reducibility, such as S;‘,‘LCO
reductions.

Q: Let’s get back to my list of problems. Certainly there are some very
important problems on this list. And it seems that computational complexity
can’t say anything about any of these problems. For instance, are any of these
problems even hard for any complexity class?

A: This is a good question. First, let’s remind the reader what is meant
by being “hard” for a complexity class. A is hard for C (where C is a set of
languages) if for every B € C, there is a function f computed by AC? circuits,
such that z € B if and only if f(x) € A. This is a complexity-theoretic
notion of a lower bound on the complexity of A. Showing that A is in some
complexity class provides a notion of upper bound. If A is complete for C,
then these upper and lower bounds match.

Now back to your question. We do know something about the Graph
Isomorphism problem. It was recently shown that Graph Isomorphism is
hard for the class DET of problems that are NC!-reducible to the determi-
nant (which is a class containing nondeterministic and probabilistic logspace,
among others). 47 As regards upper bounds, Graph Isomorphism is in NP N
co-AM N LWPP — and I'm probably leaving some classes out of this list. For
more about Graph Isomorphism, consult the text by Kobler, Schoning, and
Torén. 33

The situation is quite a bit better for the perfect matching problem. It has
long been known that matching is hard for NLOG, 3* and recently an upper
bound was presented that in some ways is fairly “close” to the lower bound
(although I don’t want to make this precise here because it would involve a
digression about notions of circuit uniformity, etc). ©
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However, for the rest of the problems on your list, 'm afraid that there
aren’t any theorems regarding hardness or completeness for any of these prob-
lems. ... At least not yet ...

Q: Are you hinting that you think someone might prove that, say, factor-
ization is complete for some natural complexity class?

A: Absolutely not! In fact, I think that factorization is not complete for
any such class.

Q: Why not?

A: Well ..., it doesn’t have the right “shape”. It’s structure just isn’t
right. It doesn’t allow the type of coding that you need in order to build a
reduction.

Q: Those are some of the most pathetic, least satisfactory answers I can
imagine! Frankly, I'm quite disappointed. Is that the best you can come up
with?

A: *Sigh* ...I’'m afraid the best I can do is to present some plausible
conjectures. Proving any one of these conjectures would prove that factoriza-
tion is not complete for any “reasonable” complexity class. Although I can’t
prove any of these conjectures right now, I think that they might be tractable,
and I also hope that they’ll make for interesting reading. In fact, presenting
these conjectures is the entire point of this article. First, however, we
will need to make a digression, while we discuss some recent progress on the
isomorphism conjecture.

Q: I'm always interested in hearing about progress!

4 Progress on the Isomorphism Conjecture

A: The Berman-Hartmanis Conjecture  states that all NP-complete sets are
isomorphic under bijections computable and invertible in polynomial time.
(Here, an isomorphism is nothing more than a bijection; there is no other
“structure” that is being preserved. However, this is an abstract way of cap-
turing the intuitive notion that two different “encodings” of a set are still
really the “same” set in some sense. For instance, the SAT problem (the set
of satisfiable Boolean formulae) can be encoded using round parentheses or
square brackets, or with variables {z1, za, ...} or {P1, Pa,... }. Such encoding
choices are trivial and unimportant from the standpoint of complexity theory.
One way to make this precise is to group “equivalent encodings” of a problem
into equivalence classes, where an “encoding” can be any “easily-computable”
bijection on {0, 1}*.

Q: I see. So you get one equivalence class for SAT, another class for the
Clique problem, one for 3-colorability, and so on.
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A: Right — except that all the problems you mentioned are in the same
class.

Q: Really? Clique is an encoding of SAT?

A: Yes. Berman and Hartmanis ® gave some simple sufficient conditions
for two sets to be isomorphic, and with these conditions, it is easy to see that
all of the NP-complete problems in Garey and Johnson 2° are isomorphic.

Q: What about smaller complexity classes, such as P and NLOG?

A: Hartmanis 2! studied analogous conjectures for these classes, using log-
space reducibility (and logspace isomorphisms), instead of poly-time. Once
again, all of the standard complete sets are easily seen to be isomorphic. Of
course, logspace reductions are too powerful to investigate the many interest-
ing subclasses of DLOG (such as ACC?, TC?, and NC!). For these classes,
ACP reducibility is the most natural notion of reducibility to use, "'2 and
once again the “standard” complete sets are all seen to be isomorphic. 44

Q: So, I guess that, with so much written about the isomorphism conjec-
tures, most complexity theoreticians believe that the conjectures are true?

A: Far from it. In fact, probably most complexity theoreticians believe
that there is a one-way function f (one that is easy to compute but very hard
to invert) such that f(SAT) is not isomorphic to SAT. Some really interesting
work in this direction has been done ... 283032

Q: Let me interrupt. You’ll never meet your deadline if you are going to
survey the entire field. Are there any surveys you can suggest?

A: Yes. Two very nice ones that spring to mind are by Kurtz et al 3! and
Young. 4° Some exciting developments are too recent to be mentioned in the
surveys. 182740

Q: What does this have to do with factorization?

A: I'm getting to that. In spite of the general feeling that the original
Berman-Hartmanis conjecture is probably false, it was shown recently that
the Berman-Hartmanis conjecture for AC? reductions is actually true. 3

Q: Please state this more clearly.

A: For any “reasonable” complexity class, all of the sets that are com-
plete under ACP? reductions are isomorphic under bijections computable and
invertible by ACO circuits. (In fact, they are computable and invertible by
depth three ACP circuits!)

Q: Is depth three optimal?

A: Yes. ?

Q: What is a “reasonable” complexity class?

d Actually much stronger results are proved in Allender et al, * but it would require another
digression to present that material.
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A: Any class that is closed under many-one reductions computable in
TCP. In particular, NP, P, NC', DLOG, BPP, and just about any other
complexity class you’ve ever heard of is “reasonable” in this sense (except for
very small classes, such as AC? and ACCY).

Q: So, in light of your earlier comments about f(SAT), when f is a one-
way function, does this mean that there are no one-way functions computable
in AC??

A: Quite the contrary. It was shown by Nisan 38 that there are functions
f computable in ACP that are very one-way with respect to depth-three ACP.
Nonetheless, even for such a “random-looking” function f, f(SAT) is just a
“trivial” re-encoding of SAT (i.e., it is depth-three AC-isomorphic to SAT).

Q: Are there some annoying details about circuit uniformity conditions
that you're ignoring in this article?

A: Yes.

Q: This seems to be quite a strong result! Complexity classes are the
fundamental objects of study in complexity theory, because the natural com-
putational problems that we are interested in tend to cluster into classes of
complete sets for complexity classes. The result of Agrawal et al 3 shows that,
not only are the complete sets interreducible, but in fact they are isomorphic
in a very restrictive sense.

A: Remember, this is only true for sets that are complete under AC°
reducibility.

Q: Yes, but you said that all of the sets that are complete under other
reducibilities are also complete under AC? reducibilities.

A: If that were true, then we’d have a proof that P # NP! I merely said
that all of the “natural” examples of complete sets (for instance, all of the
complete sets considered in Garey and Johnson 2° and Greenlaw et al '9)
are complete under AC? reducibilities. Actually, it is shown by Agrawal et
al ? that there are sets complete for NP under poly-time reducibility, but not
under ACP reducibility.

Q: What does this set look like?

A: Tt is an encoding of SAT, using a certain kind of error-correcting code.
This set (let’s call it SAT') is clearly poly-time isomorphic to SAT, but it is not
NP-complete under AC® reductions. In fact, there are regular sets (such as
the PARITY language) that are not reducible to SAT’ under ACY reductions.

Q: Isn’t this a counterexample to your claim that all “natural” NP-
complete sets are complete under ACY reducibility?

A: This depends on your definition of “natural”. I think that not many
people would say that this is the “natural” way to encode SAT.

Q: We'll let the readers of this column decide what they think of this
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semantic hair-splitting. But let’s get back to the factorization problem.
A: Thank youl!

5 Factoring and Cylinders

A: First let’s be very precise about what we mean by “the factorization prob-
lem”. Let us define it to be the following language:
FACT = {(z,4,b) : the i¢th bit of the prime factorization of x is b}

(where the prime factorization is presented as pi',...,p;", where each ex-
ponent e; > 0, and p; < p;+1, so that each number has a unique prime
factorization).

Q: What are the complexity-theoretic “upper and lower bounds” on the
complexity of FACT?

A: FACT is in NPNcoNP (and in fact it is even in UPNcoUP 7). Thus
FACT is not NP-complete unless NP = coNP = UP = coUP. On the other
hand, FACT is not known to be hard for any reasonable complexity class
under ACY reducibility. It is not even known to be hard for AC? (&) (the class
of languages accepted by constant-depth, polynomial-size circuits of AND,
OR, and PARITY gates)!

Q: Wow! Are you saying that it isn’t even known if FACT is in AC%(c)
or not?

A: That’s not what I said! Actually, it was shown by Boppana and
Lagarias '' that the number of 1’s in a string * = x;...z, is a multiple
of 3 if and only if the number whose binary representation is z10x20.. .0z,
is a multiple of 3. Thus, if FACT were in ACY(®), then certainly we could
solve the Mod3 problem with AC?() circuits, in contradiction to Smolensky’s
lower bound. 42 In fact this shows that FACT is not in AC°(Modp) for any
prime p # 3.

Q: So, is FACT in AC°(Mod 3)?

A: No. If you look at the finite automaton for the set of binary strings
that are a multiple of 5, you will see that the number of 1’s in a string
T = x1...%, is a multiple of 5 if and only if the number whose binary rep-
resentation is 000x100022000...000x, is a multiple of 5. Thus, if FACT
were in AC%(Mod3), then certainly we could solve the Mod5 problem with
AC%(Mod3) circuits, again in contradiction to Smolensky. 42 Thus we have
that FACT is not in AC°(Modp) for any prime p.

Q: So, we know that FACT is not in ACY(Modp) for any prime p, but we
don’t know if FACT is hard for any such class. How about AC®(Mod6)?

A: Tt remains an open question if there is anything in NTIME(2™) that
does not have linear-size, depth-three circuits of Mod6 gates.

main: submitted to World Scientific on June 1, 2001 11




Q: Thanks for reminding me just how little we know. What does this have
to do with the question of whether FACT is complete for some complexity
class?

A: I'm getting to that. If FACT were complete for some reasonable
complexity class, then, by Agrawal et al 3, FACT would be isomorphic to
FACTx{0,1}* (since FACTx{0,1}* would clearly also be complete for the
same complexity class).

Q: This reminds me of something from my computability textbook.?? A
set A that is recursively isomorphic to A x {0, 1}* is called a “cylinder”.

A: Yes. This same terminology was imported to complexity theory by
Mahaney and Young. 37

Q: Are we now ready for you to state your conjecture?

A: Yes.

Conjecture: There is no isomorphism computable and invertible in
depth-three AC® mapping FACTx{0, 1}* onto FACT.

That is; FACT is not a (depth-three) AC? cylinder. If this conjecture is true,
then factoring is not complete for any reasonable complexity class under AC?
reductions.

Q: Isn’t this conjecture just another example of an impossibly difficult
question in complexity theory? Wouldn’t it imply NLOG # P, or TC® # NP,
or something?

A: 1 don’t think so. If I could show that A is not an AC? cylinder, where
A is some set in NP that is hard for TCO (for instance), then I would know
that TCY is contained in the class of languages that are reducible to A, which
is properly contained in NP (since all NP-complete sets are AC? cylinders),
and thus I could conclude that TC? is not equal to NP. However, since FACT
is not known (or even believed) to be hard for TC?, this obstacle is removed.

Q: What intuition do you have about why the conjecture might be true?

A: First, note that it is not too hard to show that FACT is a P-cylinder.
That is, there is an isomorphism computable and invertible in polynomial
time between FACT and FACTx{0,1}*. (Sketch of how to compute such an
isomorphism: It is sufficient to give a length-increasing, invertible reduction
from FACTx{0,1}* to FACT; this yields an isomorphism.? Given (x,1,b)
and y, we need to find some (a/,¢,b") such that (z,4,b) € F if and only if
(',i,V) € F. We can directly compute the largest exponent e; for each of
the first |y| primes, such that p;j to that exponent divides x. Then, by doing
some simple encoding using the exponents of the first |y| primes, we can build
a new number, whose prime factorization “encodes” the prime factorization
of x, along with the bits of y. If we are careful about how we do this, then the
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bits of the prime factorization of x that deal with large primes are essentially
unchanged (and thus ¢ will be mapped to i =i+ j for some easy-to-compute
7). The details are straightforward but tedious.)

All of my attempts to build an isomorphism between FACT and
FACT x{0, 1}* involve doing quite a bit of multiplication and division — which
is impossible for an ACP circuit. One approach to try to prove the conjecture
would be to show that any circuit computing such an isomorphism would be
usable as an oracle to compute multiplication, or at least to compute parity
infinitely often.

Q: Still, this seems like an ambitious project.

A: Perhaps. Certainly, showing that two sets are mot isomorphic often
seems to be quite difficult! (Note, however, that Agrawal et al 2 do prove
results of this form. The sets SAT and SAT’ are not AC® isomorphic.)

Another approach would be to try to show that there is no length-
increasing one-one function f in NCY reducing FACTx{0, 1}* to FACT. (Note
that the “one-one” condition is crucial here. Otherwise, in NC° one could map
(z,i,b,2) to (0%l i’ b) for appropriate (easy-to-compute) i’.) The results of
Agrawal et al ® can again be used to show that this implies that FACT is not
complete.

Q: Do these observations apply to problems other than factorization?

A: They certainly do. I would guess that primality testing and computa-
tion of the greatest common divisor also fail to be complete for any reasonable
complexity class, for the same reason.

It would also be worth trying to say something concrete about the multi-
plication problem. That is, consider the set MULT = {(z, y,4,b) : the ith bit
of the binary representation of = -y is b}. MULT is certainly an important set,
and in some sense its complexity is fairly well understood. It is in TCP?, and it
is complete for TCY under ACP- Turing reducibility. Since it is still an impor-
tant open question if TCC is equal to NC!, I believe it is still an open question
whether MULT is complete for NC! under AC® many-one reducibility. I think
it is quite possible that one might be able to show that MULT is not complete
for any reasonable complexity class (under AC® many-one reducibility).

Q: Wouldn’t this allow one to prove that TCP is not equal to NC'?

A: Not that I see. Note in this regard that it is already known that the
MAJORITY function is not complete for NC! under AC® many-one reducibil-
ity. (That is because there is no AC® many-one reduction from the PARITY
language to MAJORITY. &) MAJORITY and MULT have quite similar com-
plexity, in that both are complete for TC® under ACY-Turing reducibility.

Q: Is this the end of the article?

A: Almost. T just want to comment that we really do agree on one point.
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Q: What is that?

A: Currently, complexity theory has no credible approach toward trying
to show that factorization is difficult to compute. The only real evidence of
intractability that complexity theory offers currently is based on reducibility
and completeness. Factorization seems to fall outside that framework. With
luck, however, it might be possible to prove that this is the case.
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