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Abstract

Recent research progress in facial attribute recognition
has been dominated by small improvements on the only
large-scale publicly available benchmark dataset, CelebA
[18]. We propose to extend attribute prediction research to
unconstrained videos. Applying attribute models trained on
CelebA – a still image dataset – to video data highlights
several major problems with current models, including the
lack of consideration for both time and motion. Many fa-
cial attributes (e.g. gender, hair color) should be consistent
throughout a video, however, current models do not pro-
duce consistent results. We introduce two methods to in-
crease the consistency and accuracy of attribute responses
in videos: a temporal coherence constraint, and a motion-
attention mechanism. Both methods work on weakly la-
beled data, requiring attribute labels for only one frame
in a sequence, which we call the anchor frame. The tem-
poral coherence constraint moves the network responses of
non-anchor frames toward the responses of anchor frames
for each sequence, resulting in more stable and accurate
attribute predictions. We use the motion between anchor
and non-anchor video frames as an attention mechanism,
discarding the information from parts of the non-anchor
frame where no motion occurred. This motion-attention fo-
cuses the network on the moving parts of the non-anchor
frames (i.e. the face). Since there is no large-scale video
dataset labeled with attributes, it is essential for attribute
models to be able to learn from weakly labeled data. We
demonstrate the effectiveness of the proposed methods by
evaluating them on the challenging YouTube Faces video
dataset [31]. The proposed motion-attention and temporal
coherence methods outperform attribute models trained on
CelebA, as well as those fine-tuned on video data. To the
best of our knowledge, this paper is the first to address the
problem of facial attribute prediction in video.

1. Introduction

Facial attributes are high-level, describable visual fea-
tures of faces that have been used for image search, re-
trieval, identification and verification [14][15][16]. The
problem of accurately recognizing facial attributes in un-
constrained environments is very difficult and has gained
attention in recent years, with most methods taking advan-
tage of deep learning for feature extraction [18][29][26].

Most facial attributes – hair color, eye color, gender –
are invariant to changes in pose, illumination, and various
imaging conditions (e.g. resolution). However, without data
representing the full spectrum of these different variables, it
is difficult to properly model the attributes. CelebA is a
large-scale dataset, with over 200,000 images labeled with
40 binary facial attributes [18]. However, when training
deep networks, 200,000 images is considered small. And,
as the name would suggest, CelebA consists of posed im-
ages of celebrities, so the images are of high quality, with
good lighting, no motion blur, and the faces are mostly
frontal. Due to these biases, and CelebA being the only
large-scale publicly available dataset labeled with facial
attributes, advances in facial attribute prediction research
have been limited to small improvements on this dataset.
We propose to shift the focus of facial attribute prediction
research to video, which has not yet been explored.

Video data poses many problems for recognition sys-
tems, especially those that have only learned from still im-
ages. Testing a still image-trained model on data that has
a temporal component, in addition to extreme poses, and
motion blur, can result in unexpected behavior. In the case
of facial attributes, we see the model’s response for gender
changing between video frames, which is not something we
expect from a robust attribute classifier. Using what we in-
tuitively know about the stability of attributes over time, we
can leverage weakly labeled data to learn more robust at-
tribute models. Most facial attributes are stable over time
(e.g. gender, hair color, eyeglasses, etc.), but there are a few
that can change throughout a video. In labeling four frames
from every sequence in YouTube Faces, we discovered that



there are eight attributes out of the set of forty from CelebA
that can change throughout a video: arched eyebrows, bags
under eyes, blurry, double chin, hat, mouth slightly open,
narroweyes, and smiling. With 20% of facial attributes be-
ing variable over time, we cannot make the assumption that
all frames have the same attribute responses.

To better model attributes in video, we propose two
methods which use weakly labeled data during training to
improve the reliability and accuracy of attribute predictions.
Both methods require that one frame in a sequence is la-
beled with attributes. We call this the anchor frame and all
unlabeled frames, non-anchor frames.

We introduce a novel temporal coherence (TC) con-
straint, which encourages non-anchor video frames to have
similar network responses to their corresponding anchor
frame. The effect of the temporal coherence constraint
weakens as the time increases between the anchor and non-
anchor frames. This allows the network to utilize weakly
labeled data in order to move attribute responses closer to-
gether without enforcing that they are the same between
frames.

In addition, we propose a novel motion-attention mech-
anism for attributes in video. The motion, blur, and pose
changes associated with video data tend to cause problems
for attribute prediction models (or any recognition system).
If we can explicitly account for motion in the learning of
the attribute model, it will be less sensitive to such changes.
The proposed motion-attention mechanism suppresses in-
put from regions in the non-anchor video frame which have
not moved from the anchor frame, effectively focusing the
network on regions with motion.

We demonstrate the effectiveness of our methods by test-
ing them on the challenging YouTube Faces dataset [31].
We labeled four frames in every video with forty attributes
from CelebA, which we will make publicly available for
future research. The first frame in each video is an anchor
frame, and is used for training. At test time, we evaluate our
methods on the four labeled frames in each video in order to
measure stability. We compare the proposed methods with
a model trained only on CelebA, as well as a model fine-
tuned on the anchor frames from YouTube Faces. Both of
the proposed methods outperform these baseline methods,
and combining them results in even further improvements.
These results demonstrate the need for explicitly account-
ing for time and motion when training attribute models for
use on video data. Though we test the proposed methods
on the problem of facial attribute prediction, we note that
the methods are very general, and can be applied to any
problem which uses a deep network for feature learning and
classification of videos.

Contributions: To the best of our knowledge, this pa-
per is the first to study the effects of motion and time
on facial attribute prediction, introducing two techniques

– temporal coherence and motion-attention – to explicitly
account for these variables during training. We also in-
troduce a Multi-Task Attribute CNN (MACNN) as our at-
tribute model, which has fewer than 3 million parameters,
trains directly from CelebA in less than an hour on a single
GPU, and achieves the same performance as state-of-the-
art, [26], on CelebA.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses previous work related to facial attributes
as well as the use of time and motion in video processing.
Section 3 details the proposed methods, and Section 4 high-
lights the experiments performed to test these methods. In
section 5 we summarize our work and discuss its impact.

2. Related Work
This paper builds on two areas of research: facial at-

tribute prediction, and recognition from video. We review
the relevant literature in the following sections.

2.1. Facial Attributes

Facial attributes – gender, facial hair, hair color, etc –
are human describable features of faces and have been suc-
cessfully used in face recognition and verification [15][16].
The problems of recognizing gender and age from face im-
ages have been studied for many years, and are still con-
sidered difficult problems [6][20]. It is well known that
the accuracy of gender recognition systems degrades sig-
nificantly in non-ideal settings, i.e. with extreme pose,
illumination variations, or poor image quality [28]. Al-
though this work focuses on facial attribute prediction, at-
tributes have been used in many different computer vision
problems including describing objects, recognizing activ-
ities from video, and face identification and verification
[2][3][5][17][10][12][35].

In [14], binary facial attributes were introduced for the
task of image search and retrieval. The authors later ex-
tended this work in [15] and [16], collecting additional at-
tribute labels and applying attributes to the problem of face
verification. As for most applications in computer vision,
CNNs have found success in the problem of attribute pre-
diction, with state-of-the-art methods all using CNNs for
feature extraction. Pose Aligned Networks for Deep At-
tribute Modeling (PANDA) was developed for person at-
tribute prediction – wearing pants, long hair, male, etc. –
and used part-based CNNs to learn features for each part in
a particular pose [32]. Both [25] and [33] utilize a subset
of facial attributes in a multi-task learning framework for
facial landmark localization. Using an RBM for multi-task
attribute learning utilizing facial landmarks for training, [4]
achieved state-of-the-art results on facial attribute classifi-
cation.

Since the introduction of a large-scale attribute-labeled
dataset, CelebA, and the addition of attribute labels to LFW,



many new methods have been introduced using deep CNNs
for feature extraction [18]. In [18], the authors frame the
problem of attribute recognition from faces as one of face
localization and attribute prediction. They use two deep net-
works: LNet and ANet, the first for localizing faces with
weak attribute supervision, and the second for attribute pre-
diction from the localized face. Using wearable camera data
for pre-training, [29] outperformed [18] on CelebA. The au-
thors collected face tracks from wearable cameras and pre-
trained their network on the task of verification before fine-
tuning for attribute prediction. Taking advantage of the rela-
tionships amongst attributes, [9] is able to improve predic-
tion accuracy and train directly from CelebA. In [26], the
authors introduced a mixed objective optimization network
for attribute prediction, surpassing state-of-the-art results
on CelebA. Their network employed a domain-adaptive re-
weighting of the error back-propagation to correct for the
imbalance in attribute labels in the training data. [8] uses
a technique called Selective Learning to model a specified
target distribution for each attribute, accounting for the la-
bel imbalance problem in CelebA and achieveing the cur-
rent state-of-the-art in attribute recognition. With CelebA as
the only large-scale attribute dataset available for training,
progress on attribute prediction has slowly inched forward
on the benchmark over the last few years. Rather than aim-
ing to improve prediction accuracy on this benchmark, we
instead focus on constructing more robust attribute models
by explicitly accounting for temporal variations and motion.

2.2. Recognition from Video

There have been several decades of research in auto-
mated video processing [1][22][24][34]. Here we review
some recent publications which are related to our work.

There are several datasets labeled with attributes for ac-
tions, however the attributes are labeled for each action, not
for each video, and certainly not for each frame. For exam-
ple, for the action applying lipstick, there is an attribute arm
up. If in some frame the subject’s arm is not up, that frame
is still labeled as such [21][27].

The concept of temporal coherence and feature stabil-
ity in video has been applied to deep networks in the past:
In [11], the authors introduced the concept of steady fea-
ture analysis, which aims to learn invariant features from
unlabeled data for use in recognition tasks. Rather than
encouraging features between video frames to be similar,
steady feature analysis encourages feature changes to be
smooth, placing constraints on the higher order derivatives
of the feature space. Altering stochastic gradient descent
to apply a coherence constraint to unlabeled video frames
while at the same time learning from images with labels,
[19] learned models for different recognition problems by
leveraging labeled and unlabeled information. To perform
unsupervised feature learning using autoencoders, [7] used

Layer Parameters/Activation/Pooling/Norm

Conv1

100 5x5 Filters
ReLU
Max Pooling 3x3
LRN 5x5

Conv2

200 3x3 Filters
ReLU
Max Pooling 3x3
LRN 5x5

Conv3

300 3x3 Filters
ReLU
Max Pooling 5x5
LRN 5x5

Conv4
300 5x5 Filters
ReLU

FC1 40 Units

Table 1: MACNN Architecture. Conv1 is the bottom layer,
and FC1 is the top and final layer producing 40 outputs.

temporal coherence to leverage unlabeled data. In [30],
they learned feature representations with unlabeled video
using tracking as the only supervision. They enforced
triplet constraints at every frame according to the query, the
tracked object and a random patch from the frame that does
not overlap with the tracked object. Our temporal coher-
ence constraint differs from past work as it takes advantage
of the relationship between non-consecutive frames, with
frames closer together having a larger effect on learning
than frames that are farther away from each other. The pro-
posed temporal coherence constraint also differs from pre-
vious work in that it operates in a semi-supervised setting,
requiring labels only for one frame in a video.

In [23], the authors used the magnitude of the optical
flow to amplify features for action recognition. The idea
here is that parts of the image with more motion than oth-
ers will correspond to higher weighted features for action
recognition. We use motion differently in our work, as an
attention mechanism rather than a feature weighting tech-
nique. The proposed motion-attention focuses the deep net-
work on areas of the video where motion occurs (i.e. the
face), removing information from the background. Motion-
attention works as a kind of regularizer, keeping the net-
work from overfitting during the fine-tuning process, as we
discuss later.

3. Proposed Method

3.1. Multi-Task Attribute CNN

We use a multi-task attribute CNN (MACNN) for fea-
ture learning and classification. All attributes are learned
simultaneously in MACNN. MACNN’s architecture is de-
tailed in table 1. MACNN has a very small architecture,
with only four convolution layers, and one fully connected
layer added for classification. The network has fewer than



Figure 1: A visualization of the proposed motion-attention
technique.

3 million parameters. AttCNN with Selective Learning, the
state-of-the-art method for attribute prediction, has roughly
6 million parameters [8]. MACNN has fewer than half of
the parameters of AttCNN. The proposed Motion-Attention
and Temporal Coherence methods discussed in the follow-
ing sections use MACNN as the base network.

3.2. Motion-Attention

We introduce a novel attention technique based on mo-
tion in a video. Given two consecutive (or nearly consec-
utive) frames of a face video, we expect the attributes to
remain the same, even if there is a small amount of motion.
This is a reasonable assumption as most videos are captured
at more than 20 frames per second and the face should not
change much in 1

20 of a second. In order to account for mo-
tion in a video, we introduce an attention mechanism based
on motion between frames. This motion-attention mecha-
nism is applied in a CNN, focusing the network on regions
of motion, suppressing input from regions of a video frame
where no motion occurred. The intuition here is that be-
tween nearly consecutive frames in a video taken from a sta-
tionary camera, the motion will occur only in the portion of
the frames containing the face. Therefore, motion-attention
will focus the network on the face, suppressing information
from the background.

For each pair of consecutive frames (fi, fj), we have an
associated binary optical flow imagemij , which is the result
of thresholding the optical flow between fi and fj . That is,
mij has a value of 1 where there is motion between fi and
fj , and a 0 where there is no motion. Optical flow images
can be combined for non-consecutive frames by taking the
maximum value at each location for all flow images. For
example, if we have three consecutive frames, fi, fj , and
fk, we can compute mik by taking the maximum of both
mij and mjk for every location in the image. That is, for
all (x, y), mik(x, y) = max(mij(x, y),mjk(x, y)). So, the
binary flow image for non-consecutive frames has a 1 at
every location where there is motion between any of the
frames, and a 0 where there is no motion between any of
the frames. These binary flow images are used as attention
maps to focus the network on regions of motion.

For each video, we have one anchor frame f0, and the

rest are non-anchor frames ft, t ≥ 1. The anchor frame has
attribute labels, and the non-anchor frames are unlabeled.
For each pair of frames (f0, ft) we have the correspond-
ing binary motion frame m0t. The process of computing
m0t is described above. Each m0t is used to turn off ac-
tivations for parts of ft where there is no motion, acting
as an attention mechanism for the network. This encour-
ages the network to focus on the parts of ft which moved
(i.e. the face), suppressing the portions of ft which did
not move (i.e. background). We refer to this method as a
motion-attention mechanism. Figure 1 visualizes the pro-
posed motion-attention mechanism, with two paths, one for
the frame ft, and one for the binary flow image m0t.

Note that in figure 1, the motion-attention mechanism
is being applied after the first convolution layer, but the
motion-attention can be applied at any point in the network.
Since motion-attention can be applied at any point in the
network, m0t must first be resized to match the size of the
feature maps where it will be applied. That is, if a layer
L produces nL feature maps of size wL by hL, then m0t

must be resized to wL by hL and then multiplied element-
wise with all nL feature maps, producing nL focused fea-
ture maps. A receptive-field resizing is applied to m0t so
that each neuron in the resized m0t has the same receptive
field as the neuron in L where it is applied. That is if a neu-
ron in the resized m0t has a value of 1, then it means that
there was motion between f0 and ft in the receptive field of
that neuron, and similarly if it has a value of 0, then there
was no motion between f0 and ft in the neuron’s receptive
field.

The motion-attention mechanism is applied during train-
ing. In the forward pass, m0t is used to turn off the activa-
tion for neurons corresponding to regions without motion,
and in the backward pass, no learning is performed for those
neurons. We use both anchor and non-anchor frames as in-
put to the network. For the anchor frames, f0, we define
m00 to be an image with all 1s, so no attention is used on the
anchor frames. As noted earlier, the non-anchor frames ft
do not have attribute labels, and so the labels for the anchor
frames are used as the labels for the non-anchor frames. The
motion-attention works as a type of regularization deterring
the network from over-fitting to the training data. By fo-
cusing the network on regions of motion in the non-anchor
frame, motion-attention forces the network to explicitly ac-
count for motion and to learn how and what motion affects
the labels.

Consider a video of a person talking. Let’s say the an-
chor frame f0 is labeled as a positive instance of mouth
slightly open. We can assume that in f1 the person’s mouth
will still be open, but perhaps a little more or less open, de-
pending on what they are saying. In this instance, m01 may
be 0 everywhere but around the mouth, where it is 1. So
the motion-attention mechanism would focus the network



Figure 2: Visualization of two streams using the temporal
coherence loss.

on the mouth. Since the subject’s mouth is likely still open,
we use the label from f0 for f1, and now the network is only
looking at the mouth, allowing the network to learn a more
robust representation for mouth slightly open. The proposed
motion-attention mechanism can be used alone, or with the
proposed temporal coherence constraint described below.

3.3. Temporal Coherence

We introduce a Temporal Coherence (TC) constraint
which works in a multi-stream network. A single-stream
network is a normal network which takes an input image
(or images), and outputs a label (or set of labels). A multi-
stream network contains multiple copies of a single stream
network, all sharing the same weights, each with their own
input and output, and the streams are connected in some
way. The TC constraint is implemented as a loss that takes
two layers as input, one from the first stream and the cor-
responding layer from another stream. The first stream of
the network acts on an anchor frame of a video (f0), and the
other streams act on non-anchor frames some time t away
from f0 (ft). Specifically, the second stream has f1 as input,
the third stream has f2 as input and so on. The weights are
shared among all the streams. The TC loss can be attached
between any two streams at any point in the network, and is
visualized in figure 2 with two streams.

Let Fi be the single stream CNN associated with input
frame fi. Since all streams in the network share the same
weights, instead of referring to each stream individually,
we will simplify notation by ignoring the stream, as the in-
put indicates the stream. Let F l(f0) and F l(ft) be the lth

layer’s activations for f0 and ft input respectively. The TC
loss aims to move F l(ft) toward F l(f0), taking into ac-
count the distance t. That is, for a robust attribute model,
we expect the activations for the anchor frame (f0) to be
similar to the activations for a non-anchor frame (ft), as-
suming that not too much time has passed between f0 and
ft. We also expect that the activations for frames that are
closer together will be more similar than the activations for
frames that are farther away.

Since f0 is an anchor frame, we have labels for f0, and
so we apply a multi-label attribute loss on the first stream

of the network (F0), which takes f0 as input. For Ft, the
stream with the non-anchor frame ft as input, we apply the
TC loss in order to move the activations of Ft towards those
of F0. In other words, the error from the TC loss is only
propagated through the Ft stream, not the F0 stream, and
the multi-label loss error is only propagated through the F0

stream since we only have labels for f0.
More formally, the TC error for layer l is given in

equation (1), where λ(t) is some non-increasing positive
function of t. λ(t) is essentially the effect of the frame
difference on the error, and therefore on learning. It
makes sense for λ(t) to not increase as t increases, as
the farther two frames are from each other in a video
sequence, the less likely they are to be similar, and so
the effect of the error between their activations should
be less. Equation (1) is used in the forward pass of the
network using a TC loss, and equations (2) and (3) are
used in the backward pass, propagating the error back
through the network. Equation (2) indicates that the
error only back-propagates for non-anchor frame inputs.
A visualization of the proposed TC loss is shown in figure 2.

ETC =
λ(t)

2
||F l(ft)− F l(f0)||22 (1)

δETC

δF l(f0)
= 0 (2)

δETC

δF l(ft)
= λ(t)(F l(ft)− F l(f0)) (3)

One may ask why we chose this formulation rather than
assuming ft has the same attribute labels as f0. We illustrate
this with an example: Let’s say that we have two consecu-
tive frames, f0 and f1. In f0, the subject is frontal, there
is no blur, and the subject does not have arched eyebrows
(i.e. arched eyebrows is labeled as negative). In f1, the
subject moves, raising their eyebrows. The label for arched
eyebrows in f0 no longer applies. Our goal is to make the
attribute model more robust using video data, and so we do
not want the network to make a decision based on some-
thing it does not know. Therefore, we want to move the
activations for f1 towards not arched eyebrows, but not nec-
essarily label f1 as a negative instance of arched eyebrows.
This gives us some intuition as to why we do not want to
label f1, or any ft, with the same attributes as f0. As we
will see in our experiments, the proposed TC constraint im-
proves attribute predictions over fine-tuning with ft labeled
with the attributes from f0. The proposed Temporal Co-
herence constraint is able to utilize weakly labeled data to
make a more robust attribute model without having access
to labels for all frames.

In labeling four frames from every video in YouTube-
Faces we found that there are eight attributes from the forty
labeled in CelebA that can vary throughout a video: arched
eyebrows, bags under eyes, blurry, double chin, hat, mouth



(a) Arched
Eyebrows

(b) Bags Un-
der Eyes

(c) Blurry (d) Double
Chin

(e) Hat (f) Mouth
Slightly
Open

(g) Narrow
Eyes

(h) Smiling

Figure 3: Samples from YouTubeFaces where attributes change between frames. In (a), the top frame shows the man having arched
eyebrows, but in the bottom frame he does not. (b) shows a frame where the woman has bags under eyes and then a frame where she does
not. Similarly for (c)-(h)

slightly open, narroweyes, and smiling. Figure 3 shows
some examples of videos where these attributes change.

4. Experiments
4.1. Data

4.1.1 CelebA

CelebA is an attribute-labeled dataset of face images [18].
The dataset has roughly 200, 000 images, with 160, 000
for training, and 20, 000 each for validation and testing.
Each image in the dataset is labeled with 40 binary facial
attributes including male, blond hair, heavy makeup, etc.
CelebA contains mostly frontal, posed images of celebri-
ties. We use the aligned 178x218 CelebA images for train-
ing our base attribute model, MACNN.

4.1.2 YouTube Faces

The video dataset in this work is YouTube Faces. YouTube
Faces is a video face verification dataset consisting of 3, 425
videos of celebrities from YouTube, with a total of roughly
620, 000 frames [31]. The data varies significantly from
CelebA in quality, resolution, lighting, and pose. We la-
beled four frames in every video with the 40 binary at-
tributes from CelebA. The four frames correspond to the
first frame, one from a third of the way through the video,
one from two-thirds of the way through the video and the
last frame: T0, T1, T2, and T3 respectively. For bench-
marking purposes, there are 10 splits provided with the data
for cross-validation testing. We use the anchor (attribute-
labeled first frame) and non-anchor (no attribute labels)
frames from the training portion of each split to fine-tune
MACNN with our different methods. In all our experi-
ments, and we test on the labeled frames from the test splits,
and average over all 10 splits. We use the face boxes pro-
vided with the dataset, extracting each face from its origi-
nal frame, and resizing it to 178×218, the same size as the

Method Average Accuracy
LNet+ANet [18] 87.3%
Walk and Learn [29] 88.1%
MOON [26] 90.90%
AttCNN [8] 91.05%
MACNN (Ours) 90.9%

Table 2: Average attribute accuracy on the CelebA test set.

aligned CelebA images. We do not perform alignment on
the YouTube Faces frames, as attributes should be invariant
to such mis-alignments.

4.2. MACNN

We implement and test MACNN using Caffe [13].
MACNN is trained from scratch using only the aligned
CelebA training images, without pre-training on an exter-
nal dataset. A sigmoid cross-entropy loss is used to facil-
itate training with batches of size 100. As pre-processing
steps, we subtract the training mean from all images and
take random crops of 178x178 from each 178x218 input
image. After 53 epochs, the error on the validation set no
longer decreases, so training is stopped. We note that since
MACNN only has 3 million parameters, it takes less than
an hour to train on a single GPU.

We compare MACNN with state-of-the-art methods for
attribute prediction in Table 2 to show that it is a good start-
ing point for our temporal coherence and motion-attention
work. From Table 2, we see that MACNN performs roughly
as well as AttCNN – the current state-of-the-art – on aver-
age.

We use MACNN for our experiments rather than
AttCNN because AttCNN has roughly 6 million parame-
ters, while MACNN has only 3 million parameters, is very
quick to train, and is less likely to over-fit. Testing MACNN
on the anchor frames of YouTube Faces resulted in an aver-
age attribute accuracy of 83.80%. The average attribute ac-
curacy on YouTube Faces anchor frames is computed as fol-
lows. For each split, we compute the accuracy for each at-



Model T0 T1 T2 T3 Average
MACNN0 86.55 86.57 86.44 86.23 86.44
MACNN1 86.67 86.64 86.58 86.40 86.57
MACNN2 86.55 86.61 86.56 86.20 86.48
MACNN3 86.41 86.46 86.42 86.12 86.35
MACNN10 85.68 85.75 85.58 85.53 85.64

Table 3: Average attribute accuracy on YouTube Faces labeled
test (T0, T1, T2, T3) frames fine-tuning with anchor and non-
anchor frames using the anchor labels.

tribute, giving us 40 attribute accuracies for each split. Av-
eraging the accuracies for all 40 attributes gives us a single
average attribute accuracy for each split. We then average
this average attribute accuracy for the 10 splits, giving us
83.80% for MACNN. For all of the experiments below, we
start with MACNN (trained on CelebA), and we fine-tune it
on YouTube Faces using four different methods: fine-tuning
with anchor and non-anchor frames, using anchor labels for
both (4.3), using motion-attention (4.4), using temporal co-
herence (4.5), and using motion-attention and temporal co-
herence (4.6).

4.3. Fine-Tuning

Taking a model trained on still images, and fine-tuning
it on labeled video data is one way to adjust the model
to better handle video data. We do that here by fine-
tuning MACNN on the anchor frames for each split in
YouTube Faces using a sigmoid cross-entropy loss on the at-
tributes. We call this fine-tuned network MACNN0, which
we evaluate on the test portion for that split. We also fine-
tune MACNN on non-anchor frames as well as the anchor
frames. Non-anchor frames do not have labels, so we as-
sume that the non-anchor frame has the same labels as its
corresponding anchor frame. MACNN1 is MACNN fine-
tuned on f0 and f1 with both using the labels from f0,
MACNN2 is MACNN fine-tuned on f0, f1, and f2 all with
the labels from f0, and so on. Remember that f0 is the an-
chor frame and f1, f2, etc. are non-anchor frames.

We evaluate our MACNNi on the labeled test data for
each split (T0, T1, T2, T3) providing the accuracies over
all splits on each of the four frames as a measure of stabil-
ity. Table 3 shows the average attribute accuracies, averaged
over the 10 splits for MACNNi for i = 0, 1, 2, 3, 10 on each
of the four labeled frames per sequence. Fine-tuning on the
anchor frames, MACNN0, provides a 2.5% improvement
over the original MACNN, which had an average accuracy
of 83.80%. However, the improvements do not continue as
more non-anchor frames are added to the training set for
fine-tuning. In fact, MACNN3 produces worse results than
fine-tuning on the anchor frames alone. MACNN3 is fine-
tuning with f0 and 3 non-anchor frames using the same la-
bels as f0. We expected the performance of fine-tuning us-
ing anchor labels on non-anchor frames would degrade as
more non-anchor frames were added because as non-anchor

Model T0 T1 T2 T3 Average
MA1 86.73 86.82 86.78 86.50 86.70
MA2 86.91 86.97 86.94 85.65 86.86
MA3 86.95 87.09 86.94 86.72 86.92
MA10 87.15 87.17 87.11 86.84 87.06

Table 4: Average attribute accuracy on YouTube Faces labeled
test (T0, T1, T2, T3) using MAi.

Model T0 T1 T2 T3 Average
TC1 86.52 86.63 86.60 86.40 86.53
TC2 86.74 86.81 86.80 86.52 86.71
TC3 86.77 86.85 86.88 86.54 86.76
TC10 86.54 86.60 86.54 86.39 86.51

Table 5: Average attribute accuracy on YouTube Faces labeled
test (T0, T1, T2, T3) using TCi.

frames move farther away from the anchor frames, it be-
comes less likely that they share the same label. We also
note the sharp decline in performance between MACNN3

and MACNN10. We believe this to be due to two factors:
one being that simply fine-tuning using anchor labels for
non-anchor frames leads to overfitting of the network, and
the other being that the assumption that f0 and ft have the
same, or similar, attribute responses breaks down as t gets
larger. We see a similar, though less severe, phenomenon
with TCi and MATCi in the following sections.

4.4. Motion-Attention

For our motion-attention experiments, we similarly fine-
tune MACNN on anchor and non-anchor frames, using the
labels from anchor frames for both. The motion-attention is
applied after the first pooling layer in MACNN. MA1 is the
motion-regularized model trained on f0, and f1 with corre-
sponding motion-attention maps m00 and m01 respectfully.
That is,m00 is an image of all 1s because there is no motion
before the anchor frame, and m01 is a binary image captur-
ing the motion between f0 and f1. MA1 uses a sigmoid
cross-entropy loss for both anchor and non-anchor frames
using attribute labels from anchor frames (i.e. both f0 and
f1 are labeled with the attributes from f0). MA2 is the
motion-attention model trained on f0, m00, f1, m01, and
f2 and m02 (f0, f1, and f2 are labeled with the attributes
from f0), and so on. MA0 is equivalent to MACNN0, since
m00 – defined to be all 1s – provides no attention. The av-
erage attribute accuracies on anchor frames using MAi for
i = 1, 2, 3, 4 are reported in table 4. There is a consis-
tent improvement when fine-tuning with motion-attention,
and as non-anchor frames are added to the training set,
the improvements continue, unlike regular fine-tuning. The
motion-attention mechanism keeps the model from over-
fitting since it cannot see the entire non-anchor frame, and
so the motion-attention works as a kind of regularizer. We
see that even MA10 shows improvements where MACNN10

showed a sharp decline in performance.



Model T0 T1 T2 T3 Average
MATC1 86.60 86.75 86.68 86.41 86.61
MATC2 86.93 86.98 86.98 86.61 86.87
MATC3 87.04 87.05 87.01 86.71 86.96
MATC10 86.83 86.79 86.66 86.43 86.67

Table 6: Average attribute accuracy on YouTube Faces labeled
test (T0, T1, T2, T3) using MATCi.

4.5. Temporal Coherence

For the TC loss experiments, we define λ(t) = e
1
t−1 for

t ≥ 1, so the effect of each non-anchor frame on learning
decreases with time. When fine-tuning MACNN using the
TC loss, the loss is employed between the final convolution
layers (conv4) of the two streams. A sigmoid cross-entropy
loss is applied to the anchor frames – to learn the attributes
in the anchor frames – in addition to the TC loss. Figure 2
visualizes the attribute loss on the anchor stream, and the
TC loss between the two conv4 layers. The figure only visu-
alizes two streams, but there can be many streams depend-
ing on the number of non-anchor frames used in training.
We call our models trained with the TC loss TC1 if it fine-
tunes on f0 and f1, TC2 if it fine-tunes on f0, f1, and f2,
and so on. TC0 is equivalent to MACNN0, because with-
out a non-anchor frame, there can be no TC loss, and so we
end up with a single-stream network employing a sigmoid
cross-entropy loss on the attribute labels of anchor frames.
Table 5 shows the average attribute accuracy on the anchor
frames over the 10 splits of YouTube Faces using the TC
loss while fine-tuning. As seen with motion attention, there
is a consistent improvement using the TC loss when fine-
tuning, and as the number of non-anchor frames used for
training increases, so does the average attribute accuracy.
However, unlike MA10, we do not see an improvement with
TC10. We believe this is due to the fact that the network is
over-fitting a little, even with the TC loss. Though we do
see a drop in performance with TC10, it is not nearly as se-
vere as the one we saw with MACNN10, so the TC loss is
helping the network to not overfit, and to account for the at-
tributes which can change throughout a video. The TC loss
on non-anchor frames improves over MACNNi because it
is less strict, and therefore allows pairs of anchor and non-
anchor frames to have different attribute labels.

4.6. Motion-Attention with Temporal Coherence

We combine the proposed motion-attention mechanism
and temporal coherence loss into one network by apply-
ing both methods on non-anchor frames. Combining both
methods results in a multi-stream network where the anchor
frames use a sigmoid cross-entropy loss, and the non-anchor
frames each employ a TC loss and a motion-attention mech-
anism. We apply the motion-attention after the first pooling
layer, and the TC loss at the conv4 layer. The models trained
in this way are denoted MATC1 (one non-anchor frame),

MATC2 (two non-anchor frames) and so on. Table 6 re-
ports the average attribute accuracy for each of the MATC
models on the labeled frames. Combining the two meth-
ods results in an improvement over using them individually,
with MATC1, MATC2, and MATC3 producing better results
than both TC and MA individually. We do see that the dip
in performance for TC10 carries over to MATC10, reducing
performance slightly. We again believe this to be due to the
network slightly overfitting even with the TC loss.

5. Conclusion

We introduced two methods for explicitly incorporating
video information into the training of attribute networks:
a temporal coherence constraint and a motion-attention
mechanism. Though some work has been done on adapt-
ing attribute models trained on CelebA to better handle
data from different distributions [26], we argue and show
that time and motion must specifically be accounted for
when training attribute models on video data. We demon-
strated the effectiveness of our methods on the challenging
YouTube Faces dataset, improving over the baseline of fine-
tuning directly on the video data using only weakly labeled
data. Our results show that when we do not account for time
and motion in learning attribute models, as in MACNNi, the
model behavior is erratic. The proposed methods are able
to use information provided by many non-anchor frames far
away from the original anchor frames, which we cannot do
when fine-tuning without these methods. We also note that
there are only 3425 anchor frames, and so the fine-tuning is
performed using roughly 3000 frames for each split, which
is a very small amount of data for a CNN. As more labeled
video data becomes available, the positive effects of the
proposed temporal coherence and motion-attention meth-
ods will be even more obvious. Our results demonstrate
the need to explicitly account for temporal and motion con-
straints when training attribute models on video data. The
next step in learning robust attribute models for video data
is to label a new video dataset with facial attributes, so that
the effects of time and motion on attributes can be more
thoroughly studied.
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