
1

Design Principles and Usability Heuristics

You can avoid common design pitfalls by following 9 design principles

You can inspect an interface for usability problems with these principles

Design principles and usability heuristics (I)

Broad “rules of thumb” that describe features of “usable”
systems

Design principles

• broad usability statements that guide a developer’s design efforts

• derived by evaluating common design problems across many

systems

Heuristic evaluation

• same principles used to “evaluate” a system for usability

problems

• becoming very popular
– user involvement not required

– catches many design flaws

• is an “expert review”

Evan Golub / Ben Bederson / Saul Greenberg

2

Design principles and usability heuristics (II)

Advantages

• the “minimalist” approach
– a few general guidelines can correct for the majority of usability

problems

– easily remembered, easily applied with modest effort

• discount usability engineering
– cheap and fast way to inspect a system

– can be done by usability experts

Challenges (for lack of a better word)

• principles can’t be treated as a simple checklist
– Note: “If done wrong, that’s bad” is a common “disadvantage”, but it is

worth noting here.

• subtleties involved in their use

Evan Golub / Ben Bederson / Saul Greenberg

Discount Usability Engineering

Cheap/Fast/Easy To Use!

• no special labs or equipment needed
–might even be able to run it on your own machine in your

office

–can even be used on paper prototypes

• can be on order of 1 day to apply
–standard usability testing may take weeks

• once understood, can use in many scenarios with little

additional learning

• the more careful you are, the better it get

Evan Golub / Ben Bederson / Saul Greenberg

3

Heuristic Evaluation

Developed by Jakob Nielsen (1990)

• seems inspired by Shneiderman’s “Eight Golden Rules”

Helps find usability problems in a UI design

Small set (3-5) of evaluators examine UI

• independently check for compliance with usability

principles (“heuristics”)

• different evaluators will find different problems

• evaluators only communicate afterwards
– findings are then aggregated

Can perform on working UI or on sketches

Evan Golub / Ben Bederson / Saul Greenberg

Heuristic Evaluation Process

Evaluators go through UI several times

• inspects various dialogue elements

• compares with list of usability principles

• consider other principles/results that come to mind

Usability principles

• Nielsen’s “heuristics”
– there are several slightly different sets (we will see one) of heuristics

• supplementary list of category-specific heuristics
– competitive analysis & user testing of existing products

Use violations to redesign/fix problems

Evan Golub / Ben Bederson / Saul Greenberg

4

Phases of Heuristic Evaluation

1) Pre-evaluation training

• give evaluators needed domain knowledge and information

on the scenario

2) Evaluation

• individuals evaluate and then aggregate results

3) Severity rating

• determine how severe each problem is (priority)

4) Debriefing

• discuss the outcome with design team

Evan Golub / Ben Bederson / Saul Greenberg

How to Perform Evaluation

At least two passes for each evaluator

• first to get feel for flow and scope of system

• second to focus on specific elements

If system is walk-up-and-use or evaluators are domain
experts, then no assistance needed

• otherwise might supply evaluators with scenarios

Each evaluator produces list of problems

• explain why with reference to heuristic or other info.

• be specific and list each problem separately

Evan Golub / Ben Bederson / Saul Greenberg

5

Examples

Can’t copy info from one window to another

• violates “Minimize the users’ memory load”

• fix: allow copying

Typography uses mix of upper/lower case formats and fonts

• violates “Consistency and standards”

• slows users down

• probably wouldn’t be found by user testing

• fix: pick a single format for entire interface

Evan Golub / Ben Bederson / Saul Greenberg

Severity Rating

Used to allocate resources to fix problems

Estimates of need for more usability efforts

Combination of

• frequency

• impact

• persistence (one time or repeating)

Should be calculated after all evaluations are in

Should be done independently by all judges

Evan Golub / Ben Bederson / Saul Greenberg

6

Nielsen’s Example Ratings List

0 = I don't agree that this is a usability problem at all.

1 = Cosmetic problem only.

need not be fixed unless extra time is available on project

2 = Minor usability problem.

fixing this should be given low priority

3 = Major usability problem.

important to fix, so should be given high priority

4 = Usability catastrophe.

imperative to fix this before product can be released

Some comments on the above…
• Although Nielsen provides a “0” rating, it is unclear where it would be used

- perhaps on a “second opinion” evaluation
• It is possible for a cosmetic problem to be a usability catastrophe

- imagine a green checkmark meaning “bad/danger”

Evan Golub / Ben Bederson / Saul Greenberg

Debriefing

Conduct with evaluators, observers, and development team
members

Discuss general characteristics of UI

Suggest potential improvements to address major usability
problems

Development team rates how hard things are to fix

Make it a brainstorming session

• little criticism until end of session

Evan Golub / Ben Bederson / Saul Greenberg

7

Results of Using HE

Discount: benefit-cost ratio of 48 [Nielsen94]

• cost was $10,500 for benefit of $500,000

• value of each problem ~15K (Nielsen & Landauer)

• how might we calculate this value?
– in-house −> productivity

– open market −> sales

Correlation between severity & finding w/ HE

http://www.useit.com/papers/heuristic/heuristic_evaluation.html

Evan Golub / Ben Bederson / Saul Greenberg

Why Multiple Evaluators?

Single evaluator achieves poor results

• only finds 35% of usability problems

• 5 evaluators find ~ 75% of usability problems

• why not more evaluators???? 10? 20?
– adding evaluators costs more

– many evaluators won’t find many more problems

Evan Golub / Ben Bederson / Saul Greenberg

8

Why Multiple Evaluators (cont)?

problems found benefits / cost

(Graphs for a specific example)

Evan Golub / Ben Bederson / Saul Greenberg

1 Simple and natural dialogue

Conform to the user’s conceptual model.

Match the users’ task in as natural a way as possible

• maximize mapping between interface and task semantics

Good? Bad?

This has changed over time as people went away from audio tape in their lives…

9

1 Simple and natural dialogue

Present exactly the information the user needs.

• less is more
– less to learn, to get wrong, to distract...

• information should appear in natural order
– related information is graphically clustered

– order of accessing information matches user’s expectations

• remove or hide irrelevant or rarely needed information
– competes with important information on screen

• use windows frugally
– don’t make navigation and window management excessively complex

2 Speak the users’ language

10

2 Speak the users’ language

Use terminology based on users’ language for task.

• e.g. withdrawing money from a bank machine

Use meaningful mnemonics, icons, and abbreviations.

• eg: File / Save
– Ctrl + S (abbreviation)

– Alt F S (mnemonic for menu action)

– Open folder (tooltip icon)

Bad Better

NOTE: This could fall under #7 providing shortcuts.

2 Speak the users’ language

Ex: Consider a virus detection program that may have to be occasionally
turned off.

One option would be to have an “override mode” that when activated
would turn off the virus detection.

But this would be on when the user wanted
the utility to be off – conflicting with the
users’ model

Alternatively, a checkbox that was on when
the utility would be on would speak the
users’ language.

11

3 Minimize user’s memory load

Promote recognition over recall.

• computers are good at remembering thing, people not as much…

• menus, icons, choice dialog boxes vs command lines, field formats

• relies on visibility of objects to the user (but less is more!)

Bad

Better

3: Minimize user’s memory load

Describe required input format and provide an example or a
default or a selection interface.

Small number of rules applied universally.

generic commands
– same command can be applied to all interface objects

•interpreted in context of interface object

– copy, cut, paste, drag ’n drop, ... for characters, words, paragraphs, circles, files

Bad Better

12

4: Be consistent

Consistency of effects.
• same words, commands, actions will always have the same effect in

equivalent situations
– predictability

Consistency of language and graphics.
• same information/controls in same location on all screens / dialog boxes

• forms follow boiler plate

• same visual appearance across the system (e.g. widgets)
– e.g. different scroll bars in a single window system!

Consistency of input.
• consistent syntax across complete system

Ok Cancel OkCancel Done Never Mind Accept Dismiss

Cancel

Ok

4: Be consistent

In application suites, have individual applications consistent
with the other individual applications in the suite.

PowerPoint 2003 Word 2003

-vs-

13

4: Be consistent

In application suites, have individual applications consistent
with the other individual applications in the suite.

All from same
“suite” of
programs?

5: Provide feedback

Continuously inform the user about.

• what it is doing

• how it is interpreting the user’s input

• user should always be aware of what is going on

What’s it

doing?
Time for

coffee.

14

5. Provide feedback

What did I

select?

What mode

am I in now?

How is the

system

interpreting

my actions?

5. Provide feedback

Should be as specific as possible, based on user’s input.

Best within the context of the action rather than with a dialog box.

Bad Better

15

5. Provide feedback

Response time is important…

• how users perceive delays
0.1 second max: perceived as “instantaneous”

1 seconds max: user’s flow of thought stays uninterrupted, but delay noticed

10 seconds: limit for keeping user’s attention focused on the dialog

> 10 seconds: user will want to perform other tasks while waiting and might

think that the application has failed

Dealing with long delays…

• Cursors
– for short transactions

• Percent-done dialogs
– for longer transactions

• how much left

• estimated time

• what it is doing

NOTE: When giving this type of feedback, take care to do so in a meaningful

fashion based upon percent of time. For example, if doing a progress bar for an

e-mail client, rather than the % of messages sent, use % of size of messages.

• “Still Working”
– for unknown/changing times

5. Provide feedback

16

How do
I get
out of
this?

6. Provide clearly marked exits

6. Provide clearly marked exits

Users don’t like to feel trapped by the computer!

• should offer an easy way out of as many situations as possible

Strategies:

• Cancel button (for dialogs waiting for user input)

• Universal Undo (can get back to previous state)

• Interrupt (especially for lengthy operations)

• Quit (for leaving the program at any time)

• Defaults (for restoring a property sheet)
Core
Dump

17

7. Provide shortcuts

Experienced users should be able to perform frequently
used operations quickly!

Strategies:

• keyboard and mouse accelerators
– abbreviations

– command completion

– menu shortcuts

– function keys

– double clicking vs menu selection

• type-ahead (entering input before the system is ready for it)

• navigation jumps
– e.g., going to window/location directly, and avoiding intermediate nodes

• history systems
– WWW: ~60% of pages are revisits

Keyboard

accelerators for

menus

Customizable

toolbars and

palettes for

frequent actions

Split menu, with

recently used

fonts on top

Scrolling controls

for page-sized

increments

Right-click raises

object-specific

menu

Right-click raises

toolbar dialog box

18

Alternate

representation for

quickly doing

different set of

tasks

Toolset brought in

appropriate to this

representation

8: Deal with errors in a positive and helpful manner

People will make errors – plan for it!

Errors we make

• Mistakes
– arise from conscious deliberations that lead to an error instead of the correct

solution

• Slips
– unconscious behavior that gets misdirected en route to satisfying goal

•e.g. drive to store, end up in the office

– shows up frequently in skilled behavior

•usually due to inattention

– often arises from similarities of actions

19

Types of slips

Capture error (habit)

• a frequently performed activity takes charge “on autopilot” instead of the

one intended at the time
– occurs when common and rarer actions have same initial sequence

–change clothes for dinner and find oneself in bed (William James, 1890)

–confirm saving of a file when you don’t want to replace it

I can’t
believe I
pressed
Yes...

Types of slips

Description error

• intended action has much in common with others that are possible
– usually occurs when right and wrong objects physically near each other

–pour juice into bowl instead of glass

–go jogging, come home, throw sweaty shirt in toilet instead of laundry basket

–move file to trash instead of to folder

Loss of activation

• forgetting what the goal is while undergoing the sequence of actions
– start going to room and forget why you are going there

– navigating menus/dialogs and can’t remember what you are looking for

– but continue action to remember (or go back to beginning)!

Mode errors

• people do actions in one mode thinking they are in another
– refer to file that’s in a different directory

– look for commands / menu options that are not relevant

20

Designing for slips
General rules

• Prevent slips before they occur

• Detect and correct slips when they do occur

• User correction through feedback and undo

Examples

• capture errors
– instead of confirmation, make actions undoable
– allows reconsideration of action by user

•e.g. Mac trash can can be opened and “deleted” file taken back out

• description errors
– in icon-based interfaces, make sure icons are not too similar,
– check for reasonable input, etc.

• loss of activation
– if system knows goal, make it explicit
– if not, allow person to see path taken

• mode errors
– have as few modes as possible (preferably none)
– make modes highly visible

Generic system responses for errors

Interlock

• deals with errors by preventing the user from continuing
– eg cannot delete an object if none are selected

Warn

• warn people that an unusual situation is occurring

• when overused, becomes an irritant
– e.g.,

•audible bell

•alert box

21

Generic system responses for errors continued...

Do nothing

• illegal action just doesn’t do anything

• user must infer what happened
– enter letter into a numeric-only field (key clicks ignored)

– put a file icon on top of another file icon (returns it to original position)

Self-correct

• system guesses legal action and does it instead

• but leads to a problem of trust
– spelling corrector

Lets talk about it

• system initiates dialog with user to come up with solution to the problem
– compile error brings up offending line in source code

Teach me

• system asks user what the action was supposed to have meant

• action then becomes a legal one

HUH ?!?

8 Deal with errors in a positive and helpful manner

22

A problematic message to a nuclear power plant operator

8 Deal with errors in a positive and helpful manner

8 Deal with errors in a positive and helpful manner

Provide meaningful error messages!

• error messages should be in the user’s language (preferably task language)

• don’t make people feel stupid

Bad
Try again…

Error 25

Cannot open this document.

Better
Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system

Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system. Open it with “OpenOffice” instead?

23

8 Deal with errors in a positive and helpful manner

Prevent errors.

• try to make errors “impossible” to make

• modern widgets: only “legal commands” selected, or “legal data” entered

(which if these might allow you to enter February 29th, 2014?)

Provide reasonableness checks on input data.

• on entering order for office supplies
– 5000 pencils is an unusually large order. Do you really want to order that many?

Consumer

Manuals...

24

9. Provide help

Help is not a replacement for bad design!

Simple systems:

• walk up and use; minimal instructions

Most other systems:

• feature rich

• some users will want to become “experts” rather than “casual” users

• intermediate users need reminding, plus a learning path

Volume 37:
A user's
guide to...

Documentation and how it is used

NOTE: Many users do not read manuals.

• prefer to spend their time pursuing their task

Usually used when users are in some kind of panic, they will
want (and perhaps need) immediate help.

• indicates need for online documentation, good search/lookup tools

• online help can be specific to current context

• Kindle “Mayday” option?

NOTE: paper or CD manuals unavailable in many business environments
– e.g. single copy locked away in system administrator’s office

Sometimes documentation is used for quick reference in
advance.

• syntax of actions, possibilities...

• list of shortcuts ...

25

Types of help

Tutorial and/or getting started manuals.

• short guides that people are likely to read when first obtaining their systems
– encourages exploration and getting to know the system

– tries to get conceptual material across and essential syntax

• on-line “tours”, exercises, and demos
– demonstrates very basic principles through working examples

Types of help

Reference manuals.

• used mostly for detailed lookup by experts
– rarely introduces concepts

– thematically arranged

• on-line HTML
– search / find

– table of contents

– index

– cross-index

26

Types of help

Reminders to the user.

• short reference cards used to be VERY popular
– expert user who just wants to check facts

– novice who wants to get overview of system’s capabilities

• keyboard templates used to be VERY popular
– shortcuts/syntactic meanings of keys; recognition vs. recall; capabilities

• tooltips are STILL very popular!
– text over graphical items indicates their meaning or purpose

– No way to do this with touch interfaces �

Types of help

Context-sensitive help.

• system provides help on the interface component the user is currently

working with
– Macintosh “balloon help”

– Microsoft “What’s this” help

•brief help explaining whatever the user is pointing at on the screen

Title bar

To move the window, position the
pointer in the title bar,

press the button, and drag it to the new
position

27

Types of help

Wizards specific to task.

• walks user through typical tasks

• but dangerous if user gets stuck

What’s my
computer’s
name?
Fred?
Intel?
AST?

Types of help

Tips to the user.

• provides migration path to learning system features

• also context-specific tips on being more efficient

• must be “smart”, otherwise boring and/or tedious and/or interrupts user’s

work flow (ie: Office Assistant had good and bad elements)

