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Abstract

This thesis proposal seeks to advance point cloud embedding by focusing on two critical areas:
computational and memory efficiency, and robustness to noise and density variations. Existing
methods, such as PointNet and KPConv, rely heavily on data-driven approaches that require
extensive training to capture geometric features. These approaches, while effective in certain
respects, fall short in terms of inherent robustness against environmental noise and data density
fluctuations, and often require substantial computational resources. These limitations restrict
their application in scenarios where speed and resource constraints are critical, such as in event
camera stream processing and drone navigation.

In response, this proposal introduces novel methodologies that utilize kernel methods to enhance
both the efficiency and robustness of point cloud embeddings, grounded in a strong theoretical
framework. It further explores the application of these advanced embeddings in two distinct
domains: real-time processing of event camera streams and numeric encoding in tabular data.
These case studies demonstrate the versatility and potential impact of the proposed methods
across various technological fields.

The thesis is structured to methodically address these challenges, presenting a comprehensive
approach from foundational theories and algorithms to practical applications. This includes
detailed discussions on the mathematical modeling of point clouds, development of efficient and
robust embedding techniques using kernel methods, and their implementation in diverse settings.
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1 Introduction

Overview. This thesis proposal advances point cloud embedding by enhancing two perspectives:
1) computation and memory efficiency, 2) robustness to noise and density variation.

Existing work, such as PointNet [1] and KPConv [2], are mainly data-driven. These involve
learnable parameters optimized through extensive training for tasks like classification, segmenta-
tion, and masked pretraining [3]. These methods assume that sufficient training allows embeddings
to accurately represent geometric features.

However, data-driven techniques lack inherent robustness against noise and variations in data
density. Attempts to overcome these challenges typically involve data augmentation. Yet, they do
not guarantee consistent robustness. Additionally, these models demand substantial computational
resources. This restricts their use in speed-critical tasks like event camera stream processing and
in resource-constrained environments like drone navigation.

In response, this proposal addresses two major challenges in point cloud embeddings: 1)
computation and memory efficiency, 2) robustness to noise and density variation. Furthermore, it
explores how advanced point cloud embeddings can be applied across two distinct domains: event
camera stream processing and numeric encoding in tabular data. These applications illustrate
the versatility of the advanced embeddings, demonstrating its potential to impact a wide range of
technological fields significantly.

The introductory chapter of this thesis is structured as a concise overview of the entire proposal.
Section 1.1 defines the problem of point cloud embedding. Section 1.2 emphasizes the requirement
for efficiency and robustness in this context. Section 1.3 introduces the theories and algorithms
developed to achieve these goals. Finally, Section 1.4 discusses the proposed applications that
can benefit from these advancements.

The entire thesis proposal is structured as followed. Chapter 2 introduces the background
information, including the mathematical formulation of point clouds, and several fields that are
relevant and inspires the development of the thesis. Chapter 3 focuses on the efficiency and
robustness to noise in point cloud embedding. Chapter 4 focuses on the robustness to density
variation in point cloud embedding. Chapter 5 unifies Chapter 3 and 4, producing an elegant
point cloud embedding algorithm that are 1) computation and memory efficiency, 2) robustness
to noise and density variation. Chapter 6 and Chapter 7 discusses two applications of the unified
algorithm presented in Chapter 5, demonstrating how the efficient and robust point embedding
algorithms can benefit applications in diverse domains.

1.1 Point Cloud Embedding

Point Cloud Embedding transforms a point cloud—a set of data points in Euclidean space—into
vector representations that capture the essential features of the data. Mathematically, this involves
taking an unordered set of points X ∈ Rn×3 and outputting a vector G ∈ Rn×d. Each element
G[j] ∈ Rd represents the geometric features of the point X[j], conditioned on the point cloud X:
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G[j] = Point_Cloud_Embedding(X[j] | X)

This initial definition provides a broad overview, intentionally omitting specific design details.
We hope to demonstrate the variety of ways point cloud embedding tailored to different tasks.
To illustrate this variety, several examples demonstrate how the point cloud embedding module is
adapted for different types of tasks in Figure 1.1.

Local regression tasks focus on the Euclidean local neighborhood of a point X[j]. In applications
such as normal estimation and normal flow estimation, local geometric features are encoded and
transformed into output vectors using point-wise Multilayer Perceptrons (MLPs).

Non-local regression tasks, in contrast, require G[j] to aggregate information from both nearby
and distant points within the cloud. Such formulation is crucial for tasks like segmentation
and detection, where understanding extensive spatial relationships enhances performance. Here,
techniques like convolution and attention mechanisms are usually employed to aggregate these
widespread features.

Condensation tasks aggregate all points into a single vector, for example, classification. Typically,
a max-pooling operation is used to compress features from either local or non-local regression
into a compact representation that encapsulates the overall characteristics of the point cloud.

Plane

Input Point Cloud: 

Local Geometry Encoding

Local Geometric Features: 

Point-wise MLP Point-wise MLP
max(dim=0)

Transformer
Point-wise MLP

local regression non-local regression condensation

Point Cloud
Embedding

Figure 1.1: Different designs of point cloud embedding given different types of tasks.

1.2 Efficiency and Robustness

Point cloud embedding is fundamental for point cloud processing. Improving the efficiency and
robustness will benefit many important applications. We illustrate with examples here.

Efficiency: In autonomous robotics, the ability to quickly interpret complex 3D environments
is essential. Efficient point cloud embedding enables robots, such as those navigating through
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manufacturing plants, to identify obstacles and interact safely with their surroundings without
delay. This rapid processing is vital for a robotic arm that must place items precisely on an
assembly line. Similarly, drones, which often operate under significant power and computational
limitations, benefit from efficient point cloud processing. In scenarios like disaster area mapping,
drones need to analyze environmental data swiftly to conserve battery while providing vital
information, ensuring they complete their missions before power depletion.

Robustness: Robustness addresses the challenges posed by data imperfections, such as sensor
noise and density variations, which are common in real-world applications. In autonomous
vehicles, robust point cloud embeddings help filter out noise from sensor inaccuracies, which
is crucial during adverse weather conditions like heavy rain. Such robustness ensures that the
vehicle maintains accurate spatial analysis, critical for safe navigation. In event camera stream
processing, different camera configurations, lighting conditions will produce events with different
densities. Robustness to density variation enables the model to generalize better to different
environments.

1.3 Roadmap – Theories and Algorithms

The theories behind this thesis proposal comes from an elegant philosophy, which can be summa-
rized in the following theorem:

Theorem 1. A Gaussian kernel mixture f(x) =
∑n

k=1 αk exp(−α2||x−xk||2/2) can be represented
by F =

∑n
k=1 αk exp(ixkA) ∈ Cd, where A ∈ R3×d is a matrix where all elements are drawn from

normal distribution N (0, α2). Besides, the representation is reconstructive and isometric.

The Gaussian kernel mixture f(x) is a non-parametric function that does not have a fixed
dimension. So it cannot be fed to neural networks like MLP for machine learning tasks. Fortunately,
this theorem claims that we can almost losslessly transform the Gaussian kernel mixture
f(x) into a fixed-length vector through pre-defined operations. Consequently, if a type of data
can be described by a Gaussian kernel mixture f(x), we immediately obtain the representation.
The entire thesis is developed from this simple philosophy.

Chapter 2 introduces the background behind this theorem and gives the proof. Chapter 3, 4, 5
present the developed theories and algorithms for efficient and robust point cloud embedding
from the philosophy. Specifically, Chapter 3 focuses on the efficiency, and Chapter 4 focuses on
the robustness. Chapter 5 unifies both chapters and produce a point cloud embedding algorithm
that is efficient and robust, with solid theoretical foundation.

1.4 Roadmap – Applications

Following Chapter 5, we apply the unified algorithm to two very distinct domains: optical flow
estimation from event camera (Chapter 6) and numeric encoding for tabular pretraining (Chapter
7). In both chapters, we present our current methodologies and current preliminary experimental
results. The applications will be the main focus after the preliminary exam.
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2 Background

2.1 Point Cloud and its Mathematical Modeling

A point cloud is an unordered collection of points in Euclidean space, represented as X =
{x1,x2, · · · ,xn}. These are typically generated by various sensing technologies. For example,
3D scanners collect detailed three-dimensional information from objects by emitting laser beams
and measuring the return time of the light; this distance data is then converted into a spatial
point cloud. Another source is event cameras, which detect changes in light intensity rather than
capturing static frames. These cameras produce data streams where each event marks a change
in light at a specific pixel, forming a temporal point cloud.

To develop point cloud embedding algorithms with theoretical support, it is essential to model
point clouds mathematically. In this thesis proposal, point clouds are considered as samples
from a continuous function. Specifically, an object’s shape or an event surface is modeled as
an (unknown) probability density function f : R3 → R+, where f(x) represents the probability
density that a point x is on the shape. Thus, the point cloud is viewed as random samples of
this function. To design a point cloud embedding module, we are essentially constructing the
representation of the function f using the random samples.

Modeling point clouds in this manner provides a clear definition of density and noise. Noise
in a point cloud means the observed data is xk + ϵk, where xk are samples from the function
and ϵk represents noise. Density variation indicates that the shape function f is sampled with
a non-uniform distribution. The research challenge then focuses on how to build a consistent
representation of the function f with the presence of noise and density variations. This approach
allows for the development of a robust point cloud embedding module with theoretical support.
Figure 2.1 illustrates the mathematical modeling of point cloud.

(a) underlying function f . (b) point cloud (sparser). (c) point cloud (denser).

Figure 2.1: Mathematical modeling of point cloud. The point cloud is viewed as random samples
from an underlying function f , which characterizes the object shape or event surface. Point cloud
embedding aims to construct a consistent representation of function f using samples that may be
corrupted with noise or density variation.
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2.2 Hyper-Dimensional Computing

2.2.1 Overview

Hyper-dimensional Computing (HDC), also known as Vector Symbolic Architecture (VSA) [4],
uses very high dimensional vectors, called hypervectors, to perform symbolic operations. By
manually defining operations on hypervectors, we can design encoders that are descriptive and
computationally efficient without any training.

Hypervectors d-dimensional random vectors are called hypervectors if they are drawn from
a distribution H such that any two vectors are very likely orthogonal to each other. That is,
for any ϵ > 0, Prob.

(
|cos(x,y)| < ϵ

)
→ 1 when d → ∞, where x,y ∼ H and cos is the cosine

similarity between two vectors. For example, a hypervector x can be generated by independently
choosing a random value for each element of the vector from the Bernoulli distribution, which
produces binary hypervectors. Hypervectors can be manipulated through two atomic operations,
superposition and binding:

Superposition A binary operation + : Rd × Rd → Rd is a superposition if:

1. Commutative property: x+ y = y + x.

2. Associative property: x+ (y + z) = (x+ y) + z.

Superposition combines vectors into a single vector of the same dimension, and the superposed
vector is similar to all of its components. For real vectors, superposition is done by summing or
averaging vectors.

Binding A binary operation ⊗ : Rd × Rd → Rd is a binding operation if:

1. Commutative property: x⊗ y = y ⊗ x.

2. Distributive property: x⊗ (y + z) = x⊗ y + x⊗ z.

3. Similarity preserving: cos(x⊗ y1,x⊗ y2) = cos(y1,y2).

4. x⊗ y has the same distribution of x and y. In other words, x⊗ y ∈ H.

where cos(·, ·) is the cosine similarity between two hypervectors, and x, y1 and y2 are hypervectors.

2.2.2 Examples of HDC Encoders

In Hyper-dimensional computing (HDC), an object is represented by a hyper-dimensional (HD)
vector. However, obtaining the representation is not a trivial question. In this section, we give
examples of converting a real vector to a binary HD vector.

Converting a real vector to an HD vector is essentially converting a signal to a symbol. Such
conversion is significant because it allows symbolic operations on signals. As an analogy, a 1-d
signal can be converted to its frequency domain by Fourier transformation. Such conversion offers
many new options for signal processing such as denoising in the frequency domain. Similarly,
converting a real vector (a signal) to an HD vector (a symbol) enables, for example, binding and
bundling of two signals in the symbolic space.

There are two algorithms to convert a real vector to an HD vector: record-based encoding [5] and
N-gram-based encoding [6]. For simplicity, we assume the real vector x = (x1, x2, · · · , xn) has
been normalized so that all elements xi are in (0, 1).

5



 : real number 

flip  bits

flip  bits

flip  bits
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 : hypervectors 
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Figure 2.2: Pipeline of the record-based encoding.

Record-based Encoding Figure 2.2 shows the pipeline of the record-based encoding. First,
we construct a mapping L : (0, 1) → {0, 1}d that converts a real number in (0, 1) to an HD
vector: the interval (0, 1) is quantized into q sub-intervals. Each sub-interval is assigned an HD
vector and all the real numbers in the sub-interval are mapped to the same HD vector. The HD
representation of the first sub-interval is randomly generated, and the HD representation of the
k-th sub-interval is obtained by randomly flipping 1/q bits of the (k − 1)-th sub-interval. Under
this construction scheme, neighboring sub-intervals will have similar HD representations and the
HD representations of 0.0 and 1.0 will be orthogonal.

Using the mapping, each element xi in x can be converted to an HD vector L(xi). Then the HD
representations of x is obtained by binding and bundling:

HD(x) =
∑
i

[
L(xi)⊕ IDi

]
where ⊗ is the xor operation, IDi are random identity HD vectors associated with the entry i,∑

is the consensus sum.

N-gram-based Encoding N-gram-based encoding is similar to the record-based encoding.
The same mapping L : (0, 1)→ {0, 1}d is constructed and the HD representation of x is obtained
by xor-permute operation:

HD(x) =
⊕
i

[
ΠiL(xi)

]
where

⊕
denotes the xor operation, Πi denotes permuting an HD vector by i times.

2.2.3 Case Study: Neural Network Ensemble using Hyper-Dimensional Com-
puting

We present an application of HDC encoders on neunal network ensemble. This case study is
to demonstrate HDC encoders can yield meaningful representation if designed properly. The
ensemble method discussed is named HD-Glue [7].

In hyper-dimensional computing (HDC), the most important operations are binding and bundling,
which enable any object to be combined and associated on a symbolic level. With the current
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Figure 2.3: HD-Glue: Online learning setting.
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Figure 2.4: HD-Glue pipeline for static aggregation.

development of neural networks, it is natural to ask: can we ensemble multiple neural networks
together so that they can work better as a group?

Although combining neural networks to improve the overall performance is already widely studied,
known as neural network ensemble [8], the ensemble algorithm usually targets a better voting
scheme, instead of a better representation of the input. In this proposal, we introduce HD-Glue,
which aggregates neural networks on the symbolic level, and demonstrates that such aggregation
is meaningful and useful.

Another novelty of HD-Glue is that it also supports online learning. As more data and more
models are seen, the aggregated model can update itself continuously, without inducing heavy
computational cost. In addition, the aggregated model also welcomes new classes to be added,
and the learning of new classes is fast. Figure 2.3 shows the online learning pipeline.

In the following sections, we will introduce the details of HD-Glue. First, in Static Aggregation,
we introduce how HD-Glue works when many models and data are presented simultaneously.
Then, in Dynamic Aggregation, we introduce how HD-Glue works when models and data are
presented sequentially. Finally, in Experiment, we show some experiments on different benchmark
datasets under the two settings.

Static Aggregation Figure 2.4 shows the pipeline of static aggregation. For each neural
network (for illustration purpose we assume it is an image classifier), its final softmax regression
layer is removed so that it can serve as an image encoder. With these image encoders, an image
can be transformed into multiple embedding vectors. The embedding vectors are then converted
to HD vectors by the record-based encoding algorithm and then bound and bundled to form a
single HD vector. Now that an image is transformed to its HD representation, we can apply the
normal hyper-dimensional classification algorithm in which we build the class prototypes.
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The static aggregation is a symbolic aggregation. Instead, one may choose to aggregate the
networks by the simple average of the image embeddings, which is a signal aggregation. In
some situations, symbolic aggregation enjoys more benefits over signal aggregation. For example,
when aggregating models with different modalities, symbolic aggregation can be applied without
introducing new parameters. Using signal aggregation, on the other hand, one must project the
two modalities onto one common space, which requires learning new parameters.

Dynamic Aggregation There are two scenarios in dynamic aggregation. First, when a new
training sample is seen, the training sample is converted to its HD representation and summed
to its class prototypes. The summation is frequent and cheap. Second, when a new model is
seen, the class prototypes are reconstructed using static aggregation of all the historical data and
models. This step is expensive but rarely happens.

Experiment Table 2.1 demonstrates that HD-Glue can aggregate neural networks with different
embedding sizes with high accuracy. Table 2.2 shows the accuracy of dynamically aggregating
multiple neural networks, tested on MNIST. New classes are added sequentially. It demonstrates
HD-Glue can quickly learn to classify new classes.

CIFAR-100 Different Embedding Sizes
Length

512 256
Model VGG11 VGG13 ResNet18

Accuracy 65.8% 67.8% 72.3%
Model VGG16 VGG19 ResNet34

Accuracy 65.4% 60.3% 74.5%

HD-glue
Size dim=4000 dim=8000 dim=12000
100 64.1% 68.4% 70.5%
500 72.7% 74.8% 75.2%
1000 73.1% 75.5% 75.9%
5000 74.1% 76.2% 76.3%

Table 2.1: Testing accuracy when the embedding sizes of networks are different

MNIST Online Learning Results
Number of classes with 100 new examples each

Class 2× 100 4× 100 6× 100 8× 100 10× 100

Digit 0 99.9% 99.3% 98.1% 94.1% 94.3%
Digit 1 100.0% 98.1% 97.6% 98.2% 97.9%
Digit 2 86.9% 90.8% 86.7% 82.9%
Digit 3 98.9% 89.2% 82.4% 80.0%
Digit 4 98.0% 95.2% 84.4%
Digit 5 82.6% 82.1% 79.1%
Digit 6 94.9% 95.0%
Digit 7 92.9% 89.0%
Digit 8 85.5%
Digit 9 83.2%

All 99.9% 95.8% 93.0% 91.0% 87.3%

Table 2.2: Testing accuracy under dynamic aggregation setting.
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2.3 Kernel Methods

Gaussian Kernel, also known as the Radial Basis Function (RBF) kernel, is a prominent kernel
used in machine learning for transforming data into a higher-dimensional space. The kernel
function is defined as:

Gα(x,y) := exp
(
− α2||x− y||2

2

)
Here, x and y represent feature vectors in the input space, ||x− y|| is the Euclidean distance
between these vectors, and α is the kernel’s bandwidth parameter, which controls the scale of
the feature space transformation. The exponential decay component of the Gaussian kernel
makes it sensitive to the distance between data points, effectively capturing complex, non-linear
relationships by mapping the input data into a potentially infinite-dimensional space.

Support Vector Machine. Gaussian kernel is employed to enable the classifier to construct
non-linear decision boundaries. SVMs operate by finding the optimal separating hyperplane that
maximizes the margin between different classes in the transformed feature space. When using a
Gaussian kernel, the SVM model computes the decision function:

f(x) =
n∑

k=1

αkykG(xk,x) + b

where xk are support vectors, αk are Lagrange multipliers (non-zero for support vectors), yk are
the class labels, and b is the bias. The decision function f(x) represents the inner product of the
input vector x with each support vector in the higher-dimensional space, weighted by αk and yk,
and adjusted by the bias b. The decision function f(x) allows the SVM to classify data points
based on their position relative to the decision boundary in the new feature space.

One-Class Support Vector Machine is a variation of the traditional Support Vector Machine
that is used for anomaly detection, where the primary goal is to identify how well a new data
point fits within the distribution of an existing dataset. Unlike traditional SVMs that differentiate
between two or more classes based on a labeled dataset, One-Class SVM works with a single-class
dataset to determine the data boundary.

The Gaussian kernel plays a crucial role in One-Class SVM by enabling the mapping of input
data into a higher-dimensional space, where the separation from the origin is feasible. Given
its ability to handle non-linear patterns, the Gaussian kernel is particularly effective when the
distribution of data in the original space is not spherical or when the data contains complex
structures. Using the Gaussian kernel, the decision function for One-Class SVM becomes:

f(x) =
n∑

k=1

αkG(x,xk) + b

This function will predict positive values for data points that are considered "normal", and
negative values for outliers or anomalies, based on their position relative to the learned boundary
in the feature space.

Bochner’s Theorem states that the Gaussian kernel G(x,y) can be approximated by the inner
product of finite-length vectors eixA and eiyA, where A is a matrix. This is a very useful theorem
when we build representation of point clouds, which we will demonstrate in the following section
after we prove the theorem.
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Lemma 1 (Bochner’s Theorem). Let x,y ∈ R3, A ∈ R3×d. All elements in A are drawn from
normal distribution N (0, α2). Then as d→∞,

1

d
⟨eixA, eiyA⟩ → Gα(x,y) := exp

(
− α2||x− y||2

2

)
Proof. Let a ∈ R3 where a ∼ N (0, α2I3×3) be one column of the matrix A, we claim that
E
[
ℜ
(
eia·(x−y)

)]
= Gα(x,y):

E
[
ℜ
(
eia·(x−y)

)]
= E

[
cos

(
a · (x− y)

)]
= E

[ ∞∑
k=0

(−1)k
(
a · (x− y)

)2k
(2k)!

]
=

∞∑
k=0

(−1)k

(2k)!
E
[( 3∑

j=1

(xj − yj)aj
)2k]

=
∞∑
k=0

(−1)k

(2k)!
E
[(
α||x− y||Z

)2k] where Z ∈ N (0, 1)

=
∞∑
k=0

(−1)k

(2k)!
· α2k||x− y||2k · (2k)!

k!2k

=
∞∑
k=0

(−1)k

k!2k
· α2k||x− y||2k

= exp
(
− α2||x− y||2

2

)
On the other hand, E

[
ℑ
(
eia·(x−y)

)]
= 0 because normal distribution is a symmetric distribution

around 0:

E
[
ℑ
(
eia·(x−y)

)]
= E

[
sin

(
a · (x− y)

)]
= E

[ ∞∑
k=0

(−1)k
(
a · (x− y)

)2k+1

(2k + 1)!

]
=

∞∑
k=0

(−1)k

(2k + 1)!
E
[( 3∑

j=1

(xj − yj)aj
)2k+1

]
=

∞∑
k=0

(−1)k

(2k + 1)!
E
[(
α||x− y||Z

)2k+1
]

where Z ∈ N (0, 1)

= 0 because E(Z2k+1) = 0

Therefore, when we randomize d rows of such a vector, the inner product 1
d⟨e

ixA, eiyA⟩ =
1
d

∑d
k=1 e

iak·(x−y) will converge to Gα(x,y) thanks to the Central Limit Theorem.

Vector Function Architecture. Now with all the pieces of tools mentioned above, we are
ready to see how the tools can be assembled to build powerful representation. We found that the
decision functions returned by SVM or one-class SVM are both in analytic form of

10



f(x) =
n∑

k=1

αkG(x,xk) + b

Currently, the function f(x) is an non-parametric function that does not have a fixed-length
dimension. Fortunately, with the help of Bochner’s theorem and vector function archi-
tecture (VFA) [9], we can transform the decision function f(x) into a fixed-length
vector. The entire theories behind this thesis proposal is built upon this simple idea:

Theorem 2 (VFA + Bochner’s Theorem). f(x) =
∑n

k=1 αk exp(−α2||x − xk||2/2) can be
represented by F =

∑n
k=1 αk exp(ixkA) ∈ Cd, where A ∈ Rd is a matrix where all elements are

drawn from normal distribution N (0, α2). The representation is reconstructive and isometric.

The proof of the theorem is an immediate corollary from VFA and Bochner’s Theorem. It shows
how a Gaussian kernel mixture can be represented into a vector. Consequently, if a type of data
can be described by a Gaussian kernel mixture f(x), we immediately obtain the representation.
The entire thesis is developed from this simple philosophy. Now we are ready to dive into the
theories, algorithms and methodology derived from this philosophy.

Figure 2.5: Approximation of Gaussian kernel with Bochner’s theorem.
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3 Theories & Algorithms I (Efficiency): A Linear Time
and Space Local Point Cloud Geometry Encoder via
Vectorized Kernel Mixture

This chapter introduces VecKM, which focuses on the computation and memory efficiency in point
cloud embedding.

3.1 Introduction

Computational Cost of VecKM

Input Point Cloud Size

R
un

tim
e 

(m
s)

Cluster of Raw VecKM Encodings

Similarity of VecKM Encodings
under Difference Noise Levels

Computational Graphs: Others v.s. VecKM
Input Point Cloud 

Existing Encoders
 time and space

Mutual Distance 

compute mutual distance

Local Neighbors 

  for each point:
      * extract neighboring points
      * sample  points from its neighbor
      * centerize

MLP Conv

MatMul

max(dim=1)

VecKM
 time and space

Hermitian

MatMul

division

MLP

Figure 3.1: Our VecKM encoding is descriptive,
robust to noise, and efficient in runtime and
memory cost. Upper Left: Raw VecKM en-
codings, without any training, already capture
rich geometric features such as orientations and
shapes. Lower Left: Under varying levels of
noise, VecKM encodings remain highly consis-
tent. Upper Right: Existing encoders face
memory costs of (n2 +nKd), while VecKM costs
only (nd+ np) memory. Existing encoders com-
pute nK MLPs, whereas VecKM only computes
n MLPs. Lower Right: VecKM is 10x∼100x
faster than existing encoders in wall-clock time
and scalable to large point cloud inputs.

In point cloud analysis, encoding local geom-
etry is a fundamental step. In both low-level
tasks such as feature matching and normal esti-
mation, and high-level tasks such as classifica-
tion, segmentation, and detection, encoding lo-
cal geometry is usually required before passing
the point cloud into any deep network. Much
effort has been placed into the design of local ge-
ometry encoders, which can be loosely divided
into two categories: hand-crafted features and
learnable encoders. Hand-crafted features [10]
are manually defined features based on do-
main expertise, and learnable encoders require
computationally expensive processing through
trainable structures such as multi-layer percep-
trons (MLP) [1; 11] or convolutions [12; 2].

These local geometry encoders follow a simi-
lar pipeline. They first group the input point
cloud into neighborhoods and then process each
neighborhood individually. As illustrated in
Figure 3.1 (upper right), the pipeline involves
computing the mutual distance between points.
Then for each point, a number of K points
are sampled from its neighborhood, and MLP
or convolution are used to transform the sam-
pled neighborhood. In this pipeline, grouping
the point cloud into neighborhoods requires
n2 time and space, and the MLP-based archi-
tectures, in particular, requires a sequence of
MLPs to transform nK vectors and reaches an
intermediate stage of (n,K, d). The pipeline results in bottlenecks in both computation and
memory. Consequently, they usually resort to downsampling the local point clouds (i.e. reducing
K), which can lead to inadequate representation of the local point cloud.
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In this work, we address the computation and memory bottlenecks faced by the existing encoders,
reducing the memory cost from (n2 + nKd) to (nd+ np) and only computing n MLPs. Besides,
our representation is constructed from all the neighboring points without downsampling, and
hence is more descriptive. Our approach is inspired by [9; 13], which converts continuous functions
into fixed-length vectors. Building on this concept, we introduce VecKM, which conceptualizes
local point clouds as kernel mixtures (a form of continuous function) and vectorizes them. Under
this formulation, we prove the local geometry encoding is reconstructive and isometric to the
local point cloud, which guarantees the descriptiveness of the representation. One essential
advantage of VecKM is its factorizable property, which eliminates the need of explicitly grouping
the neighborhoods and reuses many computations.

The VecKM encodings can subsequently be passed to deep cloud point models, such as PointNet++
[14] and transformers [15]. VecKM’s light representation and ease of computation significantly
speed up the inference, while still achieving on-par or improved performance than other networks
in classification and segmentation tasks. Our contributions are summarized below:

• We present VecKM, a local geometry encoder that is descriptive and efficient. VecKM costs
only nd+ np memory and computes only n MLPs. This is achieved through a novel approach
of vectorizing kernel mixtures, coupled with its unique factorizability. VecKM is the only
existing local geometry encoder that costs linear time and space.

• Unlike existing encoders downsampling the local point cloud, VecKM constructs the local
geometry encoding using all neighboring points, and hence is more descriptive.

• We evaluate our VecKM on multiple point cloud tasks. In normal estimation, VecKM is
> 100x faster and achieves > 16% lower error than other widely-used learnable encoders
and demonstrates the strongest robustness against different types of data corruption. In
classification and segmentation tasks, integrating VecKM as a preprocessing module achieves
consistently better performance than the PointNet, PointNet++, and point transformer
baselines, and runs consistently faster by up to 10 times.

3.2 Methodology

3.2.1 Problem Definition and Main Theorems

Problem Definition. Let the input point cloud be X = {xk}nk=1. Denote the centerized
neighbor of the point xk as N(xk) := {xj − xk : ||xj − xk|| < r}. The output is the set of dense
local geometric features G = {gk}nk=1, where gk = E

(
N(xk)

)
∈ Cd. We look for an encoder E

that maps the local point cloud into a fixed-length vector, which captures the underlying shape"
sampled by the point cloud.

To better formalize the heuristic expression of capturing the underlying shape", we think of
the local shape around the point xk as a distribution function fk : R3 → R+, where fk(x) gives
the probability density that a point x is on the local shape. We then think of the centerized
local point cloud N(xk) as random samples from the distribution function fk. We expect the
local point cloud encoding E

(
N(xk)

)
∈ Cd to represent the distribution function fk. For a

good representation, we consider two natural properties: 1. the distribution function can be
reconstructed from the encoding; 2. the correlation of the distribution functions is preserved by
the similarity of the encodings.
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Pointwise Local Geometry Encoding. Under the problem definition, we present the formula
for encoding the local geometry around a single point. Unless specified otherwise, all input points
xj are assumed to be three-dimensional.

Theorem 3 (Pointwise Local Geometry Encoding). Denote the neighbors of the point x0 as
N(x0) := {xk − x0}nk=1. The local geometry encoding of x0 is computed as

EA

(
N(x0)

)
=

1

n

n∑
k=1

exp
(
i(xk − x0)A3×d

)
(3.1)

where i is the imaginary unit and A ∈ R3×d is a fixed random matrix where each element follows
the normal distribution N (0, α2). As to be shown in Section 3.2.2, EA

(
N(x0)

)
is fundamentally

vectorizing a kernel mixture about N(x0), so we name the encoding VecKM. Next, we present
two propositions that claim VecKM encoding produces a good representation of the local shape:

Proposition 1 (Reconstruction). WLOG, let f be the distribution function characterizing the
local shape of 0, X = {xk}nk=1 be the random samples drawn from the distribution function f ,
and gn = 1

n

∑n
k=1 exp

(
ixkA

)
be the VecKM encoding given by Eqn. (3.1). A ∈ R3×d is a fixed

matrix whose entries are drawn from N (0, α2). Then at all points x where f(x) is continuous, as
n→∞ and α2 → 0,

⟨gn, exp(ixA)⟩ → f(x)

where ⟨·, ·⟩ denotes the inner product between two complex vectors. The proposition states that
under a suitable selection of the parameter α2, the distribution function f can be approximately
reconstructed from the VecKM encoding gn.

Proposition 2 (Similarity Preservation). Let f1, f2 be two distribution functions characterizing
two local shapes and X1, X2 be the random samples from the two distribution functions. g1,
g2 are the VecKM encodings given by Eqn. (3.1) with X1, X2 as inputs. A is a fixed matrix
whose entries are drawn from N (0, α2). Then the function similarity is preserved by the VecKM
encodings: as n→∞ and α2 → 0,

⟨g1,g2⟩ → ⟨f1, f2⟩ =
∫

R3

f(x)g(x)dx

where ⟨·, ·⟩ denotes the inner product between two complex vectors. The proposition states that
under a suitable selection of the parameter α2, the correlation of functions (i.e. shapes) is
approximately preserved by the VecKM encoding.

In brief, Theorem 3 presents the formula for encoding the local geometry around a single point.
Proposition 1, 2 assert that VecKM well represents the underlying local geometry. In Section
3.2.2, we will explain the mechanism behind Theorem 3 and prove Proposition 1, 2 in detail.

Dense Local Geometry Encoder With Eqn. (3.1), we can already compute the local geometry
encoding for each point individually by grouping their neighborhoods. However, VecKM has a
unique factorizable property that enables us to reuse computations and eliminate the intermediate
step:

Theorem 4 (Dense Local Geometry Encoding). Denoting the input point cloud as a matrix
Xn×3 = [x1;x2; · · · ;xn], the dense local geometry encoding Gn×d is computed by

An×d = exp(iXn×3A3×d)

Bn×p = exp(iXn×3B3×p)

Gn×d = normalize
(
(B × BH ×A) ./ A

) (3.2)
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where A and B are two random fixed matrix whose entries are drawn from N (0, α2) and N (0, β2).
× denotes the matrix multiplication, and ./ denotes the elementwise division. As to be explained
in Section 3.2.3, computing the dense local geometry encoding using Eqn. (3.2) has almost the
same effect as computing the pointwise local geometry encoding using Eqn. (3.1). However, Eqn.
(3.2) only takes Θ(npd) time and (np+nd) space to compute, where p, to be shown, is a marginal
factor. The computation graph is visualized in Figure 3.1 (upper right).

Structure of Proof. In Section 3.2.2, we explain the mechanism behind Theorem 3 and prove
our assertion that VecKM produces a good representation of the local geometry. In Section 3.2.3,
we explain why Eqn. (3.2) has almost the same effect as Eqn. (3.1) and the mechanism behind
Theorem 4. In Section 3.2.4, we introduce how to incorporate VecKM encodings into deep point
cloud architectures.

3.2.2 Pointwise Local Geometry Encoder

In this section, we introduce why VecKM (Eqn. 3.1) produces a good representation of the local
geometry. The key idea, as illustrated in Figure 3.2, is that (i) VecKM vectorizes a Gaussian
kernel mixture associated with the local point cloud, where (ii) the associated kernel mixture can
approximate the local shape distribution function. Therefore, VecKM effectively represents the
local shape. We will separately validate assertion (i) and (ii).

(i) VecKM vectorizes a kernel mixture. We first present a lemma stating that VecKM
embodies a Gaussian kernel G:

Lemma 1 (VecKM embodies a Gaussian kernel). Let x,y ∈ R3, A ∈ R3×d. All elements in A
are drawn from normal distribution N (0, α2). Then as d→∞,

1

d
⟨eixA, eiyA⟩ → Gα(x,y) := exp

(
− α2||x− y||2

2

)
Lemma 1 is a corollary from the Bochner’s theorem [16; 17], which we provide a proof in Chapter 2.
Importantly, the Gaussian kernel G is approximated by the inner product of finite-length vectors
eixA and eiyA. This approximation is important in vectorizing the kernel mixture and ensures
the reconstructive and isometric properties in Proposition 1, 2, as detailed in the subsequent two
lemmas. Unless otherwise specified, all entries in A are drawn from N (0, α2) and G means Gα.
The proofs are borrowed from [9].

Lemma 2 (Reconstruction). Let g = 1
n

∑n
k=1 exp(ixkA) be the VecKM encoding, where all

entries in A ∈ R3×d are drawn from N (0, α2). f̂(x) = 1
n

∑n
k=1 Gα(x,xk) be the associated

Gaussian kernel mixture. Then ⟨exp(ixA),g⟩ → f̂(x) as d→∞.

The lemma is derived from the linearity of the inner product:

⟨exp(ixA),g⟩ = 1

n

n∑
k=1

⟨exp(ixA), exp(ixkA)⟩

→ 1

n

n∑
k=1

G(x,xk) = f̂(x)

The lemma states that the Gaussian kernel mixture can be approximately reconstructed from the
VecKM encoding g, which theoretically shows that VecKM is equivalent to the Gaussian kernel
mixture when d is large.
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Figure 3.2: Theoretical outline of VecKM illustrated by 2d shapes. A point cloud, sampled from
a shape distribution function, is associated with a Gaussian kernel mixture and a corresponding
VecKM encoding, where the VecKM encoding is proved to be reconstructive and isometric to the
Gaussian kernel mixture. Since the Gaussian kernel mixture can approximate the shape function,
the VecKM encoding yields a good representation of the shape.

Lemma 3 (Similarity Preservation). Let g1, g2 be two VecKM encodings and f1, f2 be their
associated Gaussian kernel mixtures. Then ⟨g1,g2⟩ → ⟨f1, f2⟩ as d→∞.

The lemma states that the VecKM encoding preserves the similarity/correlation between kernel
mixtures, which further verifies that the encoding is not only equivalent but also isometric to the
Gaussian kernel mixture. The lemma is derived from the linearity of integration:

⟨f1, f2⟩ =
∫
x∈R3

( 1

n

n∑
p=1

G(x,xp)
)( 1

m

m∑
q=1

G(x,x′
q)
)
dx

=
1

mn

∑
p,q

∫
x∈R3

G(x,xp)G(x,x′
q)dx

=
1

mn

∑
p,q

G(xp,x
′
q)← ⟨g1,g2⟩

Lemma 1-3 complete the argument that the VecKM encoding is equivalent and isometric to the
kernel mixture when d is large. In practice, the selection of d is independent of the size of the
point cloud. d as small as 256 yields good encoding in many scenarios.

(ii) The Gaussian kernel mixture associated with the point cloud approximates the
shape function. This is derived from the one-class support vector machine (SVM). The input to
the one-class SVM is a collection of points and a user-defined kernel function, where the Gaussian
(a.k.a. radial basis function) kernel is a common choice. The output of the one-class SVM is
a kernel mixture which estimates the distribution of the input point set. [18] proves that with

16



an appropriately chosen parameter α2 (defined in Lemma 1), a Gaussian kernel mixture can
approximate the distribution function. This validates the assertion that the kernel mixtures
associated with VecKM can approximate the shape distribution function. Coupled with Lemma 2,
3, we prove Proposition 1, 2, which reveal that VecKM effectively represents the local geometry.

3.2.3 Dense Local Geometry Encoder

In the previous section, we explained why Eqn. 3.1 well represents the underlying local shape. In
this section, we introduce the unique factorizable property that enables efficient computation of
the dense local geometry encoding.

The geometry encoding in Eqn. (3.1) can be factorized into:

EA

(
N(x0)

)
=

1

n

n∑
k=1

exp
(
i(xk − x0)A3×d

)
=

1

n

[ n∑
k=1

exp(ixkA)
]
./ exp(ix0A)

Under this observation, we can write the dense local geometry encoding in terms of matrix
computation:

An×d = exp(iXn×3A3×d)

Gn×d = [Jn×nAn×d] ./ An×d

(3.3)

Jn×n is the adjacency matrix of the point cloud Xn×3, where J[j, k] = 1 if ||xj − xk|| < r and 0
otherwise. Under this formulation, we still require n2 time and space to compute the adjacency
matrix J and (n2d) FLOPs to compute G. But one important idea can be applied to speed up
the computation: Instead of adopting a sharp threshold r to define the adjacency relation, we
employ an exponential decay function to establish this relationship:

Ĵ[j, k] = exp(−β2||xj − xk||2/2)

where Ĵ[j, k] decays from 1 to 0 as ||xj − xk|| increases and the parameter β controls the speed of
decaying. As comparison, J[j, k] drops sharply from 1 to 0 when ||xj − xk|| reaches > r. The
parameter β in Ĵ has the same functionality as the parameter r in J, which is controlling the
receptive field of the local neighbors. Arguably, J and Ĵ behave similarly and it is natural to
substitute J with Ĵ in Eqn. (3.3). The motivation of this substitution is that Ĵ can be factorized
into a matrix multiplication:

Bn×p = exp(iXn×3B3×p)

Ĵn×n ← B × BH as p→∞

where all entries in B ∈ R3×p follow N (0, β2). Such approximation is, again, guaranteed by
Lemma 1. With such approximation, Eqn. (3.3) can be rewritten as

Gn×d = [Ĵn×nAn×d] ./ An×d

≈ [Bn×p × (BH ×A)p×d] ./ An×d

By computing BH ×A first, the computation cost is reduced to Θ(npd). A large point cloud size
usually requires a larger p to reduce the noise, but the value p is much smaller than n. For a
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point cloud with size 100k, p = 4096 is sufficient. A large p improves the quality of the encoding,
but does not increase the size of the encoding, and hence does not increase the cost of subsequent
processings. Such approximation-and-factorization trick is inspired from [19], which accelerates
the attention computation in transformers. This concludes the proof of Theorem 4.

Effect of α and β. We perform a qualitative analysis of the effect of the parameters α and β in
Theorem 4. In short, α controls the level of details and β controls the receptive field of the local
neighbor. As illustrated in the following figures, when α is larger, more high-frequency details are
preserved in the encoding, and meanwhile the local geometry encodings tends to be dissimilar to
each other. A larger α is usually preferred in tasks that require refined local geometry, such as
normal estimation. A smaller α is usually preferred in high-level tasks, such as classification and
segmentation. More quantitative analysis will be presented in Section 3.3.5.

Effect of d and p. The parameters d and p control the quality of the encoding. Higher values
lead to better quality of encoding. The following figures provide the qualitative analysis.
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(b) Effect of the parameters d and p in Theorem 4.

Uniqueness of VecKM. VecKM cannot be established without two important properties: 1.
VecKM embodies a kernel function (Lemma 1); 2. VecKM is factorizable. Importantly, the family
of exponential functions is the only family of functions that has the factorizability property with
respect to multiplication and division: f(x− y) = f(x)/f(y). But if we use the real exponential
functions, the computation is not numerically stable, and meanwhile, the inner product between
the constructed vectors will not induce a kernel, i.e. Lemma 1 will not hold. Therefore, VecKM
is the only choice to enable both properties, i.e. both being factorizable and inducing a kernel
function. Therefore, we conjecture that VecKM may be the only possible linear local geometry
encoder. Fortunately, we are blessed with the advantages offered by complex vectors, which
provide the necessary descriptiveness and efficiency for VecKM.

3.2.4 VecKM in Point Cloud Deep Learning

VecKM can seamlessly be integrated into widely-used deep point cloud architectures, including
PointNet [1], PointNet++ [14], and transformers [20; 21]. Typically, these architectures compute
the dense local geometry in the first layer, often utilizing mini-PointNet or sequences of KPConvs
[2]. To use VecKM in those architectures, we simply replace the dense local geometry modules
with our VecKM encodings.
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Figure 3.4: VecKM can be seamlessly integrated into deep point cloud architectures, improving
both accuracy and efficiency.

Note that VecKM produces complex vector outputs. To effectively utilize this in subsequent
layers, we employ a series of complex linear layers and complex ReLU layers [22] to process the
encodings. Finally, we cast the complex vectors into real vectors by calculating the squared
norm of the complex vectors, thereby making the output compatible with standard architecture
requirements. Figure 3.4 presents several examples of integrating VecKM into deep point cloud
architectures, which are capable of solving many tasks involving point cloud inputs.

3.3 Experiments

3.3.1 Normal Estimation on PCPNet Dataset

We compare our VecKM against other local geometry encoders in four dimensions: accuracy,
computational cost, memory cost, and robustness to noise. We select local point cloud normal
estimation as our evaluation task because of its inherent challenges. This task requires the
geometry encoders to adequately understand the local geometry. Moreover, it presents significant
challenges in terms of memory and time complexity, given the large number of points in the input
and the large number of neighboring points that need to be considered. As to be shown, VecKM
outperforms other encoders in all four dimensions by large margins.

Dataset and Metrics. We use PCPNet [23] as the evaluation dataset. PCPNet includes 8
shapes in the training set and 19 shapes in the test set. Each shape is sampled with 100,000
points and their ground-truth normals are derived from the original meshes. PCPNet provides
two types of data corruption for testing: (1) point perturbations: adding Gaussian noise to the
point coordinates. (2) point density variation: resampling the point cloud under two scenarios,
where gradient simulates the effects of varying distances from a sensor and strips simulates the
occlusion effect. We use the root mean squared angle error (RMSE) in degrees as the evaluation
metrics.

Compared Encoders. We compare our VecKM against several widely-used local geometry
encoders: PointNet [1], KPConv [2] and DGCNN [24]. PointNet. The input point cloud is first
grouped into the shape of (n,K, 3) and transformed into the shape of (n,K, d) by multi-layer
perceptrons. Finally, a maxpooling operation shapes the data into (n, d). K is the number
of neighboring points, which we attempt different values. KPConv. KPConv convolutes the
local neighbors through a set of kernel points and transforms the convoluted features through
a fully-connected layer. KPConv has a tunable parameter: the number of kernel points, which
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Table 3.1: Normal estimation RMSE on the PCPNet dataset.

Perturbations Density Variation AverageNone Low Med High Gradient Stripe

KPConv, #kp=16 22.68 23.09 25.21 29.05 34.40 25.61 26.67
KPConv, #kp=32 22.74 22.21 24.08 28.25 32.24 24.94 25.74
KPConv, #kp=64 22.09 22.12 23.90 28.45 28.60 24.05 24.86

DGCNN, #nbr=32 24.08 24.04 25.19 28.24 27.12 27.55 26.03
DGCNN, #nbr=64 23.21 25.34 25.66 26.01 28.86 28.20 26.21
DGCNN, #nbr=128 18.46 18.71 20.38 25.62 23.01 21.29 21.24

PointNet, #nbr=300 14.98 16.30 20.19 26.83 23.68 19.00 20.17
PointNet, #nbr=500 16.10 16.54 21.38 26.93 26.06 18.89 20.99
PointNet, #nbr=700 15.59 16.25 20.99 26.21 24.66 17.87 20.27

VecKM (Ours) 13.59 13.99 18.04 22.21 18.98 17.20 17.34

no noise
sim. = 1.0

med noise
sim. = 0.92

stripe
sim. = 0.85

gradient
sim. = 0.89

Figure 3.5: VecKM’s robustness to data corruptions. VecKM can reconstruct the local shape
under corrupted inputs. The VecKM encodings remain highly similar under data corruptions.

we attempt different values. DGCNN models the neighboring points as dynamic graphs and
performs edge convolution to aggregate the local feature. We adopt the architecture in the original
paper, which consists of five layers of edge convolution. DGCNN has a tunable parameter: the
number of neighbors being convoluted, which we attempt different values. VecKM (Ours): We
adopt a multi-scale of α = 60 and β = [10, 20]. Since the size of the point cloud is large, we
implement VecKM by Eqn. (3.2). We set d as 256 and p as 4096. We ensure the number of
neighboring points considered by each encoder to be within 500∼1000, which is sufficient to
estimate the local normals. After encoding the local geometry, three layers of neural network are
applied to predict the normals.

Training Details. Each model is trained with a batch size of 200 for a total of 200 epochs. We
use the Adam optimizer, setting the learning rate at 10−3. For data augmentation, Gaussian
noise is added to the input point cloud. The input point cloud and their normals are randomly
rotated.

As shown in Table 3.1, VecKM achieves > 16% lower errors than all the compared
encoders and performs the best under all data corruption settings. This reveals that
VecKM effectively captures the local geometry and is more robust to input perturbation and
density variation. The effectiveness of VecKM can be attributed to its reconstructive and isometric
properties, and its noise robustness is derived from the robustness inherent in the kernel mixture.
Figure 3.5 visualizes the explanation, which shows that even under corruptions, VecKM can
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still reconstruct local shapes and the VecKM encodings are consistent. In the case of the stripe
corruption setting, while the reconstruction may appear less accurate, the downstream neural
network compensates for this discrepancy. This is evidenced by the relatively stable RMSE of the
stripe setting in Table 3.1, indicating that the overall impact on performance is not substantial.

As shown in Figure 3.6, VecKM is > 100x faster than all the compared encoders and is
scalable to large point cloud inputs. Even when the input size is as large as 100k, VecKM only
takes 150 ms to run. For memory cost, PointNet and DGCNN easily incur memory outrage when
the neighbor size K is large because they require an intermediate step of (n,K, d) to compute the
encoding. KPConv can be memory efficient through careful parallel programming, but existing
implementations are not scalable to the settings we experiment with. VecKM, however, thanks
to its unique factorizable property, only costs less than 8GB memory even with pure PyTorch
implementation.

R
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e 
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s)

Input Point Cloud Size

Figure 3.6: Runtime of local geometry encoders under different input point cloud size and neighbor
size. All models are tested on an RTXA-5000 with 24 GB memory. Dash lines mean the memory
is not sufficient to process all the points in one batch and has to process the points batches by
batches.

3.3.2 Classification on ModelNet40 Dataset

We evaluate our VecKM on 3D object classification using the ModelNet40 dataset [25]. We
compare classification accuracy and inference time with the baselines.

Training Details. We use the same training setting for all the methods. We use the official split
with 9,843 objects for training and 2,468 for testing. Each point cloud is uniformly sampled to
1,024 points. During training, random translation in [−0.2, 0.2], and random scaling in [0.67, 1.50]
are applied. We set the batch size to 32 and train the models for 250 epochs. We use the Adam
optimizer, setting the initial learning rate as 0.001, with a cosine annealing scheduler. All models
are trained and tested on an RTXA-5000.

Baselines. For our experiments, we select three widely-used point cloud architectures: PointNet
[1], PointNet++ [14] and the Point Cloud Transformer (PCT) [20]. We integrate VecKM encoding
into these architectures as outlined in Sec. 3.2.4, which involves adding or replacing the original
local geometry encoding modules with VecKM with α = 30, β = 6 and d = 256. Since the size of
the point cloud is small, we implement VecKM by Eqn. (3.3). We also compare VecKM-based
architectures with the another light-weight network PointMLP [11].

Specifically, for PointNet, since it does not have a local geometry encoding module, we add the
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Table 3.2: Classification performance on the ModelNet40 dataset. VecKM → PN means adding
VecKM as a preprocessing module to PointNet, so the runtime is expected to be longer than the
PointNet baseline. VecKM ⇋ PN++/PCT means replacing the original dense local geometry
encoding in the original architectures with VecKM. Since VecKM is more efficient, the runtime is
reduced.

Instance
Accuracy

Avg. Class
Accuracy

Inference Time (ms)
(1 batch) # parameters

PointMLP 93.2% 90.1% 325.85 13.2M

PointNet 90.8% 87.1% 3.04 1.61M
VecKM → PN 92.9% 89.7% 14.32 9.06M
Difference ↑ 2.1% ↑ 2.6% not comparable +7.61M

PointNet++ 92.7% 89.4% 117.13 1.48M
VecKM ⇋ PN++ 93.0% 89.7% 65.78 3.94M
Difference ↑ 0.3% ↑ 0.3% 78% faster +2.46M

PCT 92.9% 89.8% 149.72 2.88M
VecKM ⇋ PCT 93.1% 90.6% 21.44 5.07M
Difference ↑ 0.2% ↑ 0.8% 5.98x faster +2.19M

VecKM module before the PointNet, which means the PointNet receives the geometry encoding as
input instead of the raw point coordinates. Since we add (denoted by→) VecKM as an additional
module, the runtime is going to be longer. For PointNet++, we replace (denoted by ⇋) the
first set abstraction layer with our VecKM encoding and leave the rest unchanged. For PCT,
we replace the initial input embedding module with the VecKM while retaining the transformer
modules. For PointNet++ and PCT, since we replace the dense local geometry encoding module
with the more efficient VecKM, the runtime is expected to decrease.

As demonstrated in Table 3.2, architectures based on VecKM consistently outperform
their baseline counterparts in accuracy while also benefiting from significantly reduced
runtime. When VecKM is integrated with PointNet++ and PCT, not only is performance
enhanced, but the speed of operation is also faster compared to the baselines. When comparing
VecKM → PN against PointNet, there is a notable improvement in accuracy by 2.1% and 2.6%,
with only a minimal increase in runtime. This is significant since the VecKM → PN architecture
exhibits superior performance compared to both PointNet++ and PCT, and meanwhile operating
7.18x and 9.5x faster, respectively. Compared with PointMLP, VecKM-based architectures are
even more efficient, achieving on-par accuracies.

3.3.3 Part Segmentation on ShapeNet Dataset

We evaluate our VecKM on 3D object part segmentation. Our experiment utilizes the ShapeNet
[26] dataset. Similar to the classification experiment, we compare the IoU and inference time
with PointNet, PointNet++, PCT, and PointMLP. The baselines and their VecKM counter-parts
are obtained like the classification experiment in Section 3.3.2. The parameters of VecKM are
selected as α = 30, β = 9 and d = 256. Since the size of the point cloud is small, we implement
VecKM by Eqn. (3.3).

Training Details. We use the same training setting for all the methods. We use the official
split with 14,006 3D models for training and 2,874 for testing. Each point cloud is uniformly
sampled to 2,048 points. During training, random translation in [−0.2, 0.2], and random scaling
in [0.67, 1.50] are applied. We set the batch size to 16 and train the model for 250 epochs. We use
the Adam optimizer, setting the initial learning rate as 0.001, with a cosine annealing scheduler.
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Table 3.3: Part segmentation performance on the ShapeNet dataset. Similar to the classification,
→ means adding VecKM as a preprocessing module, so the runtime is expected to be longer. ⇋
means replacing the dense local geometry encoding module with VecKM. Since VecKM is more
efficient, the runtime is reduced.

Instance
mIoU

Avg. Class
mIoU

Inference Time (ms)
(1 batch) # parameters

PointMLP 85.1% 82.1% 240.39 16.76M

PointNet 83.1% 77.6% 15.1 8.34M
VecKM → PN 84.9% 81.8% 40.8 1.29M
Difference ↑ 1.8% ↑ 4.2% not comparable +7.05M

PointNet++ 85.0% 81.9% 130.8 1.41M
VecKM ⇋ PN++ 85.3% 82.0% 65.9 1.50M
Difference ↑ 0.3% ↑ 0.1% 98% faster +0.09M

PCT 85.7% 82.6% 145.2 1.63M
VecKM ⇋ PCT 85.8% 82.6% 46.6 1.71M
Difference ↑ 0.1% 0.0% 2.11x faster +0.08M

As demonstrated in Table 3.3, similar to the classfication experiment, architectures based on
VecKM consistently outperform their baseline counter-parts in accuracy while also benefiting
from significantly reduced runtime.

3.3.4 Semantic Segmentation on S3DIS Dataset

We evaluate our VecKM on 3D semantic segmentation. We use the S3DIS dataset [27], which
is an indoor scene dataset. It contains 6 areas and 271 rooms. Each point in this dataset is
classified into one of 13 categories. Each scene contains around 10,000∼100,000 points. We use
the same training setting as [21].

Baselines. We select PointNet++ and Point Transformer [21] as the baselines. For PointNet++,
in its first layer, PointNet++ first downsamples the point cloud by 1/4 and for each sampled
point, 32 neighboring points are sampled and transformed by a PointNet. The VecKM →
PN++ counter-part is obtained by adding the dense local geometry encoder before the first layer.
Consequently, the PointNet in the first layer will transform the local geometry encoding instead
of the raw 3d coordinates. Because of the downsampling operation in PointNet++, its inference
time is much shorter. Therefore, PN++ and VecKM → PN++ are not comparable in terms
of inference time. For Point Transformer, its first layer is a dense local geometry encoder with
PointNet. We replace the dense local geometry encoder with our VecKM encoding to obtain
the PT ⇋ VecKM architecture. In both architectures, since the size of the point cloud is large,
we implement VecKM by Eqn. (3.2). We set α = 30, β = 9, d = 256, p = 2048, and we use a
sequence of two complex linear layers to transform the local geometry encoding from C256 to C64.

As shown in Table 3.4, VecKM improves PointNet++ baseline significantly. This is
because the downsampling of the point cloud induces information loss in the PointNet++ baseline,
while the dense VecKM encoding effectively bridges the gap. On the other hand, VecKM
improves the inference speed of point transformer, which is expected given the efficiency
of VecKM especially on large point cloud input. Regarding why VecKM ⇋ PT does not yield
better accuracy, it is possibly because the heavy-weight point transformer architecture already
adequately reasons on the geometry. Unlike PointNet++, the local geometry encoding is not
a bottleneck for point transformer. Since the subsequent processing costs the majority of the
running time, the acceleration is not as significant as the previous experiments.
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Table 3.4: Semantic segmentation performance on the S3DIS dataset. Similar to the classification
experiment,→ means adding VecKM as a preprocessing module. Since PointNet++ downsamples
the point cloud at the first layer while VecKM → PN++ does not, their inference time is not
comparable. ⇋ means replacing the original dense local geometry encoding module with VecKM.
Since VecKM is more efficient, the runtime is reduced.

Instance
mIoU

Avg. Class
mIoU

Overall
Accuracy

Inference Time (ms)
(per scene) #parameters

PointNet++ 64.05 71.52 87.92 96 0.968M
VecKM → PN++ 67.48 73.53 89.33 391 1.11M
Difference ↑ 3.43 ↑ 2.01 ↑ 1.41 not comparable +0.142M

Point Transformer 69.29 75.66 90.36 559 7.77M
VecKM ⇋ PT 69.53 75.84 90.39 447 7.93M
Difference ↑ 0.24 ↑ 0.18 ↑ 0.03 20% faster +0.16M

3.3.5 Ablation Studies

In Section 3.2.3, we qualitatively analyze the effect of the parameters α and β in Theorem 4.
In this section, we quantitatively analyze the effect of the parameters in the context of the
ModelNet40 classification experiment, with the VecKM→ PN architecture. For α selection, when
the input point cloud is normalized within a unit ball, setting α in the range of (20, 35) yields
good performance. As shown in Table 3.5, appropriate selections of α and β are important to
yield a good performance on the downstream tasks.

Figure 3.7: Average RMSE of nor-
mal estimation trained with differ-
ent numbers of layers.

We study how many fully-connected layers are needed for
transforming the VecKM encoding, in the context of normal
estimation tasks. As shown in Figure 3.7, two layers are
sufficient for stably satisfactory performance, highlighting the
inherent descriptiveness of VecKM encoding.

Notice that the selection of the α parameter varies across
different tasks. In classification, where refined local geometry
is less critical, a smaller α is used to abstract away finer
details. For normal estimation tasks, where accurate local
shape representation is crucial, a larger α is employed to
retain essential details. These findings demonstrate VecKM’s
adaptability in meeting the diverse requirements of various
tasks, adjusting to the specific level of detail needed.

Table 3.5: Ablation study on the selection of the parameters α and β in Theorem 4, in the context
of ModelNet40 classification experiment. Numbers greater than 92.5% are bolded.

α = 20 α = 25 α = 30 α = 35

β = 4 91.73% 91.94% 91.73% 91.77%
β = 6 92.59% 92.14% 92.87% 92.50%
β = 9 92.18% 92.71% 92.95% 92.50%
β = 12 92.10% 92.54% 92.59% 92.38%
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3.4 Conclusion

VecKM, our novel local point cloud encoder, stands out for its efficiency and noise robustness.
VecKM vectorizes a kernel mixture associated with the local point cloud, providing a solid
theoretical foundation for its descriptiveness and robustness. Thanks to its special formulation,
VecKM is the only existing local geometry encoder that costs linear time and space. Through
extensive experiments, VecKM has demonstrated significant improvements in speed and accuracy
across a variety of point cloud processing tasks. VecKM has many potential applications due
to its notable features. Its efficiency facilitates faster inference, ideal for time-critical tasks like
event data processing.
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4 Theories & Algorithms II (Robustness): Decodable
and Sample Invariant Continuous Object Encoder

This chapter introduces HDFE (hyper-dimensional function encoding), which focuses on the
robustness to density variation in point cloud embedding.

4.1 Introduction

Continuous objects are objects that can be sampled with arbitrary distribution and density.
Examples include point clouds [28], event-based vision data [29], and sparse meteorological data
[30]. A crucial characteristic of continuous objects, which poses a challenge for learning, is that
their sample distribution and size varies between training and test sets. For example, point cloud
data in the testing phase may be sparser or denser than that in the training phase. A framework
that handles this inconsistency is essential for continuous object learning.

When designing the framework, four properties are desirable: (1) Sample distribution invariance:
the framework is not affected by the distribution from which the samples are collected. (2)
Sample size invariance: the framework is not affected by the number of samples. (3) Explicit
representation: the framework generates outputs with fixed dimensions, such as fixed-length
vectors. (4) Decodability : the continuous object can be reconstructed at arbitrary resolution from
the representation.

Sample invariance (properties 1 and 2) ensures that differently sampled instances of the same
continuous objects are treated consistently, thereby eliminating the ambiguity caused by variations
in sampling. An explicit representation (property 3) enables a neural network to receive continuous
objects as inputs, by consuming the encodings of the objects. Decodability (property 4) enables
a neural network to predict a continuous object, by first predicting the representation and then
decoding it back to the continuous object. Fig. 4.1 illustrates the properties and their motivations.

However, existing methodologies, which we divide into three categories, are limited when incorpo-
rating the four properties. (1) Discrete framework. The methods discretize continuous objects
and process them with neural networks. For example, [31] uses a 3D-CNN to process voxelized
point clouds, [32] uses an RNN to predict particle trajectories. These methods are not sample
invariant – the spatial and temporal resolution must be consistent across the training and testing
phases. (2) Mesh-grid-based framework. They operate on continuous objects defined on mesh
grids and achieve discretization invariance (the framework is not affected by the resolution of
the grids). Examples include the Fourier transform [33] and the neural operator [34]. But they
do not apply to sparse data like point clouds. (3) Sparse framework. They operate on sparse
samples drawn from the continuous object. Kernel methods [35] work for non-linear regression,
classification, etc. But they do not provide an explicit representation of the function. PointNet [1]
receives sparse point cloud input and produces an explicit representation, but the representation
is not decodable. In addition, all the frameworks require extra training of the encoder, which is
undesired in some scarce data scenarios.
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Figure 4.1: Left: HDFE encodes continuous objects into fixed-length vectors without any training.
The encoding is not affected by the distribution and size with which the object is sampled. The
encoding can be decoded to reconstruct the continuous object. Right: Applications of HDFE.
HDFE can be used to perform machine learning tasks (e.g. classification, regression) on continuous
objects. HDFE also enables neural networks to regress continuous objects by predicting their
encodings.

Currently, only the vector function architecture (VFA) [36] can encode an explicit function into
a vector through sparse samples, while preserving all four properties. However, VFA is limited
by its strong assumption of the functional form. VFA requires the input function to conform to
f(x) =

∑
k αk ·K(x, xk), where K : X ×X → R is a kernel defined on X. If the input function

does not conform to the form, VFA cannot apply or induces large errors. In practice, such
requirement is rarely satisfied. For example, f(x) cannot even approximate a constant function
g(x) = 1: to approximate the constant function, the kernel K must be constant. But with the
constant kernel, f(x) cannot approximate other non-constant functions. Such limitation greatly
hinders the application of VFA.

We propose hyper-dimensional function encoding (HDFE), which does not assume any explicit
form of input functions but only requires Lipschitz continuity. Consequently, HDFE can encode a
much larger class of functions, while holding all four properties without any training. Thanks to
the relaxation, HDFE can be applied to multiple real-world applications that VFA fails, which will
be elaborated on in the experiment section. HDFE maps the samples to a high-dimensional space
and computes weighted averages of the samples in that space to capture collective information
of all the samples. A challenge in HDFE design is maintaining sample invariance, for which we
propose a novel iterative refinement process to decide the weight of each sample. The contributions
of our paper can be summarized as follows:

• We present HDFE, an encoder for continuous objects without any training that exhibits sample
invariance, decodability, and distance-preservation. To the best of our knowledge, HDFE is
the only algorithm that can encode Lipschitz functions while upholding all the four properties.

• We provide extensive theoretical foundation for HDFE. We prove that HDFE is equipped with
all the desirable properties. We also verify them with empirical experiments.

• We evaluate HDFE on mesh-grid data and sparse data. In the mesh-grid data domain, HDFE
achieves competitive performance as the specialized state-of-the-art (SOTA) in function-to-
function mapping tasks. In the sparse data domain, replacing PointNet with HDFE leads to
average error decreases of 12% and 15% in two benchmarks, and incorporating HDFE into the
PointNet-based SOTA architecture leads to average error decreases of 2.5% and 1.7%.
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4.2 Problem Definition and Methodology

Let F be the family of c-Lipschitz continuous functions defined on a compact domain X with
a compact range Y . In other words, ∀f ∈ F , f : X → Y and dY

(
f(x1), f(x2)

)
≤ c · dX

(
x1, x2

)
,

where (X, dX) and (Y, dY ) are metric spaces, and c is the Lipschitz constant. Our goal is to find
a representation algorithm that can encode a function f ∈ F into a vector representation F ∈ CN .
To construct it, we will feed samples of the function mapping

{(
xi, f(xi)

)}
to the representation

algorithm, which will generate the vector representation based on these samples.

We require the function representation to satisfy the following: (1) Sample distribution invariance:
the function representation is "not affected" by the distribution from which the samples are
collected. (2) Sample size invariance: the function representation is "not affected" by the number
of samples. (3) Fixed-length representation: all functions are represented by fixed-length vectors.
(4) Decodability: as new inputs query the function representation, it can reconstruct the function
values.

To better formalize the heuristic expression of "not affected" in Properties 1 and 2, we introduce
the definition of asymptotic sample invariance to formulate an exact mathematical expression:

Definition 5 (Asymptotic Sample Invariance). Let f : X → Y be the function to be encoded,
p : X → (0, 1) be a probability density function (pdf) on X, {xi}ni=1 ∼ p(X) be n independent
samples of X. Let Fn be the representation computed from the samples {xi, f(xi)}ni=1, asymptotic
sample invariance implies Fn converges to a limit F∞ independent of the pdf p.

In this definition, sample size invariance is reflected because the distance between Fm and Fn can
be arbitrarily small as m,n become large. Sample distribution invariance is reflected because the
limit F∞ does not depend on the pdf p, as long as p is supported on the whole input space X.

With the problem definition above, we present our hyper-dimensional function encoding (HDFE)
approach. Sec. 4.2.1 introduces how HDFE encodes explicit functions. Sec. 4.2.2 generalizes
HDFE to implicit function encoding. Sec. 4.2.3 realizes HDFE for vector-valued function encoding.
Finally, Sec. 4.2.4 establishes the theorems that HDFE is asymptotic sample invariant and distance-
preserving. Throughout the section, we assume the functions are c-Lipschitz continuous. The
assumption will also be explained in Section 4.2.4.

4.2.1 Explicit Function Encoding

Encoding HDFE is inspired by the methodology of hyper-dimensional computing (HDC) [37],
where one encodes an indefinite number of data points into a fixed-length vector. The common
practice is to first map the data points to a high-dimensional space and then average the data
point representations in that space. The resulting superposed vector can represent the distribution
of the data. Following the idea, we represent an explicit function as the superposition of its
samples:

F =
∑
i

wi · E(xi, yi) (4.1)

where E maps function samples to a high-dimensional space CN . The question remains (a) how
to design the mapping to make the vector decodable; (b) how to determine the weight of each
sample wi so that the representation is sample invariant. We will answer question (a) first and
leave question (b) to the iterative refinement section.
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Regarding the selection of E(x, y), a counter-example is a linear mapping, where the average of
the function samples in the high-dimensional space will degenerate to the average of the function
samples, which does not represent the function. To avoid degeneration, the encodings of the
samples should not interfere with each other if they are far from each other. Specifically, if
dX(x1, x2) is larger than a threshold ϵ0, their function values f(x1), f(x2) may be significantly
different. In this case, we want E(x1, y1) to be orthogonal to E(x2, y2) to avoid interference.
On the other hand, if dX(x1, x2) is smaller than the threshold ϵ0, by the Lipschitz continuity,
the distance between their function values dY (f(x1), f(x2)) is bounded by cϵ0. In this case, we
want E(x1, y1) to be similar to E(x2, y2). We call the tunable threshold ϵ0 the receptive field of
HDFE, which will be discussed in Sec. 4.2.4. Denoting the similarity between vectors as ⟨·, ·⟩,
the requirement can be formulated as:

⟨E(x, y), E(x′, y′)⟩

{
≈ 1 dX(x, x′) < ϵ0

decays to 0 quickly dX(x, x′) > ϵ0
(4.2)

In addition to avoiding degeneration, we also require the encoding to be decodable. This can
be achieved by factorizing E(x, y) into two components: We first map xi and yi to the high-
dimensional space CN through two different mappings EX and EY . To ensure Eqn. (4.2) is
satisfied, we require ⟨EX(x), EX(x′)⟩ ≈ 1 when dX(x, x′) < ϵ0 and that it decays to 0 otherwise.
The property of EY will be mentioned later in the discussion of decoding. Finally, we compute
the joint embedding of xi and yi through a binding operation ⊗: E(xi, yi) = EX(xi)⊗ EY (yi).

We will show that the representation is decodable if the binding operation satisfies these properties:

1. commutative: x⊗ y = y ⊗ x

2. distributive: x⊗ (y + z) = x⊗ y + x⊗ z

3. similarity preserving: ⟨x⊗ y, x⊗ z⟩ = ⟨y, z⟩.
4. invertible: there exists an associative, distributive, similarity preserving operator that undoes

the binding, called unbinding ⊘, satisfying (x⊗ y)⊘ z = (x⊘ z)⊗ y and (x⊗ y)⊘ x = y.

The binding and unbinding operations can be analogous to multiplication and division, where the
difference is that binding and unbinding operate on vectors and are similarity preserving.

Decoding With the properties of the two operations, the decoding of the function representation
can be performed by a similarity search. Given the function representation F ∈ CN , and a query
input x0 ∈ X, the estimated function value ŷ0 is computed by:

ŷ0 = argmaxy∈Y ⟨F⊘ EX(x0), EY (y)⟩ (4.3)

The distributive property allows the unbinding operation to be performed sample-by-sample.
The invertible property allows the unbinding operation to recover the encoding of the function
values: EX(xi)⊗EY

(
f(xi)

)
⊘EX(x0) ≈ EY

(
f(xi)

)
≈ EY

(
f(x0)

)
when dX(x0, xi) is small. The

similarity preserving property ensures that [EX(xi) ⊘ EX(x0)] ⊗ EY (f(xi)) produces a vector
orthogonal to EY (f(x0)) when the distance between two samples is large, resulting in a summation
of noise. The following formula illustrates the idea.

F⊘ EX(x0) =
∑
i

wi ·
[
EX(xi)⊗ EY

(
f(xi)

)
⊘ EX(x0)

]
=

∑
d(x0,xi)<ϵ0

wi · EY

(
f(xi)

)
︸ ︷︷ ︸

≈EY (f(x0))

+
∑

d(x0,xi)>ϵ0

wi · [EX(xi)⊘ EX(x0)]⊗ EY (f(xi))︸ ︷︷ ︸
noise, since orthogonal to EY (f(x0))
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After computing F⊘ EX(x0), we search for y ∈ Y such that the cosine similarity between EY (y)
and F⊘EX(x0) is maximized. We desire that ∂

∂y ⟨EY (y), EY (y
′)⟩ > 0 for all y and y′ so that the

optimization can be solved by gradient descent. See Supp. 4.5.1 for detailed formulation.

Since the decoding only involves measuring cosine similarity, in the last step, we normalize the
function representation to achieve sample size invariance without inducing any loss:

F = normalize
(∑

i

wi ·
[
EX

(
xi
)
⊗ EY

(
f(xi)

)])
(4.4)

Algorithm 1 Iterative Refinement
zi ← EX(xi)⊗ EY (f(xi)) for all i.
F =

∑
i zi

while mini⟨F, zi⟩ still increases do
j = argmini⟨F, zi⟩
F← F+ zj

end while

Iterative refinement for sample distribution in-
variance In Eqn. (4.4), we are left to determine the
weight of each sample so that the representation is sam-
ple invariant. To address this, we propose an iterative
refinement process to make the encoding invariant to
the sample distribution. We initialize wi = 1 and com-
pute the initial function vector. Then we compute the
similarity between the function vector and the encoding
of each sample. We then add the sample encoding with
the lowest similarity to the function vector and repeat this process until the lowest similarity no
longer increases. By doing so, the output will be the center of the smallest ball containing all the
sample encodings. Such output is asymptotic sample invariant because the ball converges to the
smallest ball containing ∪x∈X [EX(x)⊗ EY (f(x))] as the sample size goes large, where the limit
ball only depends on the function. We left the formal proof to the Supp. 4.5.2.

One-Shot Refinement In Algorithm 1, the motivation of the iterative refinement is to balance
the weights between dense and sparse samples. By iterative refinement, we adjust the function
encoding so that the sparse samples also contribute to the encoding. Such motivation can be
achieved by another cheaper one-shot refinement. After obtaining the initial function encoding by
averaging the sample encoding, we compute the similarity between this initial encoding and all
the sample encodings. The similarity can serve as a rough estimation of the sample density at a
particular point. Therefore, if we were to balance the weights between dense and sparse samples,
we can simply recompute the weights by the inverse estimated density. Algorithm 2 illustrates the
procedure. Although one-shot refinement is not strictly sample distribution invariant, it is a quite
good approximation of the sample invariant function encoding and is very cheap to compute.

Algorithm 2 One-Shot Refinement
zi ← EX(xi)⊗ EY (f(xi)) for all i.
F =

∑
i zi

for i do
wi = ⟨F, zi⟩ ▷ wi is an estimation of the density at (xi, f(xi)).
wi = max(ϵ, wi) ▷ Ensure numerical stability.
wi = w−1

i /
∑n

j=1w
−1
j ▷ Compute inverse density.

end for
F =

∑
iwi · zi
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4.2.2 Implicit Function Encoding

Generalizing HDFE to implicit functions is fairly straightforward. Without loss of generality, we
assume an implicit function is represented as f(x) = 0. Then it can be encoded using Eqn. (4.5),
where the weights wx are determined by the iterative refinement:

Ff=0 = normalize
( ∑

x:f(x)=0

wx · EX(x)
)

(4.5)

The formula can be understood as encoding an explicit function g, where g(x) = 1 if f(x) = 0
and g(x) = 0 if f(x) ̸= 0. Then by choosing EY (1) = 1 and EY (0) = 0 in Eqn. (4.4), we can
obtain Eqn. (4.5). The formula can be interpreted in a simple way: a continuous object can be
represented as the summation of its samples in a high-dimensional space.

4.2.3 Vector-Valued Function Encoding

In the previous sections, we established a theoretical framework for encoding c-Lipschitz continuous
functions. In this section, we put this framework into practice by carefully choosing appropriate
input and output mappings EX , EY , the binding operator ⊗, and the unbinding operator ⊘ in
Eqn. (4.4). We will first state our choice and then explain the motivation behind it.

Formulation Let (x, y) be one of the function samples, where x ∈ Rm and y ∈ R, the mapping
EX : X → CN , EY : R→ CN and the operations ⊗ and ⊘ are chosen as:

EX(x) := exp
(
i · αΦx

m

)
EY (y) := exp

(
iβΨy

)
(4.6)

EX(x)⊗ EY (y) := exp
(
i · αΦx

m
+ iβΨy

)
EX(x)⊘ EY (y) := exp

(
i · αΦx

m
− iβΨy

)
where i is the imaginary unit, Φ ∈ RN×m and Ψ ∈ RN are random fixed matrices where all
elements are drawn from the standard normal distribution. α and β are hyper-parameters
controlling the properties of the mappings.

Motivation The above way of mapping real vectors to high-dimensional spaces is modified from
[38], known as fractional power encoding (FPE). We introduce the motivation for adopting this
technique here.

First, the mappings are continuous, which can avoid losses when mapping samples to the
embedding space. Second, the receptive field of the input mapping EX (the ϵ0 in Eqn. (4.2)) can
be adjusted easily through manipulating α. Fig. 4.2a demonstrates how manipulating α can
alter the behavior of EX . Typically, α has a magnitude of 10 for capturing the high-frequency
component of the function. Thirdly, the decodability of the output mapping EY can easily be
achieved by selecting appropriate β values. We select β such that ⟨EY (0), EY (1)⟩ is equal to 0 to
utilize the space CN maximally while keeping the gradient of ⟨EY (y1), EY (y2)⟩ non-zero for all
y1 and y2. Per the illustration in Fig. 4.2a, the optimal choice for β is 2.5. Finally, the binding
and unbinding operators are defined as the element-wise multiplication and division of complex
vectors, which satisfy the required properties.
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(a) Similarity between
EX(x) and EX(0).

(b) Large recept. field.
Dimension = 1000.

(c) Small recept. field.
Dimension = 1000.

(d) Small recept. field.
Dimension = 2000.

Figure 4.2: (a): How α and β in Eqn. (4.6) affects the receptive field of HDFE. (b)-(d): Functions
can be reconstructed accurately given a suitable receptive field and encoding dimension. To
capture the high-frequency component of the function, a small receptive field and a high dimension
are required.

4.2.4 Properties of HDFE

HDFE produces an explicit decodable representation of functions. In this section, we state a
theorem on the asymptotic sample invariance, completing the claim that HDFE satisfies all
four desirable properties. We study the effect of the receptive field on the behavior of HDFE.
We also state that HDFE is distance-preserving and discuss the potential of scaling HDFE to
high-dimensional data. We leave the proofs to Supp. 4.5.2, 4.5.3 and verify the claims with
empirical experiments in Section 4.3.1. We include several empirical experiments of HDFE in
Sec. 4.3.2, 4.3.3, including the cost of the iterative refinement and one-shot refinement, and the
effectiveness of sample invariance in a synthetic regression problem.

Theorem 6 (Sample Invariance). HDFE is asymptotic sample invariant (Definition 5).

HDFE being sample invariant ensures functions realized with different sampling schemes are
treated invariantly. The proof is in Supp. 4.5.2.

Theorem 7 (Distance Preserving). Let f, g : X → Y be both c-Lipschitz continuous, then their
L2-distance is preserved in the encoding. In other words, HDFE is an isometry:

||f − g||L2 =

∫
x∈X

∣∣f(x)− g(x)
∣∣2dx ≈ b− a⟨F,G⟩

HDFE being isometric indicates that HDFE encodes functions into a organized embedding space,
which can reduce the complexity of the machine learning architecture when training downstream
tasks on the functions. The proof is in Supp. 4.5.3.

Effect of receptive field Fig. 4.2 shows the reconstruction results of a 1d function f : R→ R,
which demonstrates that HDFE can reconstruct the original functions given a suitable receptive
field and a sufficiently large embedding space. When using a large receptive field (Fig. 4.2b), the
high-frequency components will be missed by HDFE. When using a small receptive field (Fig.
4.2c), the high-frequency components can be captured, but it may cause incorrect reconstruction
if the dimension of the embedding space is not large enough. Fortunately, reconstruction failures
can be eliminated by increasing the dimension of the embedding space (Fig. 4.2d).
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4.3 Experiment

In this section, we present two applications of HDFE. Sec. 4.3.1 verifies the properties claimed in
Sec. 4.2.4 with empirical experiments. Sec. 4.3.2 analyzes the computation cost of the refinements.
Sec. 4.3.3 examines the efficacy of the sample invariance through a synthetic function regression
problem. Sec. 4.3.4 showcases how HDFE can be leveraged for solving partial differential equations
(PDE). This exemplifies how HDFE can enhance neural networks to receive function inputs and
produce function outputs. In Sec. 4.3.5, we apply HDFE to predict the surface normal of point
clouds. This demonstrates how HDFE can enhance neural networks to process implicit functions
and extract relevant attributes.

4.3.1 Empirical Experiment of HDFE

Sample Invariance. In Fig. 4.3, we demonstrate that the function encoding produced by HDFE
remains invariant of both the sample distribution and sample density. Specifically, we sample
function values from three distinct input space distributions, namely left-skewed, right-skewed,
and uniform distribution, each with sample sizes of either 5000 or 1000. We then calculate the
similarity between the function vectors generated from these six sets of function samples. Before
tuning the function vectors, the representation is influenced by the sample distributions (Fig. 4.3
Mid). However, after the tuning process, the function vector becomes immune to the sample
distribution (Fig. 4.3 Right).

Figure 4.3: HDFE is invariant of sample distribution and sample size. Left: Three distributions
where the function samples are drawn from. For each distribution, the sample size is either 5000
or 1000. Mid, Right: Similarity among the function vectors generated by the six sets of function
samples, before and after the function vector tuning process, respectively.

Isometry In Fig. 4.4, we generate pairs of random functions and compute their function encodings
through HDFE. We plot the L2-distance between the functions and the similarity between their
encodings. We discover a strong correlation between them. This coincides the isometric property
claimed in Theorem 7.
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Figure 4.4: HDFE is a distance preserving transformation. The L2-distance between functions is
proportional to the negative similarity between their encodings.

4.3.2 Cost of Refinements

Figure 4.5: When encoding the same func-
tion under two different sample distributions,
one-shot refinement can approximate the
sample invariant function encoding well. It
takes 75/90/1500 ms to encode 5000 sam-
ples on a CPU, and 7.5/8.0/250 ms on an
NVIDIA Titan-X GPU when performing no
refinement/one-shot refinement/200-step it-
erative refinement.

We perform a comparison among no refinement,
one-shot refinement and iterative refinement with
synthetic data, where we encode the same func-
tion sampled with two different distributions and
compute the similarity between the two encodings.
Specifically, we generate a random function by

f(x) =
1

2
+

1

8

4∑
k=1

ak sin(2πkx) (4.7)

where ak ∼ Uniform(0, 1) are the parameters con-
trolling the generation and f(x) ∈ (0, 1). We con-
struct the encoding of the function by samples from
two different sample distributions. The first dis-
tribution is computed by xi ∼ Uniform(0, 1) and
xi ← x2i . The second distribution is computed by
xi ∼ Uniform(0, 1) and xi ← 1−x2i . Consequently,
the first distribution is left-tailed, and the second
distribution is right-tailed. Then we compare the
similarity of function encodings generated by no
iterative refinement, one-shot refinement, and iter-
ative refinement. Figure 4.5 shows the comparison,
which demonstrates that one-shot refinement is a
quite good approximation of the sample invariant function encoding (the similarity increases from
∼ 0.5 to 0.98 after one-shot refinement).
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4.3.3 Effectiveness of Sample Invariance

In this section, we examine the effectiveness of HDFE’s sample invariance property through an
synthetic function regression problem. We first generate random functions by Eqn. (4.7), where
ak ∼ Uniform(0, 1) are the parameters controlling the generation. The task is to regress the
coefficients [a1, a2, a3, a4] from the function samples {xi, f(xi)}. Regarding the sample size, the
number of function samples is 5000 in the training phase and 2500 in the testing phase. Regarding
sample distribution, we consider two different settings:

Setting 1 (No Sample Distribution Variation): The sample distribution is consistent
between training phase and testing phase. We let xi ∼ Uniform(0, 1) in both training phase
and testing phase.

Setting 2 (Sample Distribution Variation): The sample distribution is different between the
training phase and testing phase. Specifically, in the training phase, we let xi ∼ Uniform(0, 1)
and xi ← x2i . In the testing phase, we let xi ∼ Uniform(0, 1) and xi ← 1−x2i . Consequently, the
sample distribution in the training phase is left-tailed, while in the testing phase is right-tailed.

We compare our HDFE with PointNet in terms of mean squared error (MSE) and the R-squared
(R2) metrics. For HDFE, we compare the performance among no refinement, one-shot refinement,
and 200-step iterative refinement. Table 4.1 shows the comparison.

In Setting 1, when there is no distribution variation, HDFE achieves significantly lower error
than PointNet. This is because HDFE is capable of capturing the entire distribution of functions,
while PointNet seems to struggle on that.

In Setting 2, when there is distribution variation, PointNet fails miserably, while HDFE, even
without iterative refinement, already achieves fairly good estimation, and even better than the
PointNet in Setting 1. In addition, the experiment also shows that both the one-shot refinement
and the iterative refinement are effective techniques to improve the robustness to distribution
variation.

Table 4.1: Performance of function parameters regression. PointNet fails when sample distribution
varies between training and testing phases, while HDFE is robust to the sample distribution
variation.

PointNet HDFE
No Refinement One-Shot Refinement 200-Step Iter. Ref.

No Distr. Var. MSE 0.0037 < 0.0005 < 0.0005 < 0.0005
R2 0.978 > 0.9975 > 0.9975 > 0.9975

Distr. Var. MSE 0.0717 0.003 < 0.0005 0.001
R2 0.513 0.982 > 0.9975 0.992

4.3.4 PDE Solver

Several neural networks have been developed to solve partial differential equations (PDE), such as
the Fourier neural operator [34]. In this section, we compare our approach using HDFE against
the current approaches and show that we achieve on-par performance. VFA does not apply to
the problem since the input and output functions do not conform to the form that VFA requires.

Architecture To solve PDEs using neural networks, we first encode the PDE and its solution
into their vector embeddings using HDFE. Then, we train a multi-layer perceptron to map the
embedding of the PDE to the embedding of its solution. The optimization target is the cosine
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similarity between the predicted embedding and the true embedding. Since the embeddings are
complex vectors, we adopt a Deep Complex Network [39] as the architecture of the multi-layer
perceptron. Once the model is trained, we use it to predict the embedding of the solution, which
is then decoded to obtain the actual solution.

Dataset We use 1d Burgers’ Equation [40] and 2d Darcy Flow [41] for evaluating our method.
The error is measured by the absolute distance between the predicted solution and the ground-
truth solution. The benchmark [42] has been used to evaluate neural operators widely. For the
1d Burgers’ Equation, it provides 2048 PDEs and their solutions, sampled at a 1d mesh grid at a
resolution of 8192. For the 2d Darcy Flow, it provides 2048 PDEs and their solutions, sampled at
a 2d mesh grid at a resolution of 241× 241.

Baselines We evaluate our HDFE against other neural network PDE-solving methods. These
include: PCANN [43]; MGKN: Multipole Graph Neural Operator [42]; FNO: Fourier Neural
Operator [34].

Figure 4.6: HDFE solves a PDE by predicting the encoding of its solution and then reconstructing
at points, so the error consists of a function encoding prediction error and a reconstruction error.
Left: Prediction error of different methods under different testing resolutions, evaluated on the
1d Burgers’ equation. Mid: The reconstruction error (in HDFE) dominates the function encoding
prediction error, while the reconstruction error can be reduced by increasing the dimensionality
of the embedding. Right: Prediction error of different methods evaluated on 2d Darcy Flow.

When decoding is required, our approach achieves ∼ 55% lower prediction error than
MGKN and PCANN and competitive performance to FNO. The error of HDFE consists
of two components. The first is the error arising from predicting the solution embedding, and
the second is the reconstruction error arising when decoding the solution from the predicted
embedding. In contrast, FNO directly predicts the solution, and hence, does not suffer from
reconstruction error. If we consider both errors, HDFE achieves comparable performance to FNO.
Fig. 4.6 shows the comparison.

On the other hand, when decoding is not required, our approach achieves lower error than
FNO. Such scenarios happen frequently when we use functions only as input, for example, the
local geometry prediction problem in Experiment 4.3.5. Despite the presence of reconstruction
error, the reconstruction error can be reduced by increasing the embedding dimension,
as shown in Figure 4.6 (Mid). Increasing the embedding dimension may slightly increase the
function prediction error, possibly because the network is not adequately trained due to limited
training data and some overfitting. We conjecture that this prediction error can be reduced with
more training data.
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In addition to comparable performance, HDFE overcomes two limitations of FNO. First,
HDFE provides an explicit function representation, resolving the restriction of FNO, which only
models the mappings between functions without extracting attributes from them. Second, HDFE
not only works for grid-sampled functions but also for sparsely sampled functions.

4.3.5 Unoriented Surface Normal Estimation

Next, we apply HDFE to extract attributes of functions, a setting where neither neural operators
nor VFA applies, because neural operators do not consume sparse samples and VFA does not
encode implicit functions. We predict the unoriented surface normal from 3d point cloud input.

Baselines We compare our HDFE with two baselines. In the first baseline, we compare the
vanilla HDFE with the PCPNet [23], which is a vanilla PointNet [1] architecture. We replace the
PointNet with our HDFE appended with a deep complex network [39]. In the second baseline,
we incorporate HDFE into HSurf-Net [44], which is the state-of-the-art PointNet-based normal
estimator. In both settings, we compare the effect of data augmentation in the HDFE module,
where we add noise to the weight of each sample when generating the patch encoding by HDFE.

Dataset and metrics We use the root mean squared angle error (RMSE) as the metrics,
evaluated on the PCPNet [23] and FamousShape [45] datasets. We compare the robustness for two
types of data corruption: (1) point density: sampling subsets of points with two regimes, where
gradient simulates the effects of distance from the sensor, and strips simulates local occlusions.
(2) point perturbations: adding Gaussian noise to the point coordinates. Table 4.2 reports normal
angle RMSE comparison with the baselines on PCPNet and FamousShape.

Table 4.2: Unoriented normal RMSE results on datasets PCPNet and FamousShape. Replacing
from PointNet to HDFE improves performance. Integrating HDFE with the SOTA estimator
improves its performance. Applying data augmentation to HDFE improves its performance.

PCPNet Dataset (↓ means improvement) FamousShape Dataset (↓ means improvement)
Noise Density Noise Density

None Low Med High Stripe Gradient Average None Low Med High Stripe Gradient Average

PCPNet [23] 9.64 11.51 18.27 22.84 11.73 13.46 14.58 18.47 21.07 32.60 39.93 18.14 19.50 24.95
PCPNet - PointNet + HDFE 9.48 11.05 17.16 22.53 11.61 10.19 13.67 15.66 17.92 31.24 38.89 17.26 14.55 22.59
Difference 0.16 ↓ 0.46 ↓ 1.11 ↓ 0.31 ↓ 0.12 ↓ 3.27 ↓ 0.91 ↓ 2.81 ↓ 3.15 ↓ 1.36 ↓ 1.04 ↓ 0.88 ↓ 4.95 ↓ 2.36 ↓
PCPNet - PointNet + HDFE + Aug. 7.97 10.72 17.69 22.76 9.47 8.67 12.88 13.04 17.99 31.23 38.57 14.01 12.13 21.16
Difference 1.67 ↓ 0.79 ↓ 0.58 ↓ 0.08 ↓ 2.26 ↓ 4.79 ↓ 1.70 ↓ 5.43 ↓ 3.08 ↓ 1.37 ↓ 1.36 ↓ 4.13 ↓ 7.37 ↓ 3.79 ↓
HSurf-Net [44] 4.30 8.78 16.15 21.64 5.18 5.03 10.18 7.54 15.56 29.47 38.61 7.82 7.44 17.74
HSurf-Net + HDFE 4.13 8.64 16.14 21.64 5.02 4.87 10.07 7.46 15.50 29.42 38.56 7.77 7.35 17.68
Difference 0.17 ↓ 0.14 ↓ 0.01 ↓ 0.00 0.16 ↓ 0.16 ↓ 0.11 ↓ 0.08 ↓ 0.06 ↓ 0.04 ↓ 0.05 ↓ 0.05 ↓ 0.09 ↓ 0.06 ↓
HSurf-Net + HDFE + Aug. 3.89 8.78 16.14 21.65 4.60 4.51 9.93 7.11 15.57 29.44 38.57 6.97 6.98 17.44
Difference 0.41 ↓ 0.00 0.01 ↓ 0.01 ↑ 0.58 ↓ 0.52 ↓ 0.25 ↓ 0.43 ↓ 0.01 ↑ 0.03 ↓ 0.04 ↓ 0.85 ↓ 0.46 ↓ 0.30 ↓

HDFE significantly outperforms the PointNet baseline. When processing the local
patches, we replace PointNet with HDFE followed by a neural network. This replacement leads
to an average reduction in error of 1.70 and 3.79 on each dataset. This is possibly because HDFE
encodes the distribution of the local patch, which is guaranteed by the decodability property
of HDFE. PointNet, on the other hand, does not have such guarantee. Specifically, PointNet
aggregates point cloud features through a max-pooling operation, which may omit points within
the point cloud and fail to adequately capture the patch’s distribution. Consequently, in tasks
where modeling the point cloud distribution is crucial, such as normal estimation, PointNet
exhibits higher error compared to HDFE.

HDFE, as a plug-in module, improves the SOTA baseline significantly. HSurf-Net
[44], the SOTA method in surface normal estimation, introduces many features, such as local
aggregation layers, and global shift layers specifically for the task. Notably, HDFE does not
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compel such features. We incorporate HDFE into HSurf-Net, where it leads to average error
reductions of 0.25/0.30 on each dataset. Notably, such incorporation can be performed on any
PointNet-based architecture across various tasks. Incorporating HDFE to other PointNet-based
architectures for performance and robustness gain can be a future research direction.

HDFE promotes stronger robustness to point density variance. In both comparisons and
both benchmarks, HDFE exhibits stronger robustness to point density variation than its PointNet
counterpart, especially in the Density-Gradient setting (error reduction of 4.79/7.37/0.52/0.46).
This shows the effectiveness of the HDFE’s sample invariance property and the embedding
augmentation. Sample invariance ensures a stable encoding of local patches when the point
density changes. The embedding augmentation is a second assurance to make the system more
robust to density variation.

4.4 Conclusion

Hyper-Dimensional Function Encoding (HDFE) constructs vector representations for continuous
objects. The representation, without any training, is sample invariant, decodable, and isometric.
These properties position HDFE as an interface for the processing of continuous objects by
neural networks. Our study demonstrates that the HDFE-based architecture attains significantly
reduced errors compared to PointNet-based counterparts, especially in the presence of density
perturbations. This reveals that HDFE presents a promising complement to PointNet and its
variations for processing point cloud data. Adapting HDFE (e.g. imposing rotational invariance
to HDFE) to tasks like point cloud classification and segmentation offers promising avenues for
exploration. Still, HDFE does possess limitations in encoding capacity. For functions defined over
large domains or highly non-linear functions, HDFE can experience underfitting. The exploration
of techniques to enhance HDFE’s capacity remains promising research. Regardless, HDFE already
shows strong applicability in low-dimensional (1D, 2D, 3D) inputs.
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4.5 Supplementary Materials

4.5.1 Gradient Descent for Decoding Function Encoding

In Eqn. (4.3), HDFE decodes the function encoding by a similarity maximization. Given the
function encoding F ∈ CN , and a query point x0 ∈ X, the function value ŷ0 is reconstructed by:

ŷ0 = argmaxy∈Y ⟨F⊘ EX(x0), EY (y)⟩

When EX and EY are chosen as the fractional power encoding (Eqn. (4.6)), the optimization
can be solved by gradient descent. In this section, we detail the gradient descent formulation.
We assume the output space Y = R.

By setting EY as the fractional power encoding, the optimization can be rewritten as:

ŷ0 = argmaxy∈(0,1)⟨F⊘ EX(x0), exp(iΨy)⟩1

where Ψ ∈ RN is a random fixed vector where all elements are drawn from the normal distribution.
Since F⊘ EX(x0) is a constant vector, the optimization can be further simplified as:

ŷ0 = argmaxy∈(0,1)⟨z, exp(iΨy)⟩ (4.8)

where z = F⊘ EX(x0) ∈ CN . We write z into its polar form:

z =
[
a1e

iθ1 , a2e
iθ2 , · · · , aNeiθN

]
where ak ∈ [0,+∞) and θk ∈ [0, 2π). We first simplify Eqn. (4.8) and then compute its gradient
with respect to y.

⟨z, exp(iΨy)⟩ = 1

N2
||z̄ · exp(iΨy)||2

=
1

N2

∣∣∣∣ N∑
k=1

ake
iθke−iΨky

∣∣∣∣2
=

1

N2

N∑
p=1

N∑
q=1

apaqe
i
[
(θp−θq)−(Ψp−Ψq)y

]

=
1

N2

N∑
p=1

N∑
q=1

apaq cos
[
(θp − θq)− (Ψp −Ψq)y

]
The gradient can be computed easily by taking the derivative:

d

dy
⟨z, exp(iΨy)⟩ = 1

N2

N∑
p=1

N∑
q=1

apaq(Ψp −Ψq) sin
[
(θp − θq)− (Ψp −Ψq)y

]
(4.9)

In practice, N can be a large number like 8000. Computing the gradient by Eqn. (4.9) can be
expensive. Fortunately, since Ψ is a random fixed vector, where all elements are independent of

1In Eqn. (4.6), EY (y) = exp(iβΨy). Since β and n are two constant numbers, we rewrite βΨ as Ψ for notation
purpose.
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each other, we can unbiasedly estimate the gradient by sampling a small number of entries in the
vector. The decoding can be summarized by the pseudo-code below.

Algorithm 3 Gradient Descent for Decoding Function Encoding
Input: F, x0, EX , Ψ
▷ F is the function encoding. x0 is the query point.
▷ EX is the input mapping. Ψ is the parameter in EY .
z = F⊘ EX(x0)
z =

[
a1e

iθ1 , a2e
iθ2 , · · · , aNeiθN

]
▷ Convert z into its polar form.
while ⟨z, exp(iΨy)⟩ still increases do

Randomly select a subset of [0, N) ∩ Z. Denote as S.
▷ We choose |S| = 500.
g = |S|−2 ·

∑
p,q∈S apaq(Ψp −Ψq) sin

[
(θp − θq)− (Ψp −Ψq)y

]
y ← y − α · g
▷ α is the learning rate.

end while

4.5.2 Proof of Asymptotic Sample Invariance

In the main paper, we claim that the iterative refinement (Algorithm 1) will converge to the
center of the smallest ball containing all the sample encodings and therefore, HDFE leads to an
asymptotic sample invariant representation. In this section, we detail the proof of the argument.
To facilitate the understanding, Figure 4.7 sketches the proof from a high-level viewpoint. Recall
the definition of asymptotic sample invariance (definition 5):

Definition 1 (Asymptotic Sample Invariance). Let f : X → Y be the function to be encoded,
p : X → (0, 1) be a probability density function (pdf) on X, {xi}ni=1 ∼ p(X) be n independent
samples of X. Let Fn be the representation computed from the samples {xi, f(xi)}ni=1, asymptotic
sample invariance implies Fn converges to a limit F∞ independent of the pdf p.

Proof. We begin by showing the iterative refinement converges to

Fn = argmax||z||=1

n
min
i=1
⟨z, E(xi, f(xi))⟩ (4.10)

where E(x, f(x)) is defined at Eqn. (4.6) in the original paper. It maps a function sample to a
high-dimensional space CN .

To show the convergence of the iterative refinement, it follows from the gradient descent: since
∇[−mini⟨z, E(xi, f(xi)⟩] = −argmini⟨z, E(xi, f(xi)⟩, the gradient descent is formulated as z ←
z + α · argmini⟨z, E(xi, f(xi))⟩, which aligns with the iterative refinement in the paper.

Then we will prove Eqn. (4.10) produces a sample invariant encoding by proving Fn converges to

F∞ = argmax||z||=1min
x∈X
⟨z, E(x, f(x))⟩ (4.11)

Throughout the proof, we use the following definitions:
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S ⊂ CN ≜
⋃

x∈X E(x, f(x))

Sn ⊂ CN ≜
⋃n

i=1E(xi, f(xi))

|| · || ≜ L2-norm of a complex vector.
dH ≜ maxq∈Qminp∈P ||p − q||. Hausdorff distance between two

compact sets P ⊂ Q ⊂ CN .
Ball(P ) ≜ the smallest solid ball that contains the compact set P .

center(Ball(·)) ≜ center of the ball.

Recall from Eqn. (4.6), E(x, y) = F−1(ei(Φx+Ψy)), so ||E(x, y)|| = 1 for all x and y. Since
||z1 − z2||2 = ||z1||2 + ||z2||2 − 2⟨z1, z2⟩, we have ⟨z, E(x, y)⟩ = 1− 1

2 ||z − E(x, y)||2 if ||z||2 = 1.
Therefore, Eqn. (4.10) is equivalent to

Fn = argmin||z||=1
n

max
i=1
||z − E(xi, f(xi))|| (4.12)

Note that Eqn. (4.12) implies Fn is the center of the smallest ball containing Sn:

Fn = center(Ball(Sn)) (4.13)

because if we were to construct balls containing Sn with a center F′ ̸= Fn, the radius of the ball
must be larger than the radius of Ball(Sn).

When n → ∞, the Hausdorff distance between Ball(Sn) and Ball(S) goes to 0 with
probability one. First, it is easy to see that dH(Ball(Sn), Ball(S)) is a decreasing sequence
and is positive, so the limit exists. Assume the limit is strictly positive, then there exists a point
p′ ∈ S such that minq∈Sn ||p′ − q|| > c for some constant c > 0 as n→∞. This means no sample
is drawn from the ball Bc(p

′). This is contradictory to the definition of p : X → (0, 1): p is
positive over the input space X.

Finally, we conclude by ||Fn − F∞|| ≤ dH(Ball(Sn), Ball(S)). Since Ball(Sn) ⊂ Ball(S), from
elementary geometry, if A ⊂ B are two balls, then ||center(B) − center(A)|| ≤ radius(B) −
radius(A) ≤ dH(B,A). Therefore, ||center(Ball(Sn))−center(Ball(S))|| ≤ dH(Ball(Sn), Ball(S)).
Therefore, ||Fn − F∞|| ≤ dH(Ball(Sn), Ball(S)), which decays to 0 as n→∞.

: 

: 

: 

: 

Figure 4.7: Proof of asymptotic sample invariance (overview). Ball(S) and Ball(Sn) are the
smallest ball containing S and Sn. As n→∞, the Hausdorff distance between the two balls goes
to zero with probability one. From elementary geometry, ||center(Ball(Sn))−center(Ball(S))|| ≤
dH(Ball(Sn), Ball(S)). So the distance between the centers of the two balls goes to 0.
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4.5.3 Proof of Isometry

In this section, we complete the proof that HDFE is an isometry.

Theorem 1. Let f, g : X → Y be both c-Lipschitz continuous, then their L2-distance is preserved
in the encoding. In other words, HDFE is an isometry:

||f − g||L2 =

∫
x∈X

∣∣f(x)− g(x)
∣∣2dx ≈ b− a⟨F,G⟩

Lemma 4. ⟨x⊗ y, x⊗ z⟩ = ⟨y, z⟩.

Proof. Let x = eix, y = eiy, z = eiz,

⟨x⊗ y, x⊗ z⟩ = ⟨ei(x+y)), ei(x+z)⟩
= ei(x+y) · e−i(x+z)

= ⟨eiy, eiz⟩
= ⟨y, z⟩

Proof.

⟨F,G⟩ =
∫
x

∫
x′
⟨EX(x)⊗ EY (f(x)), EX(x′)⊗ EY (g(x

′))⟩dx′dx

=

∫
|x−x′|<ϵ

⟨EX(x)⊗ EY (f(x)), EX(x′)⊗ EY (g(x
′))⟩dx′dx

+

∫
|x−x′|>ϵ

⟨EX(x)⊗ EY (f(x)), EX(x′)⊗ EY (g(x
′))⟩dx′dx

=

∫
x
⟨EX(x)⊗ EY (f(x)), EX(x)⊗ EY (g(x))⟩dx+ noise

≈
∫
x
⟨EY (f(x)), EY (g(x))⟩dx by Lemma 4.

=

∫
x

∞∑
k=0

(−1)k

(2k)!
β2k(f(x)− g(x))2kdx by Bochner’s theorem

≈ b− a

∫
x
|f(x)− g(x)|2dx by taking the first and second order terms

The second line holds because when dX(x, x′) is larger than the receptive field ϵ0, EX(x) and
EX(x′) will be orthogonal, so the similarity between EX(x)⊗EY (f(y)) and EX(x′)⊗EY (g(y))
will be close to zero and they will be summed as noise.
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5 Theories and Algorithms: A Two-Page Summary

We believe that the most elegant summary of the two chapters, spanning 31 pages, is encapsulated
in 74 lines of PyTorch code.

Chapter 3 introduces a local point cloud geometry encoder that is efficient to compute. Chapter
4 introduces an iterative refinement algorithm to obtain make the function encoding invariant to
sampling distribution. In this chapter, we unify the techniques in both algorithms to produce
a local geometry encoder that is 1) efficient to compute, and 2) robust to noise and density
variation. This will conclude the theories and algorithms chapter.

1 import torch
2 import torch.nn as nn
3 import numpy as np
4 from scipy.stats import norm
5

6 def strict_standard_normal(d):
7 # this function generate very similar outcomes as torch.randn(d)
8 # but the numbers are strictly standard normal , no randomness.
9 y = np.linspace(0, 1, d+2)

10 x = norm.ppf(y)[1:-1]
11 np.random.shuffle(x)
12 x = torch.tensor(x).float()
13 return x
14

15 class VecKM(nn.Module):
16 def __init__(self , d=256, alpha=6, beta =1.8, p=4096):
17 super().__init__ ()
18 self.alpha , self.beta , self.d, self.p = alpha , beta , d, p
19 self.sqrt_d = d ** 0.5
20

21 self.A = torch.stack(
22 [strict_standard_normal(d) for _ in range (3)],
23 dim=0
24 ) * alpha
25 self.A = nn.Parameter(self.A, False) # Real(3, d)
26

27 self.B = torch.stack(
28 [strict_standard_normal(p) for _ in range (3)],
29 dim=0
30 ) * beta
31 self.B = nn.Parameter(self.B, False) # Real(3, d)
32

33 def forward(self , pts):
34 """ Compute the dense local geometry encodings of the point cloud.
35 Args:
36 pts: (bs, n, 3) or (n, 3) tensor , the input point cloud.
37 Returns:
38 G: (bs, n, d) or (n, d) tensor. the dense local geometry

encodings.
39 """
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40 """ VecKM START """
41 pA = pts @ self.A # Real (..., n, d)
42 pB = pts @ self.B # Real (..., n, p)
43 eA = torch.concatenate(
44 (torch.cos(pA), torch.sin(pA)), dim=-1) # Real (..., n, 2d)
45 eB = torch.concatenate(
46 (torch.cos(pB), torch.sin(pB)), dim=-1) # Real (..., n, 2p)
47

48 """ HDFE START """
49 density_emb = eB.mean(dim=-2, keepdim=True) # Real (..., 1, 2p)
50 density = eB @ density_emb.transpose (-1,-2) # Real (..., n, 1)
51 scaled_eA = eA / density # Real (..., n, 2d)
52 """ HDFE END """
53

54 G = torch.matmul(
55 eB, # Real (..., n, 2p)
56 eB.transpose (-1,-2) @ scaled_eA # Real (..., 2p, 2d)
57 ) # Real (..., n, 2d)
58 G = torch.complex(
59 G[..., :self.d], G[..., self.d:]
60 ) / torch.complex(
61 eA[..., :self.d], eA[..., self.d:]
62 ) # Comp (..., n, d)
63 """ VecKM END """
64

65 G = torch.concatenate ((G.real , G.imag), dim=-1) # Real (..., n, 2d)
66 G = G / torch.norm(G, dim=-1, keepdim=True) * self.sqrt_d
67 return G
68

69 if __name__ == ’__main__ ’:
70 vkm = VecKM()
71 pts = torch.rand ((10 ,1000 ,3))
72 G = vkm(pts) # it will be a Real (10 ,1000 ,512) tensor.
73 pts = torch.rand ((1000 ,3))
74 G = vkm(pts) # it will be a Real (1000 ,512) tensor.
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6 Proposed Application I: Real-Time Optical Flow Es-
timation from Events Camera

6.1 Introduction

Estimating motion fields (optical flow or normal flow) from event cameras is a well-established
challenge. Traditional approaches often transform the event stream into frames and apply con-
ventional feature matching techniques to estimate the flow. This process, however, negates the
inherent asynchronous advantage of event cameras. Alternatively, some event-based methods
employ contrast maximization to derive flow from raw events, though this approach is computa-
tionally intensive. While there are real-time algorithms available, they lack sufficient accuracy.
Our proposed application leverages a robust and efficient point cloud embedding algorithm to
achieve dense, real-time motion field estimation.

6.2 Methodology

Our methodology is straightforward. Every 20 ms, we gather events within this interval and
compute dense local feature embeddings. These embeddings are then processed through a
fully-connected network that predicts the flow, with the network trained end-to-end.

6.3 Experiment Plan

Motion Field Estimation Accuracy. We aim to benchmark the accuracy of our motion
field estimation against existing methods by comparing estimation errors. Additionally, we will
measure and compare the runtime and latency of each method, and qualitatively assess the
visualized motion fields.

Performance of Downstream Tasks. We will evaluate the impact of our motion field
estimation on downstream tasks, such as ego-motion estimation and moving object segmentation,
to demonstrate the practical accuracy of these applications.
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7 Proposed Application II: Distribution-Aware Numeric
Number Encoding in Tabular Data

7.1 Introduction

Encoding numeric values into vectors remains a significant challenge for language models and
tabular data. Although recent efforts have explored various encoding strategies, demonstrating
their effectiveness, consensus on the optimal approach is still lacking. This makes the exploration
of more effective numeric value encoding a vibrant area of research.

Current architectures for handling tabular data and language models employ diverse methods
for encoding numeric values. These methods include scaling with feature vectors, piece-wise
linear mapping, periodic activation functions, and quantization encoding. Research by [46]
compares these methods and shows that effective numeric encoding can significantly enhance
model performance.

However, these methods often overlook a crucial aspect: they typically encode numeric values
based solely on the numbers themselves, disregarding the contextual information that could be
gleaned from the data, such as the mean and standard deviation of a column. Incorporating this
contextual information could potentially enhance model performance.

For example, when we encode the temperature 20◦C, different context can produce very different
interpretation of the temperature. If it is in Iceland, then 20◦C means an abnormal high
temperature. But if it is in Brazil, then it means a normal temperature. Therefore, it is
perceivably beneficial to encode a numeric value conditioned on some contexts.

For tabular data, such context can be obtained easily because the columns of the data provide
context. Specifically, we want to encode the entry of a column conditioned on the distribution of
the entire column.

For instance, the temperature 20◦C can be interpreted differently depending on the context. In
Iceland, 20◦C might signify an abnormally high temperature, whereas in Brazil, it would be
considered normal. Recognizing the value of context-dependent encoding, we propose to encode
numeric values based on the distribution of the data within their respective columns.

7.2 Methodology

Denote a column of a table as {x1, x2, · · · , xn}, the encoding of an entry is E(xj) =
∑n

k=1 exp[i(xk−
xj)A], where

∑n
k=1 exp(ixkA) encodes the distribution of the column and E(xj) encodes the

number xj conditioned on the distribution.
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7.3 Experiment Plan

End-to-End Panel Data Training. Following the experimental design outlined in [46], this
study will compare whether incorporating distributional priors can improve model performance,
with no pre-training involved.

Single-Table Pre-Training and Finetuning. According to the methodology in [47], the
model will be pre-trained and finetuned on a large singular table to assess the effectiveness of the
encoding within pre-training pipelines.

Multiple-Table Pre-Training and Finetuning. Following the experiment design by [48], this
scenario tests the robustness of the encoding strategy across different tables, a more demanding
and complex task. This will evaluate the transferability of the encoding across diverse datasets.
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