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Fault Tolerance

In order to build a large quantum computer, we expect that we will need a fault-
tolerant protocol.

Alice Bob

Errors

The first component of a fault-tolerant protocol is a quantum error-correcting code, 
which encodes some qubits using a larger number of qubits in such a way that errors 
can be identified and corrected.

We also need a way of performing gates (and state preparation and measurement and 
error correction) on states while they are encoded.



Fault-Tolerant Gadgets

To achieve fault tolerance, we need that faults in single physical gates don’t destroy the 
encoded data.  We want to avoid bad error propagation, where one gate error can 
cause multiple qubit errors in the same code block.

Bad! One gate error can ruin two qubits.

Good! A single gate error can cause 
two qubits to have errors, but they 
are in different blocks of the code, so 
can be corrected.

Transversal gates are always fault-tolerant.  For instance, applying H to every qubit of 
the 7-qubit code does logical H and applying CNOT transversally to two blocks of the 
7-qubit code does the logical CNOT.

[S96]



Limits of Fault Tolerance

There is a threshold for fault-tolerant quantum computation: Below a certain error rate 
per gate or time step, we can correct errors faster than they occur and can use fault 
tolerance to make arbitrarily large quantum computers.  Above the threshold, errors 
accumulate faster than they can be corrected by a fault-tolerant protocol.

Lower bound on the threshold: Around 3%

[K05, BCL+06, BCG+24, XBP+23]

Existing fault-tolerant protocols need many extra qubits.

Upper bound on the threshold: 45%

Upper bound on the overhead: # Physical qubits/# logical qubits > 20

Lower bound on the overhead: # Physical qubits/# logical qubits > 1



New Approaches to Fault Tolerance

We still have plenty of room for improvement of fault tolerant protocols.  New 
techniques and new ways of thinking about fault tolerance would be helpful.

One such new approach would be to think about fault-tolerant protocols in a picture 
treating space and time on a more equal footing.  Consider the following fault-tolerant 
tools:

• Flag fault tolerance
• Code deformation
• Floquet codes
• Nickerson-Bombin states

Together they point the way to this idea.



Flag Qubits

Traditional approaches to fault tolerance insist that we should arrange our circuits so 
one faulty gate can only cause one error in a block of the code.

Flag fault tolerance relaxes that constraint, instead allowing gates which cause error 
propagation within a code block but adding extra checks so that we can identify the 
location which originally caused the error.  If we know where the error began, we know 
what kind of propagation it has undergone and we can correct it even though it is on 
multiple qubits.

[CR17, SYK+22]

Lesson: Error propagation is OK if we know the faulty gate.
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Code Deformation

What does it mean to do gates via code deformation?

Qubits are 
encoded as 
lattice defects

To perform 
gates, we move 
the defects

Eventually, the 
defects return 
to their starting 
location

To move a defect, 
we rearrange the 
local stabilizer 
generators.

We deform through a 
series of codes, eventually 
returning to the original 
code.  By doing a 
topologically non-trivial 
path, we can do an 
encoded gate.

This example shows how to 
do it for surface codes, but in 
fact, any fault tolerant gate can 
be thought of as a code 
deformation.

[RH06, GZ13]



Floquet Codes

If we are doing gates by shifting between a sequence of codes, why do we insist that 
one of them is the “right” code and the others are just temporary stopping points?

Floquet codes dispense with the idea of a 
single home code and instead cycle 
through a sequence of codes.

[HH21]

For instance, the honeycomb code 
implements something equivalent to a 
surface code by measuring sequences of 
two-qubit operators to learn error 
syndromes and shift between codes.

Lesson: The code can change with time.



Nickerson-Bombin States

[NB18]

In measurement-based computation, we 
start with a large entangled state (a 
cluster state) and make a sequence of 
single-qubit measurements.  We can 
convert any quantum circuit into an 
appropriate measurement pattern, with 
the measurements arranged into layers, 
one for each time step in the circuit.

But in the measurement-based model, there is no 
requirement to have such layers, and Nickerson and 
Bombin found states and measurement patterns with 
improved fault tolerance that do not have a natural 
breakdown into time steps.

Lesson: Look at space and time together.
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Figure 8: The construction of the diamond fault tolerant cluster state. a) Splitting procedure to obtain a diamond-lattice
syndrome graph. The primal lattice is shown in the upper row, and the corresponding dual lattice at each stage is shown in the
lower row. We begin with the cubic lattice, in the first step a dual split is applied dividing each dual vertex into two 4-valent
vertices. In the primal syndrome graph this corresponds to a face being added that bisects the primal cell. In the second step
primal splitting divides each primal vertex into two 4-valent vertices. In the dual lattice, each new primal edge corresponds
to a face. b) The resulting structure is self-dual and is made up of identical cells that each have 4 hexagonal faces. A section
of the primal syndrome graph generated from splitting is shown, along with one of the cells of the new geometry which is
highlighted in blue. Each cell has four hexagonal faces, but is not a convex polyhedron. (c) The cluster state corresponding
to the geometry in (b). (d) The cluster state can also be presented in a symmetric configuration corresponding to the more
familiar representation of the diamond lattice. Here all bonds have equal length, and each cell is identical.

The construction is shown in Figure 10. Starting with a cubic syndrome graph, we can modify a single dual edge
by adding a new vertex dividing it into two halves. In the primal lattice this corresponds to adding a duplicate face
on one side of the cubic cell. By applying this transformation to every edge in the dual lattice, and every edge in
the primal lattice we find the structure shown in Figure 10b). Every face is octagonal, such that the cluster state is
made up of qubits with 8 bonds, and the cell complex is again self-dual. Unlike our previous examples the cells are
not all identical, there are two differently shaped types of cell as shown in the figure. A cell with 6 octagonal faces
is associated with each cell of the original cubic lattice, and since each face has been doubled, there is also a bubble-
shaped cell with just two octagonal faces associated with each face of the original lattice. We call this construction
the doubled-edge cubic FTCS. An interesting observation about this state is that it can also be thought of as encoding
each qubit of the original cubic FTCS in a 2-qubit parity code according to the "crazy-graph" construction described
in [28].

The erasure threshold of this state can be inferred by considering how it relates to the original cubic lattice. For
each edge of a cubic syndrome graph, there are now two edges, both of which must be erased in order to form a

(from arXiv:1810.09621 [quant-ph])



Lessons Reviewed

• Error propagation is OK if we know the faulty gate.
• The code can change with time.
• Look at space and time together.

Let’s put this together:

So, we’d like to:

• Look at the fault-tolerant circuit as a whole.
• Not care about the instantaneous code per se.
• Identify the location and time of each error.

Corollaries:

• The distinction between code qubits, ancilla qubits, and flag qubits is gone.  There are 
just qubits, and really just spacetime locations, in the circuit.

• Gates are important for how they help us gather information, not for how they 
control error propagation.

[arXiv:2403.04163 [quant-ph]]



Benefit of Dynamical Fault Tolerance

Why do we want to do this?

For one thing, it gives us more freedom to design fault-tolerant protocols.  But there is 
a particular reason to want that freedom.

The goal in error correction is to collect information 
about the errors.  Ideally, each bit of syndrome 
information is independent of the others, so it gives us a 
maximum amount of new information.

We’d like to achieve the same thing in fault tolerance.  
Each measurement should give us independent 
information about the spacetime location of faults.

Independence requires that separate checks collect information in different 
ways.  This is difficult or impossible to achieve using the same code repeatedly or 
collecting all information at a fixed time.  If we can remove these restrictions, 
possibly we can substantially improve the efficiency of fault tolerance.



Counting the Information Available

Is it possible to collect enough information to identify the spacetime location of errors?

Let’s look at one error correction “cycle”, during 
which we introduce m new qubits and measure m 
qubits.

Suppose we have n+m total qubits.  The cycle 
contains T gates, each of which could have a 
possible types of errors.

We have up to m bits of information about the 
errors.

If the error rate is p, we expect pT faulty gates.  To find the exact error, we need

T[h(p) + p log2 a] bits of information, where h(p) = − p log2 p − (1 − p)log2(1 − p)

But if we have a circuit of depth d, we have T = d(n+m), so, information theoretically, it 
is possible if d is constant as a function of n and m is linear in n.



Q&A on Spacetime Codes

We would like to think of a fault-tolerant protocol as a space-time code: Its goal is to 
find the locations in space and time that have faults.

• But how is fault tolerance possible with non-constant depth circuits?  The 
design of most fault-tolerant circuits ensures that many different faults will have 
the same effect on the data.  They are degenerate space-time codes.

• What is the quantum code?  If we stop at any time slice, the data must be 
encoded in a quantum error-correcting code (or we wouldn’t be able to 
correct faults occurring then).  But the code changes with time.

• How do we do logical gates if the code keeps changing?  As we continually 
update the code, we also update what we consider to be the logical basis states.  
The relative relationship between the current logical state and the logical basis 
states may change over time, implying logical gates have been performed.

• How do we design fault-tolerant protocols in this picture?  Beats me.



A Framework for Spacetime Codes

One option for how to analyze such a protocol is to use spacetime codes in the vein of 
[BHFS17].

The idea is, given a fault-tolerant protocol, to 
write down a code with a qubit for each 
spacetime location.

We define a subsystem stabilizer code.  Each 
gate in the FT circuit gives a few gauge operators 
representing possible error propagation through 
the gate.  Stabilizer elements represent the 
propagation of stabilizer constraints from the FT 
protocol through the circuit.

The ability of the FT protocol to distinguish faults in different spacetime locations then 
corresponds to some error correction properties of the spacetime code.  A full analysis of 
the fault tolerance of the protocol remains complicated, but also see [DP23].



Dynamical Error Syndromes

One feature of dynamical codes is that information about the errors is learned gradually 
over time.

Error syndrome information is masked until we make the right 
sequence of measurements to unmask it.  Information can be 
temporarily or permanently masked.  We have developed an algorithm 
(arXiv:2403.04163 [quant-ph]) to determine what is temporarily 
masked and when it is unmasked vs. what is permanent masked.

One way to organize this information is through 
detectors, which are collections of measurements in a 
circuit with a fixed relationship of their outcomes in 
the absence of errors.  If that relationship is not 
satisfied, it indicates an error in the spacetime region 
covered by the detector.

[MBG23]



Summary

• Dynamical codes are a promising approach to finding new fault-tolerant protocols.
• We are still learning the properties of dynamical codes, but they can potentially 
behave very differently from static quantum error-correcting codes.

• Using dynamical codes, we should consider fault-tolerant protocols which are very 
different from existing protocols.

• We should consider a spacetime picture where we view the evolution of the code and 
errors over time as part of the same structure.  We could then try to track the errors 
back to the time and place of their origin rather than restricting error propagation.

• There are many open questions, including how to design such spacetime codes and to 
what extent it really is possible to identify the full spacetime origin of an error.


