
A Theory of
Fault Based Testing

Larry J. Morell

Presented by: Joonghoon Lee

A Reliable Test?

• A test whose success implies
Program Correctness

• Unattainable in general

Quality Measures

• Desirable to have gradations of ‘goodness’

– ‘Reliable Test’ being the ultimate

• Structural Coverage Measures
do not imply correctness

• Maximize the number of faults eliminated

– Hopefully, eliminating all faults

Fault-Based Testing

• Determine the absence of pre-specified faults

• Based on the number of faults eliminated

A Different Perspective

• Traditional point of view

– A test that does not find an error is useless

• Fault-Based Testing

– Every correct program execution contains
information that proves the program could not
have contained particular faults

Program Verification Continuum

• Formal Verification
– Absolute Correctness can be achieved

• Fault-Based Testing
– Assume that an alternate sufficient arena is

available

– Certain faults are shown to be eliminated

• Structural Coverage

Basic Framework

• <P, S, D>: Arena

• P: Program

• S: Specification

• D: Domain, source of test data

Framework

• [P]: Program function (input, output)

• [P](x)↓: P halts on input x

• [P](x)↑: doesn’t

• dom([P]): All points for which P halts

Successful Test Case

• For an arena G = <P, S, D>,

• x∈D is successful iff
[P](x)↓ and (x, [P](x)) ∈[S]

Failure Sets

• The set of all failure points for G is the
Failure setof G.

• A Program P is correct with respect to S iff
P’s failure set is empty.

• Failures sets are not always recursively
enumerable
– Must restrict failure set

Fault-Based Arena

• <P, S, D, L, A>

• P: Program

• S: Specification

• D: Domain, source of test data

• L: Locations in P

• A: alternative set associated with locations

Test Data

• In Fault-Based Testing,
test data distinguishes the
original program from its alternate programs.

• xdistinguishes P from R iff

For a Program P and x∈ dom([P])
<P>(x) ≠ <R>(x)

Alternate Sufficient

• A fault based arena which contains a correct
program is alternate sufficient

• It is undecidable whether or not an arbitrary
fault based arena is alternate sufficient.

Symbolic Testing

• A fault based testing strategy

• Symbolic execution

– Use symbolic input

– model infinitely many executions with single
symbolic execution

– 2+3 , 3+3, 5+3, 7+3… => X + 3

read(x,y)

x: = x＊y + 3 ➔ let’s try to ensure that no mistake was made in

write (x＊2) in selecting the constant 3.

read(x,y)

x: = x＊y + F ➔ use F to denote infinitely many alternate programs

write (x＊2)

read(5,6) ➔ pick x : 5, y : 6

x: = 5 * 6 + F

write (30 + F) * 2 ➔ F was propagated through the program,
ultimately appearing in the output

Say original program computes 66.

➔ (30 + F)*2 = 66

Therefore, for F, no other constant than 3 will go undetected

Thus,

• { (5,6) } distinguishes P from PE

(PEcontains all alternate programs produced by
substituting any constant for 3 in P)

Another Example 1

Program ComputeArea(input,output);
vara,b,incr,area,v:real;
begin
1 read (a,b,incr); {incr>0}
2 v:=a*a+1
3 area := 0 => area := F
4 while a+incr<= b do begin
5 area := area + v*incr;
6 a := a+incr;
7 v := a*a+1;

end
8 incr := b – a;
9 if incr>= 0 then begin
10 area := area + v*incr;
11 write(‘area by rectangular method:’,area)

end else
12 write(‘illegal values for a=’,a, ‘and b=’, b)

end.

Symbolic input a:A,b:B,incr:I

Assuming B>=A and A+I>B

(skipping loop)

Result is,

(A*A+1)*(B-A)

Introduce an assignment fault in 3:

area := F

Provides,

F+(A*A+1)*(B-A)

form a general propagation equation,

F+(A*A+1)(B-A)=(A*A+1)(B-A)

Thus,

F = 0

Another Example 2
Symbolic input a:A,b:B,incr:N

Assuming A+N<=B and A+2N>B

(1 iteration)

Result is,

(A2+1)N+[(A+N)2+1](B-A-N)
Introduce an assignment fault in 5:

area := F
Provides

F + [(A+N)2+1](B-A-N)
form a general propagation equation,

(A2+1)N+[(A+N)2+1](B-A-N)
= F + [(A+N)2+1](B-A-N)

Thus,
F = (A2+1)N
A2+1>0,N> 0

No clear constant substitution possible
Fault Equation.

Program ComputeArea(input,output);
vara,b,incr,area,v:real;
begin
1 read (a,b,incr); {incr>0}
2 v:=a*a+1
3 area := 0
4 while a+incr<= b do begin
5 area := area + v*incr; => area := F
6 a := a+incr;
7 v := a*a+1;

end
8 incr := b – a;
9 if incr>= 0 then begin
10 area := area + v*incr;
11 write(‘area by rectangular method:’,area)

end else
12 write(‘illegal values for a=’,a, ‘and b=’, b)

end.

Domain Dependent Transformations

• Domain Independent

If x = 1 then y:=1 else y:=x*x

• Domain Dependent

If x = F then y:=1 else y:=x*x

Makes testing difficult!

• “Looking for errors”
– misleading in two ways:

• What errors should we find?

• Unattainable

• Fault-Based Testing
– <P, S, D, L, A>

• Symbolic Testing
– Use symbolic input to represent all inputs which follow a given path

