
Prachi Saraph, Mark Last, and  Abraham 
Kandel



Introduction

�Black-Box Testing
� Apply an Input

� Observe the corresponding output� Observe the corresponding output

� Compare Observed output with expected

�Large Number of Inputs
� Huge number of Test Cases



Introduction

�Choose most important test cases and 
removing the redundant ones

�How?
� Manual

� Automatic



Input-Output Analysis

�Identifies the input attributes which 
affect the value of a particular output

�Concentrates on relationships between 
inputs and outputs



Machine Learning Approaches

� NN-based mechanism for identification of test cases 
that are likely to find faults

C. Anderson et al., 1995

� NN is used to detect faults in mutated versions 
of software (Regression Testing)

M. Vanmali, 2002

� IFN is used to identify I-O relationships

M. Last et al., 2003



Neural Networks – Background 

�Supervised Learning

�Learn weights on each edge (Synapse) to get 
a general model of mapping between inputs 
and outputs based on training data



Neural Network based Testing

NN 
Construction 
and Training

Pruning and 
Feature 
Ranking

Rule 
Extraction

Test Case 
Generation



Phase I : NN Construction and Training 

� 3-Layer Feed Forward Network using EBP

�Obtaining Training Set:

�Randomize input values

�Feed them into the original software

�Storing output generated
NN 

Construction 
and Training



Phase II (a) : NN Pruning

�Less important connections

�Lower Weights

�Pruning:

� Remove edges with lower weights as long as the 
predictive accuracy after removing a link stays 
within the acceptable limits

Pruning and 
Feature 
Ranking



Phase II (b) : Feature Ranking

� Method 1 (Sorting):
� Sort inputs according to the product

{weights from input layer to hidden layer * Corresponding weights from hidden 
layer to output layer}layer to output layer}

� Method 2 (Pruning):
� Apply pruning method until all edges are 

removed

� Note the order in which input nodes get
all their nodes removed Pruning and 

Feature 
Ranking



Phase III : Rule Extraction

�Express I-O relations pertained by pruning 
as if-then rules

�Use clustering to discretize hidden unit 
activation values

�Link Inputs to outputs through discretized
hidden values

Rule 
Extraction



Phase IV : Test Case Generation

�After the completion of the pruning phase 
the possible data values of the attributes are 
used as equivalence classes to build test used as equivalence classes to build test 
cases

Test Case 
Generation



Case Study: Employment Application 

Approval System

Attribute Legend Type

Application ID Number UID None

Degree B.sc. / M.sc. / PhD Input

Years  of  Experience 0 – 10 Input

Years  out of  College 0 – 10 Input

Certification Yes / No Input

Employment History 0 – 10 Input

Immigration Status Citizen / Permanent 
Resident / Work Permit

Input

Number of References 0 – 3 Input

Employment Approval Yes / No Output

Full Time Yes / No Output

Part Time Yes / No Output



Case Study: Employment Application 

Approval System

� Random numbers were generated in the range of every 
input 

� The inputs were fed to the application code, which 
produced the outputs 

� The size of a training data set and a test data set was 
1000 examples



Case Study: Employment Application 

Approval System

� The cycle of training, pruning and rule-extraction was 
run on a training data set at least ten times

� Two stopping criteria:� Two stopping criteria:
� Upper limit on number of training epochs (1500)

� Minimum accuracy on training data    (set to 97%)

� The total number of test cases can be calculated by 
taking a Cartesian product of the corresponding data 
values. (58,080)



Results
� After Pruning Phase, The links retained in the network for 

output of  ‘Full Time’  corresponded to two inputs:
� years of experience 
� employment history

� Number of test cases needed for this output =
|years of experience| * |employment history| =

11 * 10 = 110

� For the other two outputs, 120 test cases were needed

� Total Number = 230  vs 58,080  � Huge Reduction



Rule Extraction Phase

� By clustering hidden unit activation levels and 
determining ranges of inputs that can generate each 
level, the following was found:

� Values 4 – 10 for the input attribute ‘years of experience’ 
resulted in activation value of 1 while the rest of the 
values resulted in activation value of -1

� Values  6 – 10 for the input attribute ‘Employment 
History’ generated activation value of 1 and the rest 
generated a value of -1



Results

� For this output ‘Full Time’ the following rule is 
generated:

If (years of experiencM) and (employment histop=6)

Employment Hours: Full Time=Yes (1)

Else

Employment Hours: Full Time=No (0)

� By investigating the code, the accuracy of this rule 
turned out to be 100%



Test cases after rule-extraction phase

� By investigating previous extracted rules, We can build 
two equivalence classes for each of the two influential 
inputs
� Years of experience 1   : [0-3]

� Years of experience 2  : [4-10]

� Employment history 1: [1-5]

� Employment history 2: [6-10]

� Each equivalence class can be represented by one value 



Yet More Test case Reduction

� Thus, to cover combinations of these two input 
attributes, we need 4 test cases for this output instead 
of previous 110

� By repeating the procedure for each of the other 
outputs, we get 10 test cases for the whole application

� Those 10 test cases carry some redundancies, so 
applying some minimization algorithm can further 
reduce them to 4 test cases!!



Drawbacks

� Generating and running random test cases to create the 
training set incurs some overhead that wasn’t addressed 
properly in the paper

� The method they propose for generating the training set 
implicitly assumes that you have a fault-free version of the 
program (which is not always the case)

� The authors didn’t actually give a basis or an experimental 
framework for choosing the NN learning or pruning 
parameters 



Digging Deeper

� Although the authors didn’t mention it explicitly, their 
approach is mainly useful in regression testing

� Another idea is to utilize this approach in Oracle 
generation out of the specifications of the program 
(By providing I-O pairs that are valid under 
specifications as he training set)



Questions

?



Thank YouThank You


