
Korat: Automated Testing Based on 
Java Predicates

Jeff Stuckman



Korat

• Korat is a specification-based automated 
testing tool ideal for testing data structures

• Korat generates synthetic test data based on 
the method preconditions and assertions 
embedded into the data structure

• Korat then runs the test cases and compares 
the results against the postconditions



Korat

• Korat uses optimizations to speed up the 
generation of test data
– Isomorphic data structures are not generated

– Data structures smaller than a given size are not 
generated

– Data structures which are invalid or which violate the 
preconditions are predicted and skipped

• Korat can take advantage of existing JML
annotations

• Korat uses Java predicates to define correctness



JML

• Specification language to annotate Java programs

• Method specifications

– Preconditions

– Postconditions

– Member variables modified

– Assertions

• Class specifications

– Class invariants

– Inheritance of specifications



JML Example

public class BankingExample {

public static final int MAX_BALANCE = 1000; 

private int balance;

private boolean isLocked = false; 

//@ invariant balance >= 0 && balance <= MAX_BALANCE;

//@ assignable balance;

//@ ensures balance == 0;

public BankingExample() { ... }

//@ requires amount > 0;

//@ ensures balance = \old(balance) + amount;

//@ assignable balance;

public void credit(int amount) { ... }

...

}

Source:Wikipedia



Generating synthetic test data

• Valid test data is searched by using a state 
space search with backtracking.

• Search space of data structures may be very 
large, but many structures may not be valid.

• A finitization is used to limit the size of the 
data structures.

• The predicate is instrumented to predict 
invalid test inputs.

• Isomorphic test cases are pruned.



Finitization

• The size of inputs must be limited to make the 
state space finite.

• A finitization supplies the legal values for each 
attribute in a data structure.

• A finitization will specify the set of objects 
that can appear in a data structure, along with 
their attributes.



Data structure example
class BinaryTree {
private Node root; // root node
private int size; // number of nodes in the tree
static class Node {
private Node left; // left child
private Node right; // right child
}
...
public static Finitization finBinaryTree(int NUM_Node) {
Finitization f = new Finitization(BinaryTree.class);
ObjSet nodes = f.createObjects("Node", NUM_Node);
// #Node = NUM_Node
nodes.add(null);
f.set("root", nodes); // root in null + Node
f.set("size", NUM_Node); // size = NUM_Node
f.set("Node.left", nodes); // Node.left in null + Node
f.set("Node.right", nodes); // Node.right in null+ Node
return f;
}



Data structure example
public class HeapArray {
private int size; // number of elements in the heap
private Comparable[] array; // heap elements
…

public static Finitization finHeapArray(int MAX_size,
int MAX_length,
int MAX_elem) {
Finitization f = new Finitization(HeapArray.class);
// size in [0..MAX_size]
f.set("size", new IntSet(0, MAX_size));
f.set("array",
// array.length in [0..MAX_length]
new IntSet(0, MAX_length),
// array[] in null + Integer([0..MAX_elem])
new IntegerSet(0, MAX_elem).add(null));
return f;
}



State space

• Class domain – a set of objects from one class 
(represented by the finitization)

• Field domain – the legal values for a field 
(represented by the union of class domains)

• Candidate vector – a vector of field domain 
indices for the root object of a data structure 
and every object in every class domain



State space example



Searching for valid inputs

• Checking every possibility would take too long

• The order of field accesses is monitored to 
prune the state space



Searching for valid inputs
public boolean repOk() {
// checks that empty tree has size zero
if (root == null) return size == 0;
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {
Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that tree has no cycle
if (!visited.add(current.left))
return false;
workList.add(current.left);
}
if (current.right != null) {
// checks that tree has no cycle
if (!visited.add(current.right))
return false;

1 2 3



Searching for valid inputs

• Process is similar to depth-first-search

• Optimization depends on order that repOK() 
accesses fields

• Efficient repOK() functions will be analyzed 
more efficiently.



Nonisomorphism

• Testing multiple isomorphic data structures is 
not beneficial

• Two data structures are isomorphic if a 
permutation exists between the two that 
preserves structure

• If multiple isomorphic data structures are 
possible, the data with the lexicographically 
smallest candidate vector is accepted.



Nonisomorphism

• Algorithm: Only allow an index into a given class 
domain to exceed previous indices into that 
domain by 1.

• 1 2 3

• 1 3 2

• 2 1 3

• 2 3 1

• 3 1 2

• 3 2 1



Nonisomorphism

• 1 1 1
• 1 1 2
• 1 1 3
• 1 2 1
• 1 2 2
• 1 2 3
• 1 3 1
• 1 3 2
• 1 3 3



Instrumentation

• Java code is instrumented so field accesses 
can be checked when verifying preconditions.

• Instrumentation is added to each object that 
will become part of the synthetic test data.

• Source code is modified before compilation.

• Fields are converted to properties.



Testing methods

• Methods being tested contain an implicit this
parameter to represent the object being 
invoked.

• Method parameters are combined into one 
helper class, to allow for interdependency 
between parameters

• Methods may have multiple behaviors with 
their own preconditions.



Testing methods

• Korat generates test cases such that the class 
invariant and one of the preconditions’ 
behaviors is satisfied.

• Method postconditions are checked after 
running the test case

• The class invariant on the implicit this
parameter is also checked

• Korat uses the JML toolkit to translate JML
constructs to Java predicates.



Structures verified



Test performance



The small-scope hypothesis

• “The ‘small scope hypothesis’ argues that a high 
proportion of bugs can be found by testing the 
program for all test inputs within some small 
scope. In object-oriented programs, a test input is 
constructed from objects of different classes; a 
test input is within a scope of s if at most s 
objects of any given class appear in it. If the 
hypothesis holds, it follows that it is more 
effective to do systematic testing within a small 
scope than to generate fewer test inputs of a 
larger scope.”

Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the 
small scope hypothesis. submitted for publication. 
http://citeseer.ist.psu.edu/623993.html

http://citeseer.ist.psu.edu/623993.html


The small-scope hypothesis

• Experiments have shown that “exhaustive 
testing” in a small scope can achieve near-
complete statement and branch coverage.

Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the 
small scope hypothesis. submitted for publication. 
http://citeseer.ist.psu.edu/623993.html

http://citeseer.ist.psu.edu/623993.html


Related work

• Previous tools have performed automated testing 
based on Z specifications, but they did not 
construct complex data structures.

• Alloy Analyzer (also from MIT) was similar to 
Korat, but it was slow and required the use of a 
special modeling language.

• JML+Junit is another automated testing tool that 
reads JML annotations. It requires the developer 
to supply possible values for each parameter.



The Z specification language



ESC/Java2

• Static checker for JML specification violations and 
common programming errors

• JML specifications can improve the detection of 
common programming errors

• Bag.java:21: Warning: Possible negative array index 

(IndexNegative)

a[mindex] = a[n];

^

....

12:    //@ requires n >= 1;

13:    int extractMin() {

Source: http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html

http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://kind.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html


Java Pathfinder

• Unique combination of testing and static 
analysis

• Runs methods with generated inputs and tries 
to violate assertions

• Tries various thread schedules to uncover 
deadlocks

• Developed and used by NASA



KeY

• A static analysis tool using JML

• Any JML specification becomes a “proof 
obligation”

• KeY attempts to prove the correctness of 
proof obligations and supplies proofs if 
successful

• Will not work in many situations


