
1

• Reveal faults
• Correctness
• Reliability
• Usability
• Robustness
• Performance

Goals of testing Top-down/Bottom-up
• Bottom-up

– Lowest level modules tested first
• Don’t depend on any other modules
• Driver

– Auxiliary code that calls the module

• Top-down
– Executive module tested first

• Stub
– Auxiliary code that simulates the results of a

routine

Facts About Testing
• Question “does program P obey

specification S” is undecidable!
• Every testing technique embodies some

compromise between accuracy and
computational cost

• Facts
– Inaccuracy is not a limitation of the

technique
– It is theoretically impossible to devise a

completely accurate technique
– Every practical technique must sacrifice

accuracy in some way

Cost/benefit
• Testing takes more than 50% of
the total cost of software
development
– More for critical software

• Software quality will become the
dominant success criterion

2

Types of Verification
• Execution-based Verification
• Non-execution based Verification

• Discussion

Execution-based
Verification

• Generating and executing test cases on
the software

• Types of testing
– Testing to specifications

• Black-box testing
– Testing to code

• Glass-box (white-box) testing

– Remember: difference is in generating test
cases only! Verification of correctness is
usually done via specifications in both cases

Black-box Testing
• Discussion: MAC/ATM machine
example
– Specs

• Cannot withdraw more than $300
• Cannot withdraw more than your account

balance

Softwarex

Balance

White-box Testing
• Example

INPUT-FROM-USER(x);

If (x <= 300) {

INPUT-FROM-FILE(BALANCE);

If (x <= BALANCE)

GiveMoney x;

else Print “You don’t have $x in your account!!”}

else

Print “You cannot withdraw more than $300”;

Eject Card;

1

2

3

4

5

6

x: 1..1000;

3

Discussion
• Which is superior?
• Neither can be done exhaustively

– Too many test cases
• Each technique has its strengths – use

both
– Generally, first use black-box
– Then white-box for missed code

• Accept that all faults cannot be
detected
– When to stop?

Determining Adequacy
• Statement coverage

– Statements
• Branch coverage

– Both IF and ELSE
• Path coverage
• All-def-use-path coverage

• Philosophy: what does it all mean?
– Does coverage guarantee absence of faults?

• Can we always get 100% coverage?

Surprise Quiz
• Determine test cases so that each
print statement is executed at
least once

input(x);

if (x < 100)

print “Line 1”;

else {

if (x < 50) print “Line 2”

else print “Line 3”;

}

if

1 if

2 3

end

begin

x<100 x>=100

x>=50x<50 x>=100x>=100

Sampling the State Space
– If (i == j)

• Do something wrong
– Else

• Do the right thing
– Endif

• Uniform sampling of the input space
• Test adequacy criteria

– Designed to insure behaviors chosen are
appropriately distributed to increase the
likelihood of revealing errors

4

Non-execution Based
• Key idea

– Review by a team of experts: syntax
checker?

• Code readings
• Walkthroughs

– Manual simulation by team leader
• Inspections

– Developer narrates the reading
• Formal verification of correctness

– Very expensive
– Justified in critical applications

• Semi-formal: some assertions

Non-execution Based
• JPL

– On the average, 2 hour inspection
– 4 major and 14 minor faults
– Saved $25,000 per inspection

• Rate of faults
– Decreases exponentially by phase

• Cleanroom approach
– Incremental development, formal specs
and design, readings, inspections

Simulation
• Integration with system hardware is
central to the design

• Model the external hardware
• Model the interface

• Examples
• Discussion

Boundary-value Analysis
• Partition the program domain into
input classes

• Choose test data that lies both
inside each input class and at the
boundary of each class

• Select input that causes output at
each class boundary and within each
class

• Also known as stress testing

5

Testing Approaches
• Top-down
• Bottom-up
• Big bang

• Unit testing
• Integration testing
• Stubs
• System testing

Glossary
• Fault

– An incorrect step, process, or data definition
in a computer program

• Error (ISO)
– A discrepancy between a computed,

observed, or measured value or condition and
the true, specified, or theoretically correct
value or condition

• Failure (IEEE)
– The inability of a system or component to

perform its required functions within
specified performance requirements

Glossary
• Exception (IEEE)

– An event that causes suspension of normal
program operation. Types include addressing
exception, data exception, operation
exception, overflow exception, protection
exception, underflow exception

• Anomaly (IEEE)
– Anything observed in the documentation or

operation of software that deviates from
expectations based on previously verified
software products or reference documents

Structural Testing
• Coverage-based testing

– Test cases to satisfy statement
coverage

– Or branch coverage, etc
• Complexity-based testing

– Cyclomatic complexity
• Graph representation
• Find the basis set
• # Of braches + 1

6

Mutation Testing
• Errors are introduced in the
program to produce “mutants”

• Run test suite on all mutants and
the original program

Test Case Generation
• Test input to the software
• Some researchers/authors also
define the test case to contain the
expected output for the test input

Category-partition Method
• Key idea

– Method for creating functional test
suites

– Role of test engineer
• Analyze the system specification
• Write a series of formal test specifications

– Automatic generator
• Produces test descriptions

AI Planning Method
• Key idea

– Input to command-driven software is a
sequence of commands

– The sequence is like a plan
• Scenario to test

– Initial state
– Goal state

7

Example
• VCR command-line software
• Commands

– Rewind
• If at the end of tape

– Play
• If fully rewound

– Eject
• If at the end of tape

– Load
• If VCR has no tape

Preconditions & Effects
• Rewind

– Precondition: if at end of tape
– Effects: at beginning of tape

• Play
– Precondition: if at beginning of tape
– Effects: at end of tape

• Eject
– Precondition: if at end of tape
– Effects: VCR has no tape

• Load
– Precondition: if VCR has no tape
– Effects: VCR has tape

Preconditions & Effects
• Rewind

– Precondition: end_of_tape
– Effects: ¬¬¬¬end_of_tape

• Play
– Precondition: ¬¬¬¬end_of_tape
– Effects: end_of_tape

• Eject
– Precondition: end_of_tape
– Effects: ¬¬¬¬has_tape

• Load
– Precondition: ¬¬¬¬has_tape
– Effects: has_tape

Initial and Goal States
• Initial state

– end_of_tape
• Goal state

– ¬¬¬¬end_of_tape
• Plan?

– Rewind

8

Initial and Goal States
• Initial state

– ¬¬¬¬end_of_tape & has_tape
• Goal state

– ¬¬¬¬has_tape
• Plan?

– Play
– Eject

Iterative Relaxation
• Key idea

– Path-oriented testing
– Problem: generation of test data that
causes a program to follow a given
path

• Technique
– Choose arbitrary input
– Iteratively refine it until all the
branch predicates on the given path
evaluate to the desired outcome

w=u w=y

(w+z)>100

x=x-2

y=y+w

write(“linear”)

x2+z2≥≥≥≥100

y=x*z+1

write(“nl:quad”)

u>0

write(u) (y-sin(z))>0

write(“nl:sine”)

END

read(x,y,z)

u=(x-y)*2

x>y

BEGIN

0

P1

1

2 3

P2

4

5

6

P3

7

8

P4

9 P5

10

Example
Program

w=u w=y

(w+z)>100

x=x-2

y=y+w

write(“linear”)

x2+z2≥≥≥≥100

y=x*z+1

write(“nl:quad”)

u>0

write(u) (y-sin(z))>0

write(“nl:sine”)

END

read(x,y,z)

u=(x-y)*2

x>y

BEGIN

0

P1

1

2 3

P2

4

5

6

P3

7

8

P4

9 P5

10

input variables
x, y, z

(2x-2y+z)>100

9

Test Coverage & Adequacy
• How much testing is enough?
• When to stop testing
• Test data selection criteria
• Test data adequacy criteria

– Stopping rule
– Degree of adequacy

• Test coverage criteria
• Objective measurement of test
quality

Preliminaries
• Test data selection

– What test cases
• Test data adequacy criteria

– When to stop testing
• Examples

– Statement coverage
– Branch coverage
– Def-use coverage
– Path coverage

Goodenough & Gerhart [‘75]
• What is a software test adequacy
criterion
– Predicate that defines “what
properties of a program must be
exercised to constitute a thorough
test”, i.e., One whose successful
execution implies no errors in a tested
program

Uses of Test Adequacy
• Objectives of testing
• In terms that can be measured

– For example branch coverage
• Two levels of testing

– First as a stopping rule
– Then as a guideline for additional test
cases

10

Categories of Criteria
• Specification based

– All-combination criterion
• Choices

– Each-choice-used criterion
• Program based

– Statement
– Branch

• Note that in both the above types, the
correctness of the output must be
checked against the specifications

Others
• Random testing
• Statistical testing

Classification according to
underlying testing approach
• Structural testing

– Coverage of a particular set of
elements in the structure of the
program

• Fault-based testing
– Some measurement of the fault
detecting ability of test sets

• Error-based testing
– Check on some error-prone points

Structural Testing
• Program-based structural testing

– Control-flow based adequacy criteria
• Statement coverage
• Branch coverage
• Path coverage

– Length-i path coverage
• Multiple condition coverage

– All possible combinations of truth values of
predicates

– Data-flow based adequacy criteria

11

Structural Testing
– Data-flow based adequacy criteria

• All definitions criterion
– Each definition to some reachable use

• All uses criterion
– Definition to each reachable use

• All def-use criterion
– Each definition to each reachable use

Fault-based Adequacy
• Error seeding

– Introducing artificial faults to
estimate the actual number of faults

• Program mutation testing
– Distinguishing between original and
mutants
• Competent programmer assumption

– Mutants are close to the program
• Coupling effect assumption

– Simple and complex errors are coupled

Test Oracles
• Discussion

– Automation of oracle necessary
– Expected behavior given
– Necessary parts of an oracle

Test Oracle
• A test oracle determines whether a
system behaves correctly for test
execution

• Webster dictionary - oracle
– A person giving wise or authoritative
decisions or opinions

– An authoritative or wise expression or
answer

12

Purpose of Test Oracle
• Sequential systems

– Check functionality
• Reactive (event-driven) systems

– Check functionality
– Timing
– Safety

Reactive Systems
• Complete specification requires use
of multiple computational paradigms

• Oracles must judge all behavioral
aspects in comparison with all
system specifications and
requirements

• Hence oracles may be developed
directly from formal specifications

Parts of an Oracle
• Oracle information

– Specifies what constitutes correct behavior
• Examples: input/output pairs, embedded assertions

• Oracle procedure
– Verifies the test execution results with

respect to the oracle information
• Examples: equality

• Test monitor
– Captures the execution information from the

run-time environment
• Examples

– Simple systems: directly from output
– Reactive systems: events, timing information,

stimuli, and responses

Regression Testing
• Developed first version of software
• Adequately tested the first version
• Modified the software; Version 2 now

needs to be tested
• How to test version 2?
• Approaches

– Retest entire software from scratch
– Only test the changed parts, ignoring

unchanged parts since they have already
been tested

– Could modifications have adversely affected
unchanged parts of the software?

13

Regression Testing
• “Software maintenance task
performed on a modified program to
instill confidence that changes are
correct and have not adversely
affected unchanged portions of the
program.”

Regression Testing Vs.
Development Testing

• During regression testing, an
established test set may be
available for reuse

• Approaches
– Retest all
– Selective retest (selective regression
testing) ←←←← main focus of research

Formal Definition
• Given a program P,
• Its modified version P’, and
• A test set T

– Used previously to test P
• Find a way, making use of T to gain
sufficient confidence in the
correctness of P’

Selective Retesting

• Tests to rerun
– Select those tests that will produce

different output when run on P’
• Modification-revealing test cases
• It is impossible to always find the set of

modification-revealing test cases – (we cannot predict
when P’ will halt for a test)

– Select modification-traversing test cases
• If it executes a new or modified statement in P’ or

misses a statement in P’ that it executed in P

T

Tests to rerun Tests not to rerun

14

1 1 1

1

1

1
1

2 2 2

2

2

2

2

3

3 3 3
3

3
3

3
3

33

3

T’ = {t2, t3}

Cost of Regression Testing

Retest All
Selective Retest

Analysis
Cost = Cx Cost = Cy

We want Cx < Cy

Key is the test selection algorithm/technique

We want to maintain the same “quality of testing”

+

Factors to Consider
• Testing costs
• Fault-detection ability
• Test suite size vs. Fault-detection
ability

• Specific situations where one
technique is superior to another

15

Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:

