Take Home Quiz I
Voluntary and Collaborational

Due: On or before Wednesday, November 14, 4:00 PM (in class)

This quiz requires you to execute the code DLX code fragment on the next page using a variety of
assumptions regarding the treatment of control hazards. The code i1s to be executed using the following
modification of a Multicycle DLX pipelined machine, similar to that presented in section 3.7.

Functional Units: There are separate computational pipes for integer and floating point ALU computa-
tions. Except for the otherwise indivisible divide, all floating point units are fully pipelined, mean-
ing one stage per clock cycle. The floating point divide takes 25 clock cycles; the floating point
adder/subtractor takes 4 clock cycles, and, the floating point multiply unit takes 7 clock cycles.

Registers: Register writes occur in the first half of the clock cycle, and register reads occur in the 2nd

half of the clock cycle.

Memory: A Harvard Architecture i1s assumed, in which separate instruction and data memories are used.
A perfect cache 1s also assumed.

Latencies: Latencies correspond to those given in section 3.7.

Structural Hazards: Should two ALU instructions complete their EX stages simultaneously and both
require the MEM stage, the instruction that was started earlier gets the MEM stage, and the other
instruction stalls in its last stage prior to the MEM stage.

RAW Hazards: Assume that normal forwarding, bypassing, and load interlocks are implemented to min-
imize stalls due to RAW hazards. Stalls for RAW hazards occur after the ID stage, until the pipeline
can proceed safely without any further delays to prevent this hazard.

WAW Hazards: The 2nd instruction involved in a potential WAW hazard is stalled after the ID stage,
waiting for the hazard to clear.

Control Hazards: Each problem modifies the problem specification or design assmptions associated with
the pipeline’s treatment of branches. So, make sure that you indicate your assumptions clearly when
doing your work to maximize your partial credit.

Formatting your work.

To make life easy, use the columnar format below, indicating the clock cycles spent by each instruction in
each stage, and explaining any stalls that occur.

| Instruction || IF | 1D | EX | MEM | WB || Comments |
LF F8, 0(R6) 1 2 3 4 5
LF F9, 4(R6) 2 3 4 5 6
ADDF F10, F8, F9 3 4-5 6-9 10 11 Stall for RAW hazard with F9
MULTF F20,F10, F10 || 4-5 6-9 10-16 17 18 Stall for RAW hazard with F10
SF 8(R6), F20 6-9 | 10-16 17 18 19 Stall for RAW with F20 in ID stage.

The DLX Code Fragment

ADDI

MVI2FP
CVTI2FP

ADD
Loop: LF

LF
SUBF
ADDF
SF
ADDI
SUBI
BNEZ
STOP

Problem 1

Compute the CPI for one iteration of the loop assuming perfect branch prediction. That is, there should
be no stalls due to branching in your calculations. your analysis. Use this to estimate the total CPI for the

R4, RO, # 5200
F4, R4

F4, F4
R1,R0,R0
F2,100(R1)

F3,500(R1)
F5F3,F2
F5,F5,F4
1000(R1),F5
R1,R1,#4
R5,R1,#400
R5,Loop

)

)
)
)
)
)
)
)
)
)
bl

bl

make a float 5200

F4 has a float constant

init counter to 0

F2 is array element,

R1 has offset of lowest unused array element
F3 holds array element

perform subtraction

perform addition of a constant

; store the result

; increment pointer

; check pointer

; branch while not done

loop, again assuming perfect branch prediction.

Problem 2

Again, compute the CPI for one iteration of the loop, but this time assume that the machine stalls until the
target 1s known, using a branch penalty of 2 clock cycles before the correct next instruction can be selected.

Use this to estimate the total CPI for the loop.

Problem 3

This time, unroll the loop four times and reschedule to minimize stalls, except that this time, a two-
instruction branch delay slot is used. One more time, compute the CPI for one iteration of the loop, using a
two-instruction branch delay slot. (And, if you can’t find two instructions to execute safely after the branch,

using a no-op is allowed.)

Extra Credit, Dude:

Now, this is simpler than i1t looks, and does NOT require calculators.

Which is bigger?

And, yes the calculator will tell you the answer. But, only algebra II is required to prove this, and certain

no worse than calculus-like reasoning.

(10)79 0125

