
Message Passing with
PVM and MPI

2CMSC 818 – Alan Sussman (from J. Hollingsworth)

PVM
Provide a simple, free, portable parallel environment
Run on everything
– Parallel Hardware: SMP, MPPs, Vector Machines
– Network of Workstations: ATM, Ethernet,

• UNIX machines and PCs running Win32 API
– Works on a heterogenous collection of machines

• handles type conversion as needed
Provides two things
– message passing library

• point-to-point messages
• synchronization: barriers, reductions

– OS support
• process creation (pvm_spawn)

3CMSC 818 – Alan Sussman (from J. Hollingsworth)

PVM Environment (UNIX)

Application
Process

Bus Network

PVMDPVMD

PVMDPVMD
PVMD

Application
Process

Application
Process

Application
ProcessApplication

Process

Sun SPARC Sun SPARC

IBM RS/6000 Cray Y-MPDECmmp 12000

One PVMD per machine
– all processes communicate through pvmd (by default)

Any number of application processes per node

4CMSC 818 – Alan Sussman (from J. Hollingsworth)

PVM Message Passing

All messages have tags
– an integer to identify the message
– defined by the user

Messages are constructed, then sent
– pvm_pk{int,char,float}(*var, count, stride)
– pvm_unpk{int,char,float} to unpack

All processes are named based on task ids (tids)
– local/remote processes are the same

Primary message passing functions
– pvm_send(tid, tag)
– pvm_recv(tid, tag)

5CMSC 818 – Alan Sussman (from J. Hollingsworth)

PVM Process Control

Creating a process
– pvm_spawn(task, argv, flag, where, ntask, tids)
– flag and where provide control of where tasks are started
– ntask controls how many copies are started
– program must be installed on target machine

Ending a task
– pvm_exit
– does not exit the process, just the PVM machine

Info functions
– pvm_mytid() - get the process task id

6CMSC 818 – Alan Sussman (from J. Hollingsworth)

PVM Group Operations
Group is the unit of communication
– a collection of one or more processes
– processes join group with pvm_joingroup(“<group name>“)
– each process in the group has a unique id

• pvm_gettid(“<group name>“)
Barrier
– can involve a subset of the processes in the group
– pvm_barrier(“<group name>“, count)

Reduction Operations
– pvm_reduce(void (*func)(), void *data, int count, int

datatype, int msgtag, char *group, int rootinst)
• result is returned to rootinst node
• does not block

– pre-defined funcs: PvmMin, PvmMax,PvmSum,PvmProduct

7CMSC 818 – Alan Sussman (from J. Hollingsworth)

PVM Performance Issues

Messages have to go through PVMD
– can use direct route option to prevent this problem

Packing messages
– semantics imply a copy
– extra function call to pack messages

Heterogenous Support
– information is sent in machine independent format
– has a short circuit option for known homogenous comm.

• passes data in native format then

8CMSC 818 – Alan Sussman (from J. Hollingsworth)

Sample PVM Program
int main(int argc, char **argv) {

int myGroupNum;
int friendTid;
int mytid;
int tids[2];
int message[MESSAGESIZE];
int c,i,okSpawn;

/* Initialize process and spawn if necessary */
myGroupNum=pvm_joingroup("ping-pong");
mytid=pvm_mytid();
if (myGroupNum==0) { /* I am the first process */

pvm_catchout(stdout);
okSpawn=pvm_spawn(MYNAME,argv,0,"",1,&friendTid);
if (okSpawn!=1) {

printf("Can't spawn a copy of myself!\n");
pvm_exit();
exit(1);

}
tids[0]=mytid;
tids[1]=friendTid;

} else { /*I am the second process */
friendTid=pvm_parent();
tids[0]=friendTid;
tids[1]=mytid;

}
pvm_barrier("ping-pong",2);

/* Main Loop Body */
if (myGroupNum==0) {

/* Initialize the message */
for (i=0 ; i<MESSAGESIZE ; i++) {

message[i]='1';
}

/* Now start passing the message back and forth */
for (i=0 ; i<ITERATIONS ; i++) {

pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);

}
} else {

pvm_recv(tid,msgid);
pvm_upkint(message,MESSAGESIZE,1);
pvm_initsend(PvmDataDefault);
pvm_pkint(message,MESSAGESIZE,1);
pvm_send(tid,msgid);

}
pvm_exit();
exit(0);

}

9CMSC 818 – Alan Sussman (from J. Hollingsworth)

MPI
Goals:
– Standardize previous message passing:

• PVM, P4, NX, MPL, …
– Support copy-free message passing
– Portable to many platforms

Features:
– point-to-point messaging
– group/collective communications
– profiling interface: every function has a name shifted version

Buffering (in standard mode)
– no guarantee that there are buffers
– possible that send will block until receive is called

Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.

10CMSC 818 – Alan Sussman (from J. Hollingsworth)

MPI Communicators

Provide a named set of processes for communication
– plus a context – system allocated unique tag

All processes within a communicator can be named
– numbered from 0…n-1

Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive
All programs start with MPI_COMM_WORLD
– Functions for creating communicators from other

communicators (split, duplicate, etc.)
– Functions for finding out about processes within

communicator (size, my_rank, …)

11CMSC 818 – Alan Sussman (from J. Hollingsworth)

Non-Blocking Point-to-point Functions

Two Parts
– post the operation
– wait for results

Also includes a poll/test option
– checks if the operation has finished

Semantics
– must not alter buffer while operation is pending (wait returns

or test returns true)

12CMSC 818 – Alan Sussman (from J. Hollingsworth)

Collective Communication

Communicator specifies process group to participate
Various operations, that may be optimized in an MPI
implementation
– Barrier synchronization
– Broadcast
– Gather/scatter (with one destination, or all in group)
– Reduction operations – predefined and user-defined

• Also with one destination or all in group
– Scan – prefix reductions

Collective operations may or may not synchronize
– Up to the implementation, so application can’t make

assumptions

13CMSC 818 – Alan Sussman (from J. Hollingsworth)

MPI Misc.

MPI Types
– All messages are typed

• base/primitive types are pre-defined:
– int, double, real, {,unsigned}{short, char, long}

• can construct user-defined types
– includes non-contiguous data types

Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

Language bindings for C, Fortran, C++, …
What’s not in MPI-1
– process creation
– I/O
– one sided communication

14CMSC 818 – Alan Sussman (from J. Hollingsworth)

For more details

PVM – http://www.csm.ornl.gov/pvm/pvm_home.html
– current version is 3.4.3, available for download from netlib
– book from MIT Press is PVM: Parallel Virtual Machine A

Users' Guide and Tutorial for Networked Parallel Computing
MPI – http://www.mpi-forum.org
– includes both 1.1 and 2.0 documentation (API)
– books from MIT Press include Using MPI and MPI: The

Complete Reference
– multiple public domain implementations available

• mpich – Argonne National Lab
• LAM – Ohio Supercomputing Center

– vendor implementations available too (IBM, Compaq/HP, …)

