Introduction

- Class is an introduction to parallel computing
 - topics include: hardware, applications, compilers, system software, and tools
- Will count for Masters/PhD Comp Credit
- Work required
 - small programming assignment
 - midterm
 - classroom participation
 - project

• Photos will taken of the class to help me learn names

What is Parallel Computing?

- Does it include:
 - super-scalar processing (more than one insn at once)?
 - client/server computing?
 - what if RPC calls are non-blocking?
 - vector processing (same instruction to several values)?
 - collection of PC's not connected to a network?
- •For this class, parallel computing is:
 - -a collection of processing elements (more than one).
 - -connected to a communication network.
 - -working together to solve a single problem.

Why Parallelism

Speed

- need to get results faster than possible with sequential
 - a weather forecast that is late is useless
- could come from
 - more processing elements (P.E.)
 - more memory size
 - more disks
- Cost: cheaper to buy many smaller machines
 - this is only recently true due to
 - VLSI
 - commodity parts

What Does a Parallel Computer Look Like?

• Hardware

- processors
- communication
- memory
- coordination

• Software

- languages
- operating systems
- programming models

Processing Elements (PE)

- Key Processor Choices
 - How many?
 - How powerful?
 - Custom or off-the-shelf?
- Major Styles of Parallel Computing
 - SIMD Single Instruction Multiple Data
 - one master program counter
 - MIMD Multiple Instruction Multiple Data
 - separate code for each processor
 - SPMD Single Program Multiple Data
 - same code on each processor, separate PC's on each
 - Dataflow instruction waits for operands
 - "automatically" finds parallelism

Communication Networks

Connect

- PE's, memory, I/O
- Key Performance Issues
 - latency: time for first byte
 - throughput: average bytes/second
- Possible Topologies
 - bus simple, but doesn't scale

Topologies (cont)

- tree - needs to increase bandwidth near the top

-mesh - two or three dimensions

-hypercube - needs a power of number of nodes

CMSC 714 – F02 (lect 1)

copyright 2000 Jeffrey K. Hollingsworth

7

Memory Systems

- Key Performance Issues
 - latency: time for first byte
 - throughput: average bytes/second
- Design Issues
 - Where is the memory
 - divided among each node
 - centrally located (on communication network)
 - Access by processors
 - can all processors get to all memory?
 - is the access time uniform?

Coordination

- Synchronization
 - protection of a single object (locks)
 - coordination of processors (barriers)
- Size of a unit of work by a processor
 - need to manage two issues
 - load balance processors have equal work
 - coordination overhead communication and sync.
 - often called "grain" size large grain vs. fine grain