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1 This Issues Column!

Luca Trevisan passed away on June 19, 2024 at the age of 52, of cancer. He worked on
randomness, approximation, and many other topics in theory. This column consists of
open problems by Lance Fortnow, Oded Goldreich, Johan H̊astad, Salil Vadhan, and David
P. Williamson that Luca was interested in.
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2 ZPP and Promise-ZPP by Lance Fortnow

One of Luca Trevisan’s early papers with Alexander Andreev, Andrea Clementi
and Jose Rolim [1] showed how to simulate BPP using weak random sources.
That paper also has a discussion of the result that efficient hitting set gener-
ators implied that you could derandomize Monte-Carlo algorithms, or equiv-
alently that Promise-RP in P implies Promise-BPP in P. Can we do the
same for ZPP?

Conjecture 2.1 Promise-ZPP in P implies Promise-BPP in P

Let’s formally define this problem. We’ll consider probabilistic polynomial-
time Turing machines (PPTM) M that have three outputs, “Accept”, “Re-
ject” and “Don’t Know”.

BPP is the class of randomized algorithms that could error in either di-
rection.

Def 2.2 A language L is in BPP if there is a PPTM M such that for all x

1. If x is in L then Pr(M accepts) ≥ 2/3.

2. If x is not in L then Pr(M accepts) ≤ 1/3.

RP is like BPP but when it accepts we are guaranteed x is in L.

Def 2.3 A language L is in RP if there is a PPTM M such that for all x

1. If x is in L then Pr(M accepts) ≥ 1/2.

2. If x is not in L then Pr(M accepts) = 0.

The class ZPP, which captures Las Vegas randomness, guarantees cor-
rectness in both directions but we allow the machine to run in expected
polynomial-time. To simplify the exposition we use the following equivalent
definition.

Def 2.4 A language L is in ZPP if there is a PPTM M such that for all x

1. If x is in L then Pr(M accepts) ≥ 1/2 and Pr(M rejects) = 0.
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2. If x is not in L then Pr(M rejects) ≥ 1/2 and Pr(M accepts) = 0.

When M doesn’t accept or reject it can say “Don’t Know”.

One can show ZPP = RP ∩ coRP [10].
BPP, RP and ZPP are semantic classes, M is required to fulfill either

condition 1 or condition 2 for all inputs. Promise classes relax that require-
ment. Defining promise classes directly is tricky so let’s just define what it
means for a promise class to be in P.

Def 2.5 Promise-BPP in P means that for all PPTM M , there exists a
language L in P such that for all x

1. If Pr(M accepts) ≥ 2/3 then x is in L.

2. If Pr(M accepts) ≤ 1/3 then x is not in L.

If 1/3 < Pr(M accepts) < 2/3 then it doesn’t matter whether or not x is in
L.

Promise-RP in P and Promise-ZPP in P are defined similarly.
As we mentioned above Promise-RP in P implies Promise-BPP (see [1])

but there is a relativized world where P = RP 6= BPP [31]. Promise-
(NP ∩ coNP) in P implies P = NP via self-reduction [8]. One might hope
to use the same idea with Promise-ZPP but it’s hard to maintain the ZPP-
promise as you do the self-reduction. On the other hand, there is no known
relativized world where Promise-ZPP is in P but Promise-BPP is not.
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3 Lower Bounds on the Length of Locally Decodable

Codes by Oded Goldreich

One of Luca Trevisan’s best known papers is the one in which he established,
together with Jonathan Katz (who was advised by Luca at the time), a
super-linear lower bound on the length of locally decodable codes [23]. The
challenge of significantly improving over this lower bound has remained open
till this very day, although several improvements has been established since
(cf., e.g., [24, 27]). Although this challenge is well-known, I will outline it in
the rest of this note. In particular, I will specify the challenge as separating
locally decodable codes from relaxed locally decodable codes.

Background. A locally decodable code (LDC) is a (binary) error correcting
code that allows for the recovery of any desired bit in the message based
on a constant number of (randomly selected) bits in the possibly corrupted
codeword. Locally decodable codes, or rather a family of such codes, have
several parameters: The length of the message, denoted k, the length of
codewords, denoted n (and viewed as a function of k), the number of queries,
denoted q, and the tolerated corruption rate, denoted δ. We shall view q ∈ N
and δ > 0 as fixed constants, whereas k and n = n(k) are viewed as varying
parameters. (This regime is fundamentally different from the one in [26] (and
subsequent works), where n = O(k) and q is allowed to be a function of k.)

The conjecture that locally decodable codes require large length (e.g., n
must be super-polynomial in k), which was supported by the super-linear
lower bound (i.e., n = Ω(kq/(q−1))) of [23], led [2] to suggest a relaxed notion
of LDCs. In this relaxation, hereafter referred to as relaxed LDCs, the decoder
is allowed to announce failure and two conditions are made:

1. When given access to a valid codeword, the local decoder always recovers
the desired bit.

2. When given access to a string that is δ-close to a valid codeword (i.e.,
the relative Hamming distance between the string and the codeword is
at most δ), with probability at least 2/3, the local decoder does not err;
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that is, with probability at least 2/3, it outputs either the desired bit or
a special failure symbol.

Interestingly, as shown in [2, Sec. 4.2.2] (see [13]), relaxed LDCs of polynomial
length exist. Specifically, for every sufficiently large constant q, one can con-
struct a q-query relaxed LDC of length n = k1+O(1/q), where the O-notation
hides a universal constant that is independent of q. While these relaxed LDCs
are much shorter than the best known (super-polynomial length) construc-
tions of LDCs (of [39, 7]), these relaxed LDCs are not shorter than the known

lower bound for LDCs, which are n = Ω(k/ log k)1+ 1
dq/2e−1 (cf. [24, Thm. 7],

improving over [23]). Hence, the known results fail to separate relaxed LDCs
from LDCs.

The hope of separating relaxed LDCs from LDCs turned out to be hard
to materialize. A formidable difficulty has recently emerged from the work
of [16, 6] (see also [12]) which shows that q-query relaxed LDC must have
length n ≥ k1+Ω(1/q log q)2, where the Ω-notation hides a universal constant
that is independent of q. Hence, the hope that a separation can be obtained
by a construction of a relaxed LDC of length n = Õ(k) was shuttered, and
the ballpark for improved constructions of relaxed LDCs is (conceptionally)
smaller. Still, a q-query relaxed LDC of length n = k1+o(1/q) would yield the
desired separation.

The challenge. A seemingly more viable way of separating relaxed LDCs
from LDCs is to show that q-query LDC must have length n ≥ k1+ω(1/q),
where the ω-notation refers to a super-linear function. Actually, for a uni-
versal constant c > 0, it suffices to show that, for some sufficiently large q,
it holds that q-query LDC must have length n ≥ k1+(c/q). (These constants
should be set to fit the construction of [2]; that is, enable the construction
of a q-query relaxed LDC of length n < k1+(c/q).) Recall that we actually
conjecture that O(1)-query LDC must have length n ≥ kω(1).
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4 An Interesting Graph That Might Be a Small Set

Expander by Johan H̊astad

Abstract
We define a graph which has many eigenvalues close to one. We hope that

this is a small set expander.

4.1 Motivation

Graphs with many (in the best of all worlds nδ for δ > 0) large (close to
one, or at least greater than 1/2) eigenvalues are potential sources for hard
instances for unique games and max-cut. We want the graph to be a small
set expander to avoid algorithms that split up the graph in to pieces.

This is very much related to Luca’s work showing how to relate the top
k non-trivial eigenvalues of the adjacency matrix of a graph to the ability to
partition the vertices in to k parts with sparse cuts between the parts.

4.2 The Graph

Let C be a binary linear code of minimal distance d. The construction works
for any linear code but a likely choice is to make C a random linear code of
co-dimension t where 2t ≈

(
n
d

)
. Any d in the range ω(1) to o(n) might be

interesting but a good value to think about is d = nc for c < 1.
We have a weighted graph on the hypercube, {0, 1}n and we connect x

to x + c + y where c is a random vector in C⊥ (the dual code of C) and
y is a random vector where each coordinate is one with probability ε/d.
An alternative description is to have the vertex set {0, 1}n/C⊥ and just use
the noise vector y but I find it slightly more convenient to talk about the
hypercube. We can observe that if C is the entire space then d = 1 and c is
always 0 and we have the noisy hypercube.

4.3 Eigenvectors and Eigenvalues

As this is a Cayley graph we know that the eigenvectors are the characters

χα(x) = (−1)
∑
i∈α xi.
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Calculating the expected value at a random edge leaving x we get

Ey,c[χα(x+ y + c)] = χα(x)Ey[χα(y)]Ec[χα(c)].

We have two not very difficult claims that are left to the reader to verify.

Claim 1 Ey[χα(y)] = (1− 2ε
d )|α|.

Claim 2 Ec[χα(c)] = 1 iff α ∈ C while it is 0 otherwise.

The two claims imply that any c ∈ C with |c| ≤ kd gives an eigenvalue of
at least

(1− 2ε

d
)kd ≥ (1− 2kε).

If C is a random code of co-dimension t the expected number of such code-
words is 2−t

(
n
kd

)
and with the chosen t this is about

(
n
kd

)(
n
d

)−1
which for

constant k is about ( n

ekd

)kd ( n
ed

)−d
.

Ignoring factors of the form kd is around (n/d)(k−1)d. As the number of
vertices is N = 2n, for d = nc this is at least 2(logN)c which would be more
than previous constructions. The open problem now is

Is this graph a small set expander?

A graph is a small set expander we if for any δ > 0 there is a γ > 0 such
that for any set, S, of size at most γ2n at least a fraction 1 − δ of all edges
with one endpoint in S has its other end-point outside S.
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5 Efficiency of Pseudorandom Generators from One-

Way Functions by Salil Vadhan

In his seminal paper with Gennaro, Gertner, and Katz [9], Luca Trevisan
studied the efficiency of constructing pseudorandom generators from one-way
functions.

Recall that one of the fundamental results in the foundations of cryp-
tography is that pseudorandom generators exist if (and only if) one-way
functions exist, as proven by H̊astad, Impagliazzo, Levin, and Luby [20].
Unfortunately, this construction is very inefficient. Given a one-way function
f : {0, 1}n → {0, 1}n, H̊astad et al. construct a pseudorandom generator

Gf : {0, 1}`(n) → {0, 1}m(n)

whose seed length is `(n) for a fairly large polynomial `(n) and, when eval-
uating Gf once, the algorithm Gf makes q = q(n) queries to f for a fairly
large polynomial q.

Note that this description also specifies that Gf is a black-box construction,
given by a polynomial-time algorithm G that uses an arbitrary function f :
{0, 1}n → {0, 1}n as an oracle. Furthermore, its security is proved by a
polynomial-time black-box reduction, R, whereby if D : {0, 1}m → {0, 1} is
any function that distinguishes G(U`) from Um with nonnegligible advantage,
then RD,f inverts f with nonnegligible probability. Again R is constrained
to use D and f as oracles. If we instantiate such a black-box construction
with a polynomial-time computable one-way function, it follows that Gf is a
polynomial-time computable pseudorandom generator.

In special cases, such as when f is a one-way permutation, there are more
efficient constructions. In particular, the classic construction of pseudoran-
dom generators from one-way permutations, due to Blum and Micali [3],
Yao [38], and Goldreich and Levin [15] has seed length `(n) = O(n) and
query complexity q(n) = d(m(n) − `(n))/ log ne to achieve output length
m(n). In particular, to have a pseudorandom generator that stretches by up
to log n bits (i.e., m(n) ≤ `(n) + log n) requires only q(n) = 1 queries to f ,
and in general with q(n) queries, we can have a stretch of q(n) · log n.

Gennaro, Gertner, Katz, and Trevisan [9] proved that this construction is
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the best possible: every black-box construction of pseudorandom generators
from one-way permutations has stretch of at most O(q(n) · log n). We remark
that their lower bound holds even for a more general notion of black-box re-
duction than we defined above, where the reduction R only needs to work for
distinguishers D that are (nonuniform) polynomial-time algorithms, rather
than arbitrary oracles.

However, it remained open to explain the much greater inefficiency of
the construction of pseudorandom generators from general one-way functions
(rather than one-way permutations). Indeed, the construction of H̊astad et al.
incurs a large polynomial seed length `(n) and query complexity q(n) even to
obtain a pseudorandom generator that stretches by one bit (i.e. when m(n) =
`(n)+1). Holenstein and Sinha [22] proved that every black-box construction,
even stretching by only one bit, requires q(n) = Ω(n/ log n) queries. Their
lower bound holds even for the special case of regular one-way functions,
where |f−1(y)| is the same size for all y ∈ {0, 1}n. (Crucially, however, this
size is unknown to the pseudorandom generator construction.) Their lower
bound is tight in this special case, where it matches the query complexity of a
pseudorandom generator construction of Goldreich, Krawczyk, and Luby [14].
Furthermore, lower bounds that apply to regular one-way functions cannot
explain the large seed length incurred in the case of general one-way functions,
since there are constructions of pseudorandom generators from regular one-
way functions that have a seed length of `(n) = Õ(n) [18, 40]. Note that,
since q(n) = Ω(n/ log n), such a seed length of `(n) = Õ(n) is not sufficient
to specify q(n) independent queries to the function f (which would require
seed length n · q(n)), so the queries to f are necessarily dependent in such
constructions.

For the case of general one-way functions, there has been substantial
progress on improving the efficiency of the construction of pseudorandom
generators [21, 17, 19, 37, 29]. The current state of the art has a seed length
of `(n) = Õ(n3) and makes q(n) = Õ(n3) queries to the one-way function.
Thus, we ask:

Open Problem 1: What is the smallest constant c such that there is a (black-
box) construction of pseudorandom generators from general one-way func-
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tions that has query complexity q(n) = Õ(nc)?

Open Problem 2: What is the smallest constant c such that there is a (black-
box) construction of pseudorandom generators from general one-way func-
tions that has seed length `(n) = Õ(nc)?

In both cases, all we know is that c ∈ [1, 3] and any shrinking of this in-
terval would be interesting. As discussed in the survey [36], the main source
of inefficiency in these constructions, as compared to the case of regular one-
way functions, is making Õ(n2) independent evaluations of the one-way func-
tion in order to convert the conditional Shannon entropy H(Un|f(Un)) into
(smoothed) min-entropy. An information-theoretic analogue of this problem
(not involving one-wayness or pseudorandomness) was studied in [5], and in
that setting, a query complexity lower bound of q(n) = Ω̃(n2) was proved.
Perhaps those ideas can be ported to the computational setting to yield an
analogous query complexity lower bound for pseudorandom generator con-
structions. If, in addition, it can be proved that the queries must be nearly
independent, then a seed length lower bound of Ω(q(n) · n) = Ω̃(n3) would
follow. We remark that it was shown in [33] any such lower bound on query
complexity or seed length requires working with a more constrained notion
of black-box reduction than done in [9].
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6 Some open problems based on Luca’s work on MAX

CUT by David P. Williamson

In 2012, Luca [35] gave an interesting algorithm that used repeated eigen-
value calculation to get a .531-approximation algorithm for the MAX CUT
problem. Soto [34] later improved the analysis of the algorithm to a .614-
approximation algorithm. One perspective on the algorithm is that it cal-
culates the eigenvector y associated with the smallest eigenvalue of 2I − L
(normalized so that ‖y‖∞ = 1), where L is the normalized Laplacian of the
graph, picks a random value t ∈ (0, 1], then puts a vertex i on one side of
the cut if y(i)2 ≥ t and y(i) > 0, and places i on the other side of the cut
if y(i)2 ≥ t and y(i) < 0. The algorithm recurses on the vertices for which
y(i)2 < t, and joins the resulting sets of vertices with the current ones in
whatever way maximizes the size of the cut.

Given that we already know a .878-approximation algorithm for the MAX
CUT problem based on semidefinite programming (Goemans & Williamson [11]),
why is this algorithm of interest? First, from a pragmatic standpoint, eigen-
vector computation is easier than solving a semidefinite program. In partic-
ular, the algorithm of [11] does not scale well to large graphs because most
SDP solvers must maintain a dense n×n semidefinite matrix, whereas eigen-
vector computation can be done quickly in O(n) space. Although Luca’s al-
gorithm requires repeated eigenvector computation, some experimental work
done over the years by my PhD students and some undergrads, finally writ-
ten up in a paper with PhD student Renee Mirka [30], shows that Luca’s
algorithm is significantly faster (often by an order of magnitude or more)
and nearly as good in terms of quality of solution obtained. Second, Luca’s
result shows that eigenvector computation outperforms linear programming
based algorithms for the MAX CUT problem: a result of Kothari, Meka, and
Raghavendra [28] (improving a previous result of Chan, Lee, Rahghavendra,
and Steurer [4]) shows that subexponentially sized linear programs cannot
have an integrality gap for the MAX CUT problem of more than .5.

There’s no particular reason to think that the Soto analysis is tight. This
leads to the following question.

Open Question: Find a tight analysis for Luca’s algorithm or a variant.
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In [30], we observed that simply partitioning the graph based on whether
the eigenvalue entry was positive or negative, or taking the best ‘sweep cut’
(that is, looking at taking the smallest k entries for one side of the cut and
the remaining n− k entries for the other side of the cut for each value of k =
1, . . . , n−1) gave computation times that were significantly faster than Luca’s
algorithm, and, surprisingly, frequently just as good if not better solution
quality. It would be interesting to know if there are approximation guarantees
better than .5 for these algorithms.

Open Question: Determine whether or not there is an approximation guar-
antee better than 0.5 for simple spectral partitioning or sweep cuts for the
MAX CUT problem.

Finally, we’d like to know the following: in what other circumstances can
we use an eigenvector calculation to derive an approximation algorithm that
does better than simple random algorithms, or LP integrality gaps? Natural
candidates for this question would include other two-variable constraint sat-
isfaction problems (2CSP), including the maximum cut problem in directed
graphs (MAX DICUT) and the maximum satisfiability problem in which
there are at most (or exactly) two variables per clause (MAX 2SAT or MAX
E2SAT). Some of my group did work in this direction. Together with Paul
and Poloczek [32], we gave an improvement on the 3

4-approximation algorithm
obtained by simple randomization for MAX E2SAT when such instances are
balanced; that is, the number of clauses (or the weight of clauses) in which
the literal xi appears is the same as that in which x̄i appears. In this case,
via a reduction to Luca’s algorithm, we can obtain a .81-approximation algo-
rithm for the problem (a .943-approximation algorithm using SDP for these
instances is known, due to Khot, Kindler, Mossel, and O’Donnell [25]). Fur-
thermore, our work shows that as in the case of MAX CUT, the spectral
algorithm outperforms the SDP-based algorithm both in running time and
quality of solution. Still, it remains an open question of whether any of this
work can be extended to general instances of MAX E2SAT or MAX 2SAT,
or even MAX DICUT.

Open Question: Find an approximation algorithms using eigenvector cal-
culations that outperforms the simple randomized algorithms for MAX 2SAT

12



and MAX DICUT.

My former PhD student Alice Paul and I made some preliminary efforts
to find an algorithm for MAX 2SAT. The main issue appears to be that
for MAX 2SAT and MAX DICUT there are terms in the objective function
that can either be viewed as linear or as quadratic with a special variable
x0 that stands for whether 1 or −1 represents TRUE (for DICUT it stands
for whether 1 or −1 represents being inside the set S). Luca’s algorithm
works by setting a subset of the variables, then recurses on the remainder.
The issue for MAX 2SAT and MAX DICUT is that we could not figure out
what to do in the remaining recursive calls once x0 was set. Balanced MAX
E2SAT instances remove the problem since all terms in the objective function
involving x0 cancel out. One approach to adapting the algorithm for MAX
2SAT and MAX DICUT would be to find a variant of the algorithm that sets
all variables at once without recursive calls.
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