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There is a graph G with 300,000,000 vertices and no clique on four points, such 
that if its edges are two colored these must be a monochromatic triangle. 0 1988 

Acadenuc Press. Inc. 

HISTORY AND SUMMARY 

In the late 1960s Paul Erdiis asked what graphs G, other than K6, had 
the property that G -+ (KS). We use the Rado arrow notation: G + (H) is 
the statement that if the edges of G are two colored there exists a 
monochormatic H and, more generally, G + (H), is the statement that if 
the edges of G are r-colored there exists a monochromatic H. In particular, 
Erdos asked if there is a graph G satisfying 

G + (KS) 

o(G) = 3. 

A proof of the existence of such a G was first given by Jon Folkman [2]. 
This supremely ingenious proof had two drawbacks. First, the graph G 
given was extremely large. Second, the proof did not generalize to give 
for all Y a graph G with o(G) = 3 and G -+ (K3)r. At the Combinatorial 
Conference in Kesthely, Hungary 1973 this problem was given to the 
Czechoslovakian mathematician Jarik Nesetril and his young student 
Vojtech Rodl. They [4] found a completely different argument that for all 
r graphs G exist with w(G) = 3 and G + (K3),. Those of us at that meeting 
(see [IS] for an anecdotal account) recall the sense of excitement accom- 
panying that discovery and I feel it played a critical role in the develop- 
ment of modern Ramsey Theory. The graphs given by the Nesetril-Rod1 
methods were still extremely large and Erdijs offered a reward for the 
discovery of a G satisfying (*) having less than 10” vertices. Here we claim 
this reward. 
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The method used has been known for seveal years to Szemeredi, 
Nesetril, Rodl, Frankl, and others. Frank1 and Rod1 [3] calculated that a 
graph G datisfying (*) with roughly 7 x 10” vertices exists. Our note may 
be considered a case study in the application of asymptotic methods to give 
precise bounds. The method is extremely case specific. It does not give, for 
example, graphs G of moderate size satisfying w(G) = 3 and G -+ (K3)3. 
This remains an intriguing open problem. 

1. THE METHOD 

Let G = G(n, p) be the random graph on n vertices with edge probability 
p. For each K4 in G randomly select an edge. Delete these edges from G, 
giving G*. We show that for appropriate n, p (*) is satisfied by G* with 
positive probability. It shal be convenient to write p = cn - li2. In the end we 
will minimize n by taking c roughly 6, and n roughly 3E8. Set 

U = {(x, xyz) : xyz is a triangle of G} 

U* = {(x, xyz) : xyz is a triangle of G * }. 

Note. xy, xyz shall denote the sets (x, y}, {x, y, z} throughout. For 
each vertex x set 

and 

A(x) = maximum over all partitions N(x) = Tu B of the 

number of edges yz E G with y E T and z E B. 

THEOREM. Zf 

(**I 

then G * satisfies (*). 

Proof: Clearly G* has no K4; suppose there is a coloring x with no 
monochromatic triangle. We count pairs (x, xyz) such that xyz is a triangle 
of G * and I # I. For each triangle xyz the coloring is essentially 
unique (two red edges and a blue edge or vice versa) and there are two 
choices of x so that (x, xyz) is counted so the number of pairs is precisely 
3 1 U* I. (The unique nature of two colorings of K, is unusual and does not 
seem to generalize to the case of more colors.) For each x let B(x) = 
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( y E N(x): I = blue}, T(x) = N(x) - B(x). Then the number of (x, xyz) 
counted is precisely the number of edges yz E G * with y E T(x), z E B(x). 
Replacing G * by the larger G can only increase this number, and replacing 
the partition T(x), B(x) by the optimal partition T, B can only increase this 
number so that the number of (x, xyz) is at most A(x) and the total 
number of such pairs is at most C A(x) which would contradict (**). 1 

We shall show for appropriate n, p that (**) holds with positive 
probability. 

2. THE CALCULATION IGNORING VARIANCE 

Let 

T = number of triangles in G 

Q = number of K4 in G 

R= number of (xy, UU, a) with x, y, U, u, a distinct, ax, ay~G, xyuu 
forming a K4 in G, xy selected from xyuu to be removed from F*. 

Clearly IUl=3T. Also IU-U*l<2Q+R. For suppose (a,uxy)~U--U*. 
Then xy was in a K., of G and was deleted and ax, uy E G. If the K4 does 
not contain a it is counted in R; those (a, uxy), where the K4 contains a are 
at most 2Q in number, since each K4 ubxy chooses one edge xy and 
contributes uxy, bxy to U - U*. Together, 

IU*l>3T-2Q-R. 

We find expectations 

E(T)= ; p3’v(c3/6)n3’* 
0 

(1) 

(2) 

(3) 

so that 

E( 1 u* I) > +c3n3/* - (c6/12 + c8/24)n. (4) 

In the next section we examine variances and show that I U* ( is “very 
often” “ very close” to its expectation. 
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Now we examine ,4(x). Set 

d= d(x) = IN(x)1 

e = e(x) = number of edges of G in N(x). 

Conditioning on values d, e, N(x) becomes a random graph H with d 
vertices and e edges. 

For a partition N(x) = T u B let X, be the number of edges of H from T 
to B. Assume ITI = IBI = d/2, that being the extreme case. Then X, has 
basically binomial distribution B(e, 4) as e edges are selected and each has 
probability $ of “crossing.” Employing the basic Chernoff bound 

Pr[X,> +e+ &e”‘s] < exp( -s2/2). (5) 

We set s = (2dln 2)1’2(1.01) so that this probability is << 2pd. But A(x) = 
max X,, over 2d possible T, so 

Pr[A(x)>fe++e1’2s] @2d2pd< 1. (6) 

That is, “almost always,” all 

A(x) < +e(x) + d(x)“’ e(x)“‘(+ In 2)li2( 1.01). (7) 

Now C, e(x) = 3T- ic3n312, all d(x) N np, all e(x) - 4c3n112 so 

1 IA(x)/ < c3n312/4 + n(np)1’2(c3n1’2/2)“2(ln 2/2)“2. (8) 

Combining (4), (8), (**) holds if 

c3n3’2/4 + n(cn’/2)1/2(c3n1/2/2)1’2(1n 2/2)“’ 

< c3n312/3 - [c6/18 + c8/36]n; (9) 

i.e., if 

[g( 1 +ZJ/(~-c2(1~2)“2)-J<n. (10) 

where the LHS must have positive denominator. We take c - 6 to minimize 
this inequality so that n - 2.7 x lo*. We allow ourselves a little room and 
set c = 6, n = 3 x IO8 in the next section. We know that (**) holds “almost 
always”-i.e., with probability approaching unity as n approaches 
infinity-but our object is to show that with these particular values (* *) 
holds with positive probability. 
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3. THE CALCULATION 

Set c=6, n=3E8, p=cn- . ‘I* We find (to three significant decimals) 

E(E) = 1.87814 Var(T) < 5E16 (11) 

E(Q) = 583Ell Var(Q) < El2 (12) 

E(R) = 2.10E13 Var(R) < 6E16. (13) 

The variance calculations are cumbersome though elementary exercises. We 
employ Chebyschev’s inequality in the form 

Pr[ IX- E(X)1 > tE(X)] < t-* Var(X)/E(X)‘. (14) 

Taking t = 10-j with X= T, Q, and R above we find 

Pr[1.88E14> T> 1.86E14] >0.999 

Pr[Q<5.84E11]>0.999 

(15) 

(16) 

Pr[R<2.11E13]>0.999. (17) 

Let BAD(x) be the event, setting e = e(x), d= d(x) given by 

BAD(x): A(x) > +e(d/(d- 1)) + e”’ d’/*(i In 2)‘/*( 1.01) (18) 

and let BAD be the disjunction of the events BAD(x) over all vertices x. 
We show 

Pr[BAD] < 0.01, (19) 

for which it suffices to show 

Pr[BAD(x)] < 3E- 10. (20) 

The degree d(x) has distribution B(n - 1, p) which has mean (n - 1)p = 
1.04E5 and variance (n - 1) p( I- p) = 1.04E5. We use the Chernoff bounds 
(see, e.g., [6; or 1, sect. 1.31) 

Pr[B(m, p) < mp - a] < exp[ -a2/2pm] (a>O) (21) 

Pr[B(m, p) > mp + a] < exp[ -a2/2pm + a3/2( pm)‘] (a > 0). (22) 

First, quite roughly, take a = E4 and note 

Pr[d(x) < 0.9E5] < exp[ - 108/2p(n - l)] < 10-‘O”. (23) 

To show (20) it suffices to show 

Pr[BAD(x)I d(x) = d, e(x) = e] < 3 x lo- lo - lo-‘O” (24) 
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for every d, e with d > 0.9E5. Conditioning on d, e we may consider N(x) as 
a random graph H = (V(H), E(H)) with d vertices and e edges. For each 
S c V(H) let Y, be the number of yz E E(H) with y E S, z 4 S. Let 
HYP[N, M, r] denote the hypergeometric distribution of the number of 
red balls from an urn of M red and (N- M) nonred balls selected in r 

trials without replacement. Letting IS\ = s, Y, has precisely the distribution 
HYP[(i), s(d-s), e]. Set 

b = te(d/(d- 1)) + e”* d”*($ In 2)“‘( l.Ol), (25) 

for convenience. Clearly Pr[ Y, > b] is maximized when s(d- s) is 
maximized, i.e., at s = [d/2]. Setting 

d= CdPl(d- lIdPI) 2 3 
I’(“> 

for convenience, 

(26) 

(27) 

W. Uhlmann [7] has made a systematic comparison between HYP[N, 
Nq, r] and the corresponding binomial B(r, q)-the distribution given by 
electing balls with replacement. For our values, 

< PrCWe, 4) > bl, (28) 

setting q = t(d/(d - l)), a convenient upper bound on q’. We use the bound 
(again see, e.g., [6 or 11) 

Pr[B(e, q) > eq + a] < exp( -2a2/e) (a > 01, (29) 

valid for all e, q. Then 

Pr[ Y,>b] <exp[ -2(1.01)2 d(ln 2)/2] <2-d(1.02). (30) 

Hence 

Pr[BAD(x) 1 d(x) = d, e(x) = e] < 1 Pr[ Y,] < 2d2-d’1.02) 

=2-O.O2d< 2-1800, 
(31) 

giving (24) with “plenty of room.” 
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Application of (21), (22) with precise values give 

Pr[d(x) > l.O6E5] <0.2/n (32) 

Pr[d(x) < l.OlE5-J <0.1/n, (33) 

so that, with room to spare, 

Pr[ l.OlE5 6 d(x) < 1.06E5 for all x] > 0.7. (34) 

Combining (15t( 17) (19), (34) we have that, with probability at least 
0.65, the pair G, G * satisfy 

1.86E14 < T< 1.88E14 

Q < 5.84Ell 

R < 2.11E13 (35) 

4x1 <b, all x 

101000 <d(x) < 106000, all x. 

Let G, G* be a specific graph pair satisfying the above. Then 

~A(x)=~(1.00001)~e(x)+(l.Ol)(~ln2)1’2~e(x)”2d(x)‘~2. (36) 

We note C e(x) = 3T and bound 

(37) 

as, in general’ yi/* + . . . + y!/* < ( y, + . . . + yn)“2n1’2. Plugging in values 

1 A(x) < 2.83E14. (38) 

On the other side. 

2 1 U* (/3 > 2T- (2/3)(2Q + R) > 3.57E14, (39) 

so that, indeed, the conditions of the theorem hold and G* + (K3). 
There was plenty of room in our variance arguments. But even if all 

variances were zero without further argumentation we could not improve 
on the value c = 6.0157 and a graph G with 266, 930,400 vertices. 
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