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a(k, I; r) denotes the smallest number of vertices in any graph G that has the 
properties; 

(1) G contains no complete subgraph on I vertices, 
(2) in any r-coloring of the edges of G, some complete subgraph on k vertices 

is monochromatic. We show or(3,5; 2) < 18, improving a bound due to Graham 
and Spencer [4]. 

1. INTRODUCTION 

Denote by S(k, I; r) the following statement: There exists a graph G 
having the properties 

(1) G contains no complete subgraph on I vertices, 

(2) if the edges of G are colored anyhow using r colors, then some 
complete subgraph on k vertices has all of its edges the same color, i.e., is 
monochromatic. 

Denote by R(k, , k, ,..., k, ; 2) that Ramsey number that is the smallest 
integer n such that, in any r-coloring of the edges of K, , the complete 
graph on IZ vertices, some Ktii has all of its edges the i-th color, for some 
i(1 < i < r). In particular, when k, = k, = ... = k, = k, we denote 
the corresponding Ramsey number by R,(k; 2). 

It follows at once from Ramsey’s theorem that, for fixed k and r, 
S(k, I; r) is true for I > R,(k; 2) + 1. It is well known that R,(3; 2) = 6, 
so that S(3, 7; 2) holds. Erdbs and Hajnal [l] asked whether S(3, 6; 2) 
holds, and van Lint (unpublished) gave an affirmative answer. Posa 
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(unpublished) first showed S(3. 5; 2) true, and Folkman [2] showed 
S(k, k + 1; 2) true for all k 3 3, and so S(3,4; 2) true as a special case. 
It was conjectured by Folkman, and also by Erdos and Hajnal, that 
S(k, k + 1; r) is true for all k and r. 

Let us denote by ‘S’(k, 1; r) the class of all graphs G (if any) that possess 
properties (1) and (2) above. A further problem is that of determining the 
smallest number ol(k, I; r) of vertices of any graph in 9(k, 1; r). The only 
results known are: 

(~(3, 6; 2) = 8 (Graham [3]), 

10 < 01(3, 5; 2) < 23 (Shen Lin [8], Graham and Spencer [4]). 

In [4], Graham and Spencer conjecture that 01(3, 5; 2) = 23, though, 
as they admit, this was without much evidence. Our main objective here is 
to show (~(3, 5; 2) < 18. 

2. ~-CHROMATIC NUMBER AND A THEOREM OF SACHS 

For n > 2, the n-chromatic number x%(G) of a graph G is the smallest 
number of classes among which the vertices of G may be distributed in 
such a way that no n mutually adjacent vertices lie in the same class. 

The following is a theorem of Sachs [7]: 

THEOREM (Sachs). Given positive integers n, s (n > 2) there exists a 
graph H with theproperties: 

(1) H does not contain a complete subgraph on n + 1 vertices, 

(2) xntff) = s. 

In fact, this is a special case of Folkman’s theorem 2 [2], but it will be 
sufficient for our needs. 

Denote by Z(n, s) the class of graphs possessing properties (1) and (2) 
of the above theorem, and by h(n, s) the smallest number of vertices in any 
member of &‘(n, s). 

LEMMA 1. h(3, 3) < 17. 

Proof. We construct a graph H on 17 vertices as follows: label the 
vertices V, , Vz ,..., V,, , and join vertices Vi , Vj (1 < i < j < 17) by an 
edge if and only if j - i is a quadratic residue (mod 17), i.e., one of 
1, 2, 4, 8, 9, 13, 15, 16. It is well known (see, e.g., [5]) that H contains no 
complete subgraph on 4 vertices. We claim that x3(H) = 3. 
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Suppose that there exists a 2-coloring (in red and blue, say) of the 
vertices of H so that no three adjacent vertices have the same color. Since 
17 is odd, there are two similarly colored vertices Vi , Vi with ,j - i E 1 
(mod 17). Now, it is clear that H is a point-symmetric graph (see [6]) so 
that, without loss of generality, we can assume V, and V, are red, say. 
Then V, , V,, and VI, are blue. Now, at least one of V, , V,, is red, and, 
without loss of generality, we can assume V, red. Then V, is blue, V, red, 
V, blue, and V, red. But now V, cannot be blue, otherwise V, , V8 , V,, 
are three mutually adjacent blue vertices. Nor can V, be red, otherwise 
V, , V, , V, are three mutually adjacent red vertices. Hence we have a 
contradiction. Further, the partition {V, , V, , V, , VI, , V,, , V&, 
{V2 , V5 , V8 , VII , VI4 , VA { V3 , V, , V, , VI2 , VI& shows that 

HE X(3, 3). 

3. THE MAIN RESULT 

THEOREM. 43, 5;2) < 18. 

In order to prove the theorem we shall need a further definition and 
a lemma. 

The join GI + Gz of two graphs G, and Gz is the graph whose vertex set 
is the union of the vertex sets of G, , Gz , and whose edge set is the union 
of the edge sets of G, , G, , together with the set of all possible edges 
joining a vertex of G, to a vertex of Gz . 

LEMMA 2. Let I = R(k, k ,..., k, k - 1; 2) + 2, where there are exactly 
r - 1 k’s in the parameter list of the Ramsey number, and let 

HEX(l-2,r+ 1). 

Then, if G is the join of H and a single vertex V, G E B(k, I; r). 

Proof. First, HE %‘(I - 2, r + 1) implies that H does not contain 
K,-, as a subgraph, which in turn implies that G does not contain Kl as a 
subgraph. 

Suppose that we have an r-coloring of the edges of G which contains no 
monochromatic Kk . Attach to each vertex of H the color of the edge 
joining that vertex to the vertex V. Since x&H) = r + 1, H must contain 
a set S of I - 2 = R(k, k,..., k, k - 1; 2) mutually adjacent vertices all 
of the same color, C, say, But in order that G should contain no mono- 
chromatic Kk , the subgraph induced by S cannot contain 
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(1) k - 1 vertices all joined by edges of color C, , 

(2) k vertices all joined by edges of any one other color. 

This contradicts the definition of R(k, k,..., k, k - 1; 2), and the lemma is 
proved. 

Proof of Theorem. Let H be the graph of Lemma 1, V a single vertex, 
andG = H+ V.ThenHE.#(3,3),and,takingZ= 5,r = 2,k = 3,we 
see that all the conditions of Lemma 2 are satisfied. Hence G E 59’(3, 5; 2), 
and since G has 18 vertices, the theorem is proved. 
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