On a Bound of Graham and Spencer for a Graph-Coloring Constant*

ROBERT W. IRVING

Department of Mathematics, University of Glasgow, Glasgow G12 SQ W, United Kingdom Communicated by W. T. Tutte

Received January 9, 1973

 $\alpha(k, l; r)$ denotes the smallest number of vertices in any graph G that has the properties;

(1) G contains no complete subgraph on ℓ vertices,

(2) in any r-coloring of the edges of G , some complete subgraph on k vertices is monochromatic. We show $\alpha(3, 5; 2) \le 18$, improving a bound due to Graham and Spencer [4].

1. INTRODUCTION

Denote by $S(k, l; r)$ the following statement: There exists a graph G having the properties

(1) G contains no complete subgraph on ℓ vertices,

(2) if the edges of G are colored anyhow using r colors, then some complete subgraph on k vertices has all of its edges the same color, i.e., is monochromatic.

Denote by $R(k_1, k_2, ..., k_r; 2)$ that Ramsey number that is the smallest integer *n* such that, in any *r*-coloring of the edges of K_n , the complete graph on *n* vertices, some K_{k_i} has all of its edges the *i*-th color, for some $\sum_{i=1}^k a_i$ on *n* vertices, some n_{k_i} has an or its eages the r-th color, for some $t_1 \leq t \leq t$. In particular, when $\kappa_1 = \kappa_2 =$ the corresponding Ramsey number by $R_r(k; 2)$.
It follows at once from Ramsey's theorem that, for fixed k and r,

 $S(k, l; r)$ is true for $l \ge R_r(k; 2) + 1$. It is well known that $R_2(3; 2) = 6$, $s(\alpha, i, r)$ is that $s(\alpha, \pi, \alpha)$ holds. Eq. (3, 7) holds. Exception in the Hajnard Lagrange $s(\alpha, \pi, \alpha)$ so that $D(0, 1, 2)$ holds. Erdos and riajdal [1] asked whether $D(0, 0, 2)$

^{*} Work on this paper was supported by Science Research Council research studentship $\ddot{}$ work

(unpublished) first showed $S(3, 5, 2)$ true, and Folkman [2] showed $S(k, k + 1; 2)$ true for all $k \ge 3$, and so $S(3, 4; 2)$ true as a special case. It was conjectured by Folkman, and also by Erdös and Hajnal, that $S(k, k + 1; r)$ is true for all k and r.

Let us denote by $\mathcal{G}(k, l; r)$ the class of all graphs G (if any) that possess properties (1) and (2) above. A further problem is that of determining the smallest number $\alpha(k, l; r)$ of vertices of any graph in $\mathscr{G}(k, l; r)$. The only results known are:

 $\alpha(3, 6; 2) = 8$ (Graham [3]), $10 \le \alpha(3, 5; 2) \le 23$ (Shen Lin [8], Graham and Spencer [4]).

In [4], Graham and Spencer conjecture that $\alpha(3, 5; 2) = 23$, though, as they admit, this was without much evidence. Our main objective here is to show $\alpha(3, 5; 2) \leq 18$.

2. n-CHROMATIC NUMBER AND A THEOREM OF SACHS

For $n \geq 2$, the *n*-chromatic number $\chi_n(G)$ of a graph G is the smallest number of classes among which the vertices of G may be distributed in such a way that no *n* mutually adjacent vertices lie in the same class.

The following is a theorem of Sachs [7]:

THEOREM (Sachs). Given positive integers n, $s(n \geq 2)$ there exists a $graph H$ with the properties:

(1) H does not contain a complete subgraph on $n + 1$ vertices,

$$
(2) \ \chi_n(H) = s.
$$

In fact, this is a special case of Folkman's theorem 2 [2], but it will be sufficient for our needs. D_{cutoff} for our neces.
Denote by $\frac{d\theta}{dx}$ and the class of graphs properties (1) and (2) and (2)

Denote by $\mathcal{U}(n, s)$ the class of graphs possessing properties (1) and (2) of the above theorem, and by $h(n, s)$ the smallest number of vertices in any member of $\mathcal{H}(n, s)$.

LEMMA 1. $h(3, 3) \le 17$.

Proof. We construct a graph H on 17 vertices as follows: label the *rroof*, we construct a graph π on π vertices as follows; faced the vertices V_1 , V_2 ,..., V_{17} , and join vertices V_i , V_j ($1 \le i \le j \le 17$) by an edge if and only if $j - i$ is a quadratic residue (mod 17), i.e., one of 1, 2, 4, 8, 9, 13, 15, 16. It is well known (see, e.g., [5]) that *H* contains no complete subgraph on 4 vertices. We claim that $\chi_3(H) = 3$.

Suppose that there exists a 2-coloring (in red and blue, say) of the vertices of H so that no three adjacent vertices have the same color. Since 17 is odd, there are two similarly colored vertices V_i , V_i with $j - i \equiv 1$ (mod 17). Now, it is clear that H is a point-symmetric graph (see [6]) so that, without loss of generality, we can assume V_1 and V_2 are red, say. Then V_3 , V_{17} and V_{10} are blue. Now, at least one of V_9 , V_{11} is red, and, without loss of generality, we can assume V_9 red. Then V_5 is blue, V_4 red, V_6 blue, and V_7 red. But now V_8 cannot be blue, otherwise V_6 , V_8 , V_{10} are three mutually adjacent blue vertices. Nor can V_8 be red, otherwise V_7 , V_8 , V_9 are three mutually adjacent red vertices. Hence we have a contradiction. Further, the partition $\{V_1, V_4, V_7, V_{10}, V_{13}, V_{16}\},\$ ${V_2, V_5, V_8, V_{11}, V_{14}, V_{17}, V_{18}, V_6, V_9, V_{12}, V_{15}}$ shows that

$$
H\in\mathscr{H}(3,3).
$$

3. THE MAIN RESULT

THEOREM. $\alpha(3, 5; 2) \leq 18$.

In order to prove the theorem we shall need a further definition and a lemma.

The join $G_1 + G_2$ of two graphs G_1 and G_2 is the graph whose vertex set is the union of the vertex sets of G_1 , G_2 , and whose edge set is the union of the edge sets of G_1 , G_2 , together with the set of all possible edges joining a vertex of G_1 to a vertex of G_2 .

LEMMA 2. Let $l = R(k, k, ..., k, k - 1; 2) + 2$, where there are exactly $r-1$ k's in the parameter list of the Ramsey number, and let

$$
H \in \mathcal{H}(l-2, r+1).
$$

Then, if G is the join of H and a single vertex $V, G \in \mathcal{G}(k, l; r)$.

Proof. First, $H \in \mathcal{H}(l-2, r+1)$ implies that H does not contain K_{tot} , and K_{tot} is a subgraph, which is the double does not contain K_{tot} $\frac{1}{1}$ as a Suppose that we have an r-coloring of the edges of G which contains no

suppose that we have an *r*-coloring of the edges of G which contains no monochromatic K_k . Attach to each vertex of H the color of the edge joining that vertex to the vertex V. Since $\chi_{k-2}(H) = r + 1$, H must contain a set S of $l-2 = R(k, k, ..., k, k-1; 2)$ mutually adjacent vertices all of the same color, C_1 say, But in order that G should contain no mono-
chromatic K_k , the subgraph induced by S cannot contain

- (1) $k 1$ vertices all joined by edges of color C_1 ,
- (2) k vertices all joined by edges of any one other color.

This contradicts the definition of $R(k, k, ..., k, k - 1; 2)$, and the lemma is proved.

Proof of Theorem. Let H be the graph of Lemma 1, V a single vertex, and $G = H + V$. Then $H \in \mathcal{H}(3, 3)$, and, taking $l = 5, r = 2, k = 3$, we see that all the conditions of Lemma 2 are satisfied. Hence $G \in \mathcal{G}(3, 5; 2)$, and since G has 18 vertices, the theorem is proved.

ACKNOWLEDGMENTS

The author is grateful to Professor P. Erdös and the referee for pointing out the following historical facts.

(i) The theorem of section 2 attributed to Sachs was first proved by Erdös and Rogers [9].

(ii) Posa (unpublished) was first to establish the truth of $S(3, 6; 2)$ and $S(3, 5; 2)$. The method used by Posa to establish $S(3, 5; 2)$ was essentially that of the present paper, but Posa used only the fact that the class of graphs $\mathcal{H}(3,3)$ is non-empty. He gave no upper bound for $h(3,3)$.

REFERENCES

- 1. P. ERDÖS AND A. HAJNAL, Research problem 2-5, J. Combinatorial Theory 2 (1967), 104.
- 2. J. FOLKMAN, Graphs with monochromatic complete subgraphs in every edgecoloring, $SIAM$ J. Appl. Math. 18 (1970), 19-24.
- 3. R. L. GRAHAM, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combinatorial Theory 4 (1968), 300.
- 4. R. L. GRAHAM AND J. H. SPENCER, On small graphs with forced monochromatic triangles, "Recent Trends in Graph Theory" (Lecture Notes in Mathematics 186), Springer-Verlag, New York/Berlin, 1971, pp. 137-141.
- 5. R. E. GREENWOOD AND A. M. GLEASON, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), l-7.
- 6. F. HARARY, "Graph Theory," Addison-Wesley, Reading Mass., 1969, p. 171.
- 7. H. SACHS, Finite graphs, "Recent Progress in Combinatorics" (Proc. 3rd Waterloo Conf. Combinatorics, May, 1968) (W. T. Tutte, ed.), pp. 175-184.
- 8. SHEN LIN, On Ramsey numbers and K_r -coloring of graphs, J. Combinatorial Theory Sect. B. 12 (1972), 82-92.
- 9. P. ERDÖS AND C. A. ROGERS, The construction of certain graphs, *Canad. J. Math.* 14 (1962), 702-707.