On Ramsey Numbers and K,-Coloring of Graphs

SHEN LIN

Bell Telephone Laboratories, Murray Hill, New Jersey 07974 Communicated by W. T. Tutte Received September 18, 1970

Let $\mathbf{K}_r = (a_1, a_2, ..., a_r), a_i$'s integers $\geq 2, r \geq 1$. By a \mathbf{K}_r -coloring of a graph G we mean a coloring of the edges of G by distinct colors c_1 , c_2 ,..., c_r such that there are no complete subgraphs on a_i vertices whose edges are all colored in color color colored in α , α , set H^* of all graphs on vertices which do not contain a complete subgraph on H^* set H_i^v of all graphs on v vertices which do not contain a complete subgraph on *l* vertices. The interesting cases are those with $v \ge R(K_r) \ge l$, where $R(K_r)$ is $t_{\rm tot}$ requires the measurement $\omega_{\rm tot}$ as the $\kappa_{\rm tot}$. Furthermore, we also construct a for Kansey number associated with \mathbf{A}_r , Putthermore, we also

I. INTRODUCTION: SOME RESULTS ON RAMSEY NUMBERS

 \mathcal{L} and \mathcal{L} and an integration \mathcal{L} Let $\mathbf{x}_r = (a_1, a_2, ..., a_r), a_i$ s integers $\geq 2, t \geq 1$, by a \mathbf{x}_r -coloring of a s_{t} there are no contrinuous vertices whose edges on a vertices whose eqg s_{t} vertices \mathbf{r}_i such that there are no complete subgraphs on u_i vertices whose edges are all colored in color c_i ($i = 1, 2,..., r$). From Ramsey's theorem [1], there exist integers $R(K_r)$ such that, if G is any complete graph on $R(K_r)$ or more vertices, then G cannot be K_r -colored while all complete graphs on $R(K_n) - 1$ or fewer vertices can be K_x-colored. The numbers $R(K_n)$ are known as Ramsey numbers with parameters K_r .
Trivially, we have

(1) $R(a_1) = a_1$.

(2) $R(a_1, a_2, ..., a_r, 2) = R(a_1, a_2, ..., a_r).$ (2) $\Gamma(x_1, x_2, ..., x_r, x_r, x_r) = \Gamma(x_1, x_2, ..., x_r)$

 $(y | \mathbf{K}_r) = (b_1, b_2, ..., b_r)$ where (b_1, b) Except for those cases, very few other Ramsey numbers are known.

Except for those cases, very few other Ramsey numbers are known. We list them in Table I $[2, 3, 6]$.

In view of relations (1) and (2), we shall assume the a_i 's ≥ 3 and $r \geq 2$ K_r .

Let
$$
K_r^{(i)} = (a_1, a_2, ..., a_i - 1, ..., a_r)
$$
 and $w_i = R(K_r^{(i)}) - 1$.

© 1972 by Academic Press, Inc.

TABLE I

Known Non-trivial Ramsey numbers

Κ.				$(3,3)$ $(3,4)$ $(3,5)$ $(3,6)$ $(3,7)$ $(4,4)$ $(3,3,3)$	
$R(K_r)$	6 9 14 18		23	- 18 -	- 17

The following lemma and corollary are well known. We omit the proofs here since they are also quite easy.

LEMMA 1. Let G be K_r -colored and G^* any complete subgraph of G. Then "in G^* ," there are at most w_i edges of color c_i from any vertex.

COROLLARY. $R(K_r) \leq 2 + \sum_{i=1}^{r} w_i$, with strict inequality if some w_i is odd and $\sum_{i=1}^{r} w_i$ is even.

LEMMA 2. Let G be a complete graph on $R(K_r)$ vertices with an edge (v_1, v_2) removed. If G is **K**_r-colored, then for each $i = 1,..., r$ there exist vertices $v_1^{(i)},..., v_{a,-2}^{(i)}$ such that all edges between vertices v_1 , v_2 , $v_1^{(i)},..., v_{a,-2}^{(i)}$ are colored in color c_i .

Proof. Since G with edge (v_1, v_2) added is a complete graph on $R(K_r)$ vertices and cannot be K_r -colored, any coloring of edge (v_1, v_2) with color c_i must introduce a monochromatic complete subgraph on a_i vertices of color c_i . Since G is \mathbf{K}_r -colored, the monochromatic complete subgraph must contain edge (v_1, v_2) and hence vertices v_1 and v_2 .

II. THE CHROMATIG NUMBER OF A GRAPH G

Let \overline{G} denote the complement of a graph G and K_i a complete graph on *I* vertices. Let $I_1 = \overline{K}_1$ and Q_1 denote an *l*-gon. We write $G = [G_1, G_2, ..., G_k]$ if G is the union of disjoint graphs G_1 , G_2 ,..., G_k and $G = (G_1, G_2, ..., G_k)$ if G contains a subgraph $[G_1, G_2, ..., G_k]$, with every vertex of G in some G_i . As usual, we let $G_1 < G_2$ if G_1 is a subgraph of G_2 . Note that $(G_1, G_2, ..., G_k)$ differs from $[G_1, G_2, ..., G_k]$ by having possibly some more edges. From the definition of the chromatic number of a graph, we have the following lemma:

LEMMA 3. Let G be a given graph. Then $\chi(G)$, the chromatic number of G, is the minimum s such that $\overline{G} = (K_{l_1}, K_{l_2}, ..., K_{l_r}).$

THEOREM 1. If $s = \chi(G) < R(K_r)$, then G can be K_r -colored.

Proof. Let $\bar{G} = (K_{l_1}, K_{l_2}, ..., K_{l_s})$ and A_i denote the set of vertices in K_{l_i} . Consider a K_r -coloring of K_s with vertices v_1 , v_2 ,..., v_s . We color the edges of

$$
G^* = \overline{[K_{l_1}, K_{l_2}, ..., K_{l_s}]}
$$

as follows. If $x \in A_i$ and $y \in A_j$, then the edge (x, y) is colored in the same color as edge (v_i, v_j) . Clearly, this is a K_r -coloring of G^* because no two vertices in the same A_i have an edge between them in G^* . Since $G < G^*$, the theorem follows.

III. K_r-COLORINGS OF GRAPHS THAT DO NOT CONTAIN A COMPLETE SUBGRAPH ON *l* VERTICES

Let H_i^v denote the set of all graphs on v vertices that do not contain a K_i subgraph. In this section, we concern ourselves with K_i -coloring of such graphs. Let $N(K_r, l)$ denote the minimum v such that there exists a graph $G \in H_1^{\nu}$ which cannot be **K**_r-colored. We also obtain some lower bounds for $N(K_r, l)$. It is clear that $N(K_r, l) > v$ if and only if all graphs in H_l^v can be K_r -colored.

THEOREM 2. $N(\mathbf{K}_r, R(\mathbf{K}_r) + 1) = R(\mathbf{K}_r)$.

This is immediate from the definition of $R(K_r)$.

THEOREM 3. $N(K_r, R(K_r)) \ge R(K_r) + 2$ with equality holding if and only if G^* cannot be K_r -colored, where $\overline{G}^* = [Q_5, I_{R(K_r)-3}].$

Proof. Let G be any graph $\in H_i^v$ with $v = R(K_i) + 1, l = R(K_i)$. Then \overline{G} must contain either $[K_2, K_2, I_{R(K_n)-3}]$ or $[K_3, I_{R(K_n)-2}]$ as a subgraph. Note that

$$
I_t = [\underbrace{K_1, K_1, ..., K_1}_{tK_1's}].
$$

Thus $\chi(G) \le R(K_r) - 1$. By Theorem 1, G can be K_r -colored, and hence $N(\mathbf{K}_r, R(\mathbf{K}_r)) \ge R(\mathbf{K}_r) + 2.$

Let G be any graph $\in H_l^v$ with $v = R(K_r) + 2$ and $l = R(K_r)$. Since \overline{G}

cannot contain a set of l or more independent vertices, \bar{G} must contain the following as a subgraph:

If there is any edge between the vertices in set B , then

 $\bar{G} = (K_2, K_2, K_2, I_{l-4})$ and $\chi(G) \leq l-1 = R(K_r) - 1$.

If there is no edge between the set of vertices A and the set of vertices B and no edge between the vertices in the set B (in \overline{G}), then all pairs of vertices in A must be connected by an edge in \overline{G} to prevent a K_i in G, Hence $\bar{G} = (K_4, I_{L-2})$ and again $\chi(G) \le R(K_r) - 1$. In either case G can be K_r -colored by Theorem 1. Therefore we may assume \overline{G} to contain the following as a subgraph, with no edge between the vertices in set B :

Label the vertices in A as v_1 , v_2 , v_3 , v_4 , v_5 . If there is an edge between any vertex in B and either vertices v_4 or v_5 in \bar{G} , then $\bar{G} = (K_2, K_2, K_3, I_{t-4})$. If edge (v_4, v_5) is in \overline{G} , then $\overline{G} = (K_3, K_2, I_{L-3})$. In either case, $\chi(G) \leq$ $R(K_r) - 1$. Hence we may assume \bar{G} does not contain those edges. Now consider the following two sets of *l* vertices in \bar{G} ,

$$
S_1 = (v_1, v_4, v_5, B), \qquad S_2 = (v_2, v_4, v_5, B).
$$

There must be an edge connecting two vertices in each set to prevent a K_{λ} in G. The only possibilities are as follows:

- In S_1 , edge (v_1, v_4) , (v_1, v_5) or (v_1, b) .
- In S_2 , edge (v_2, v_4) , (v_2, v_5) or (v_2, b') , $b, b' \in B$.

Of the nine possible choices of one edge each from S_1 and S_2 , we see

$$
(v_1, v_4)
$$
 with (v_2, v_5) or (v_1, v_5) with (v_2, v_4)
since \overline{C} is $[O, I, 1]$. The other possibilities, give a *ither*

gives $G = [Q_5, I_{k-3}]$. The other possibilities give either

$$
\bar{G}=(K_2,K_2,K_2,I_{l-4})
$$

or $\overline{G} = (K_3, K_2, I_{L-3})$ with $\chi(G) \le R(K_r) - 1$. Hence, if $G \neq G^*$, G can be K_r -colored and $N(K_r, R(K_r)) > R(K_r) + 2$.

THEOREM 4. Let $\mathbf{K}_r = (a_1, a_2, ..., a_r)$ with $a_i \geq 3, r \geq 2$. If

$$
R(\mathbf{K}_r) = \sum_{1}^{r} [R(\mathbf{K}_r^{(i)}) - 1] + 2 = \left(\sum_{1}^{r} w_i\right) + 2,
$$

then G^* cannot be K_r -colored, and thus $N(K_r, R(K_r)) = R(K_r) + 2$.

Proof. Let us denote by Q the set of 5 vertices in Q_5 and I the set of $R(K_r)$ - 3 vertices in $I_{R(K_r)-3}$. Assume G^* can be K_r -colored. We show

(P) If x is any vertex in I, then the edges from x to all edges in Q must be monochromatic.

Proof. Let d_i , $i = 1,...,r$ be the number of edges from x to the other vertices in I which are colored in color c_i . Since G^* is K_i -colored,

$$
0 \leq d_i \leq w_i
$$
, for $i = 1, 2, ..., r$ by Lemma 1.

Since

$$
\sum d_i = R(\mathbf{K}_r) - 4 = \left(\sum_{1}^{r} w_i\right) - 2
$$

we have only two possibilities:

(a) $\exists i, j, \exists d_i = w_i - 1, d_j = w_j - 1$ and $d_k = w_k$ for all $k = 1, ..., r$ and $k \neq i, k \neq j$,

or

(b)
$$
\exists i, \exists d_i = w_i - 2
$$
, and $d_k = w_k$ for all $k = 1, \dots, r$ and $k \neq i$.

Since $d_k = w_k$ implies that the edges from x to Q cannot be colored in color c_k by Lemma 1, (a) implies that the five edges from x to Q can be colored only in colors c_i or c_j . Hence there are at least two vertices q_1 , q_2 in Q such that edge $(q_1, q_2) \in G^*$ and edges $(x, q_1), (x, q_2)$ are both colored, say in color c_i . Since $d_i = w_i - 1$, x is then connected to all vertices of the complete subgraph on $w_i + 1 = R(K_i^{(i)})$ vertices by edges all colored in color c_i . Again, by Lemma 1, this is impossible. Possibility (b) implies, however, that all 5 edges from x to Q are colored in color c_i .

Let us then partition the vertices in I into sets S_1 , S_2 ,..., S_r according to the color of the edge from that vertex to Q, i.e., $x \in S_i$ if and only if all edges (x, q) , $q \in Q$ are colored in color c_i . Let $|S_i|$ be the cardinality of set S_i , then

$$
0 \leqslant |S_i| \leqslant w_i, \quad \text{for} \quad i = 1, 2, \ldots, r \quad \text{by Lemma 1},
$$

and

$$
\sum_{i=1}^r |S_i| = R(\mathbf{K}_r) - 3 = \sum_{1}^r w_i - 1.
$$

Hence there exists an i such that

$$
|S_i| = w_i - 1
$$

and

$$
|S_j| = w_j
$$
, $j = 1, 2,..., r$ and $j \neq i$.

We have now the following configuration:

Since $|S_j| = w_j$ for $j \neq i$, all edges in the pentagon Q_5 must be colored in color c_i . Now consider the subgraph G' formed by the $w_i + 1 = R(K_i^{(i)})$ vertices q_2 , q_3 , S_i , all of which are connected to q_1 by edges colored in color c_i . Since G^* is K_r -colored, G' must be $K_r^{(i)}$ -colored. But G' is a complete graph on $R(K_r^{(i)})$ vertices with edge (q_2, q_3) removed. Hence, by Lemma 2, there exists at least a vertex v in S_i such that edges (v, q_2) and (v, q_3) are colored in color $c_k \neq c_i$. Here we need the assumption that $r \geqslant 2$ and $a_j \geqslant 3$ for $j = 1, 2, \ldots, r$. This is impossible since all vertices in S_i are connected to q_2 and q_3 by edges colored in color c_i . Hence G^* cannot be K_r -colored and Theorem 4 is proved.

Among the known Ramsey numbers, $R(3, 3)$, $R(3, 5)$, $R(4, 4)$, and $R(3, 3, 3)$ all satisfy the hypothesis of Theorem 4. Therefore, we have the following corollary:

$$
N((3, 3), 6) = 8,
$$

\n
$$
N((3, 5), 14) = 16,
$$

\n
$$
N((4, 4), 18) = 20,
$$

\n
$$
N((3, 3, 3), 17) = 19.
$$

The unique graphs G^* which give the above equality are given by $\bar{G}^* = [Q_5, I_3], [Q_5, I_{11}], [Q_5, I_{15}],$ and $[Q_5, I_{14}],$ respectively.

The question whether $N((3, 3), 6)$ exists was first asked by Erdös and Hajnal [7]. J. H. van Lint (unpublished) first showed that $N((3, 3), 6) \leq 14$ and R. L. Graham in [8] showed that $N((3, 3), 6) = 8$ by producing the graph

$$
G^*=\overline{[Q_5\,,I_3]}.
$$

To show that the assumption

$$
R(\mathbf{K}_r) = \sum_{1}^{r} [\mathbf{R}(K_r^{(i)}) - 1] + 2
$$

is essential in Theorem 4, we give the following example in Theorem 5.

For $K_r = (3, 4)$, $R(K_r) = 9 \le R(3, 3) + R(2, 4) = 10$. Let $\overline{G}^* = [Q_5, I_6]$.

THEOREM 5. G^* can be (3, 4)-colored. Hence

 $N((3, 4), 9) > 11.$

Proof. We represent G^* as follows

where $A = B$ indicates that all vertices from A are joined to all vertices in B. Let c_1 be black and c_2 be red. We will color the edges of G^* such that there are no black triangles and no red complete quadrilaterals as follows:

- (1) all edges in Q_5 red,
- (2) x to all vertices in Q_5 black,
- (3) x to all vertices in K_5 red.

Let the vertices in Q_5 be labeled q_1 , q_2 , q_3 , q_4 , q_5 with red edges (q_1, q_2) , $(q_2, q_3), (q_3, q_4), (q_4, q_5), (q_5, q_1)$ and the vertices in K_5 be labeled k_1, k_2 , k_3 , k_4 , k_5 with black edges $(k_1, k_2), (k_2, k_3), (k_3, k_4), (k_4, k_5), (k_5, k_1)$ and red edges $(k_1, k_3), (k_2, k_4), (k_3, k_5), (k_4, k_1), (k_5, k_2).$

The colorings of the edges connecting Q_5 and K_5 are given in Table II. The complete (3, 4)-coloring of G^* is given in Fig. 1.

It is a trivial matter to check that there are no black triangles. Since K_5 does not contain a red triangle, no red complete quadrilateral can involve x, and consequently any possible red complete quadrilateral must have TABLE II

FIG. 1. (3, 4)-coloring of $\overline{[Q_5, I_6]}$: (---) black, (---) red.

two connected vertices in Q_5 and two others in K_5 . An inspection of Table II shows that the 5 pairs of rows $(q_1, q_2), (q_2, q_3), (q_3, q_4), (q_4, q_5), (q_5, q_1)$ all have just one red entry in a common column. Hence there are no red complete quadrilaterals and Theorem 5 is proved.

IV. A LOWER BOUND FOR $N(K_r, R(K_r) - 1)$

In [9], R. L. Graham and J. H. Spencer showed that $N((3,3), 5) \le 23$ by producing a graph $G \in H_5^{28}$ which cannot be (3, 3)-colored. They raised the question whether $N((3, 3), 5) \geq 10$. In the following, we show that $N((3, 3), 5) \geq 10$ by proving the more general Theorem 6:

THEOREM 6. $N(K_r, R(K_r) - 1) \ge R(K_r) + 4$.

Proof. Let $G \in H_1^{\nu}$ where $\nu = R(K_{\nu}) + 3$ and $l = R(K_{\nu}) - 1$. We show that $\chi(G) \leq l = R(K_r) - 1$ and hence G can be K_r -colored. This in turn means that $N(K_r, R(K_r) - 1) \ge R(K_r) + 4$.

Since G does not contain a K_i subgraph, we may assume \overline{G} to contain the following subgraph:

(1) If there are any more edges between two vertices in B , then $\bar{G} = (K_2, K_2, K_2, K_2, I_{l-4})$ and $\chi(G) \leq l$.

(2) If there are no edges joining the set of vertices in V to \hat{B} and no edges between two vertices in B , then every pair of vertices in V must be connected by an edge in \overline{G} to prevent a K_l in G. But then $\overline{G} = (K_6, I_{l-2})$ and $\chi(G) \leq l-1$.

Therefore, we may assume \bar{G} to contain the following subgraph:

with no edges between the vertices in B, and no edges from either v_6 or v_7 to B. Furthermore, if \overline{G} contains the edge (v_6, v_7) , then \overline{G} = (K_3, K_2, K_2, I_{l-3}) and $\chi(G) \leq l$. Hence (v_6, v_7, B) form a set of $l-1$ vertices in \overline{G} with no edges. To prevent a K_i in G , v_1 , v_2 , v_3 , v_4 must each be joined to some vertex in the set (v_6, v_7, B) by an edge. Suppose v_1 is joined to some $b \in B$. Then any edge from v_2 to (v_6, v_7, B) produces either $\bar{G} = (K_2, K_2, K_2, K_2, I_{l-4})$ or $\bar{G} = (K_3, K_2, K_2, I_{l-3})$; the latter case arises when v_1 and v_2 are both joined to the same $b \in B$. Suppose v_1 and v_2 are both joined to either v_6 or v_7 , then $\bar{G} = (K_3, K_2, K_3, I_{l-3})$. Similar arguments hold for v_3 and v_4 and we must have \overline{G} containing the following subgraph:

with no edge from (v_1, v_2, v_3, v_4) to B.

Consider now the two sets of l vertices (v_1, v_3, v_5, B) and (v_2, v_4, v_5, B) in \overline{G} . There must be an edge joining some two vertices in each set to prevent a K_l in G. In view of the above arguments, the only possibilities left are: an edge (v_5, b) , $b \in B$, or one edge from each of the triangles (v_1, v_3, v_5) and (v_2, v_4, v_5) . The former gives $\vec{G} = (K_2, K_2, K_2, K_3, I_{i-4})$ while the rest of the possibilities give either $\bar{G} = (K_3, K_2, I_{l-3})$ or $\overline{G} = (K_3, K_3, I_{L-2})$. Hence we have proved that $G \in H_1^{\text{p}}$ implies $\chi(G) \leq l = R(K_r) - 1$ and hence G can be K_r -colored by Theorem 1. Hence $N(\mathbf{K}_r, R(\mathbf{K}_r) - 1) \ge R(\mathbf{K}_r) + 4$.

COROLLARY:

$$
N((3, 3), 5) \geq 10
$$

\n
$$
N((3, 4), 8) \geq 13
$$

\n
$$
N((3, 5), 13) \geq 18
$$

\n
$$
N((3, 6), 17) \geq 22
$$

\n
$$
N((3, 7), 22) \geq 27
$$

\n
$$
N((4, 4), 17) \geq 22
$$

\n
$$
N((3, 3, 3), 16) \geq 21
$$

Admittedly, the bounds given by Theorem 6 are still quite weak. can presumably show that $N(K_r, R(K_r) - 1) \ge R(K_r) + 5$ by using essentially the same procedures, except that the work may be too lengthy to present. However, since the results obtained so far for the existence of $N((3, 3), 4)$ by J. H. Folkman [10] seem to indicate that $N((3, 3), 4)$ is enormous, any reasonable bound for $N(K_r, R(K_r) - 2)$ in general may be very difficult.

REFERENCES

- 1. H. J. RYSER, "Combinatorial Mathematics," Wiley, New York, 1963.
- 2. R. E. GREENWOOD AND A. M. GLEASON, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), l-7.

92 LIN

- 3. J. G. KALBFLEISCH, Construction of special edge chromatic graphs, Canad. Math. Bull. 8 (1965), 575-584.
- 4. J. G. KALBFLEISCH, Chromatic graphs and Ramsey's theorem, Ph.D. Thesis, University of Waterloo, Canada, January, 1966.
- 5. J. G. KALBFLEISCH, Upper bounds for some Ramsey numbers, J. Combinatorial Theory 2 (1967), 35-42.
- 6. J. E. GRAVER AND J. YACKEL, Some graph theoretic results associated with Ramsey's theorem, J. Combinatorial Theory 4 (1968), 125-175.
- 7. P. ERDÖS AND A. HAJNAL, Research Problem 2-5, J. Combinatorial Theory 2 (1967), 105.
- 8. R. L. GRAHAM, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combinatorial Theory 4 (1968), 300.
- 9. R. L. GRAHAM AND J. H. SPENCER, On small graphs with forced monochromatic triangles," Lecture Notes in Mathematics, 186, Recent Trends in Graph Theory, Springer-Verlag (1971).
- 10. J. H. FOLWIAN, Graphs with monochromatic complete subgraphs in every edge coloring, Rand Corporation Memorandum RM-53-48-PR, October, 1967; SIAM J. Appl. Math. 18, No. 1 (1970), 19-24.