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SIAM J. APPL. MATH.
Vol. 18, No. 1, January 1970

GRAPHS WITH MONOCHROMATIC COMPLETE SUBGRAPHS IN
EVERY EDGE COLORING*

JON FOLKMAN

Abstract. For integers r, s _ 2, let F(r, s) be the class of all graphs G with the following property:

if the edges of G are colored red and blue, then either G contains r mutually adjacent vertices with all

connecting lines colored red, or s mutually adjacent vertices with all connecting lines colored blue. By

Ramsey's theorem, F(r, s) contains all sufficiently large complete graphs. It follows that [(r, s) contains

all graphs with a sufficiently large number of mutually adjacent vertices. We are concerned here with

determining the minimum number f = f (r, s) such that F(r, s) contains a graph G with at most f
mutually adjacent vertices. Obviously f (r, s) > max (r, s). We show constructively that f (r, s) = max

(r, s).'

1. Introduction. By a graph we mean a finite undirected graph with no edge
joining a vertex to itself and at most one edge joining any pair of distinct vertices.
By an isomorphism from a graph G to a graph H we mean a one-to-one mapping p
from the vertices of G onto the vertices of H with the property that two vertices v and

v' of G are adjacent in G if and only if p(v) and p(v') are adjacent in H. If S is a
subset of the vertices of a graph G, the subgraph of G spanned by S is the graph
whose vertices are the elements of S and whose edges are all edges of G joining
elements of S. If S is any set, ISI will denote the cardinality of S.

We define b(G), the dimension of a graph G, by setting b(G) equal to the largest
integer 6 such that G contains 6 mutually adjacent vertices. The term "dimension"
is suggested by the observation that if G is regarded as a 1-dimensional simplicial
complex, then b(G) - 1 is the dimension of the largest simplicial complex having G
as its 1-dimensional skeleton.

For integers k1, k2 > 2, let F(k1, k2) denote the class of all graphs G with the
following property: if the edges of G are partitioned into classes C1 and C2, then
for some i = 1 or 2 there are ki mutually adjacent vertices of G with all the edges
joining them in the class Ci. By Ramsey's theorem there is an integer N = N(kl, k2)
such that KN, the complete graph on N vertices, is in F(k1, k2). Let f(kl, k2)
= min {6(G)IG E I(k1, k2)}. Our purpose here is to compute the function f. This
investigation was motivated by the question2 (first raised by P. Erdos for the case
k, = k2= 3) of whether or not f (kl, k2) = N(kl, k2). We show that except in the
trivial case k1 = 2 or k2 = 2 equality does not hold. In fact we have the following
result.

* Received by the editors November 30, 1967. Presented by invitation at the Symposium on
Combinatorial Mathematics, sponsored by the Office of Naval Research, at the 1967 Fall Meeting of
Society for Industrial and Applied Mathematics held at the University of California, Santa Barbara,

California, November 29-December 2, 1967.
Due to the author's tragic and untimely decease, this posthumous paper is being published as first

submitted. However, some editorial footnotes based on the author's oral presentation have been added

and the references have been supplied.

1 Editor's note. For example, if r = s = 3, the construction yields a very large graph which contains

no complete graph on 4 points, yet has the property that any coloring of the edges must yield either a red

triangle or a blue triangle.

2 Editor's note. A special case of the problem solved in this paper was stated in Erd6s and Hajnal [1]

and solved in Graham [2].
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20 JON FOLKMAN
THEOREM 1. f (kl, k2) = max (k1, k2).
The proof of Theorem 1 relies heavily on the following result, which is of

interest in its own right.

THEOREM 2. For each positive integer n and each graph G there is a graph
H(n, G) with the following properties:

(a) 6(H(n, G)) = b(G);
(b) if the vertices of H(n, G) are partitioned into classes C1, ... *Cn then for

some i, 1 < i < n, there is a set S c Ci such that the subgraph of H(n, G) spanned by
S is isomorphic to G.

2. Proofs of the theorems.
2.1. Proof of Theorem 2.V For n = 1 we set H(1, G) = G. We construct

H(2, G) by induction on the number of vertices of G. If G has only one vertex, we
may take H(2, G) = G. Now suppose that G has r > 2 vertices and suppose that
H(2, G') has been defined for every graph G' with fewer than r vertices. Let V be the
set of vertices of G. Let vo E V. Let V' = V - {vo} and let V" be the set of vertices of
G which are adjacent to vo. Let G' and G" be the subgraphs of G spanned by the
vertices in V' and V", respectively.

By the inductive assumption, H(2, G') has been defined.4 Let W be the set of
vertices of H(2, G'). Let X be the collection of all subsets of Wthat span a subgraph
of H(2, G') which is isomorphic to G". Condition (b) applied to H(2, G') and the
definition of G' and G" imply that X is nonempty. Let I = { 1, 2, , 21wir} and let
J be the collection of r-element subsets of I. For each set T E J let fT be a one-to-one
function from T onto V.

We define a graph H as follows: the vertices of H are the elements of the set
(V x X x J) U (W x I). Let (v, S, T), (v', S', T') E V x X x J and let (w, i),
(w', i') e W x I. Then (v, S, T) and (v', S', T') are adjacent in H if and only ifS = S',
T = T' and v is adjacent to v' in G. (v, S, T) and (w, i) are adjacent if and only if
w E S, i E T and fT(i) = v. (w, i) and (w', i') are adjacent if and only if i = i' and w is
adjacent to w' in H(2, G').

Suppose that the vertices of H are partitioned into two classes C1 and C2. For
k = 1 or 2 and iI, let Ck,i = {WE WI(w, i)eCk}. For each iI, (C1,b C2,i) is a
partition of W. There are only 21wH such partitions of W and [II = 21wlr. Conse-
quently, there is a partition (D1, D2) of W and a set T c I with I TI = r such that
Ck,i = Dk for k = 1 or 2 and i E T. By condition (b) on H(2, G'), there is a k = 1 or 2
and a set S' c Dk such that the subgraph of H(2, G') spanned by S' is isomorphic to
G'. Let p: V' -> S' be the isomorphism. Let S" = p(V"). Then p restricted to V" is an
isomorphism of G" with the subgraph of H(2, G') spanned by S". Hence, S" E X.
Suppose that (v1, S", T) E Ck for some v1 E V. Then E = (S' x {f T'(vl)}) U {(v1,

S", T)} is a subset of Ck.
Define i: V- E by (v,,S", T) if v =vO,

(p_(V) ((p(V),f T-(v)) if v # vO.
Editor's note. The main portion of this proof is devoted to H(2, G). Once this portion is com-

pleted, it is easy to handle H(n, G).

4 Editor's note. Intuitively speaking, H(2, G) is constructed by taking the union of many copies of G

and many copies of H(2, G'), and adding certain edges from certain points in copies of G to certain points

in copies of H(2, G').
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COLORING GRAPHS 21
It is easily verified that 5, is an isomorphism from G to the subgraph of H spanned
by E. On the other hand, if (v, S", T) ? Ck for all v E V, then {(v, S", T)I all v in V}
c Cl where 1e {1,2} - {k}. The function i/i:V - V x {S"} x {T} defined by
f(v) = (v, S", T) is an isomorphism of G with the subgraph of H spanned by
V x {S"} x {T}. Hence, in either case we see that H satisfies condition (b) required
of the graph H(2, G).

Now we prove that H has the same dimension as G. Let 6 = b(H) and let A be a
set of mutually adjacent vertices of H with JAl = 6. We consider three cases. First,
suppose that A contains at least two vertices from the set V x X x J. Since these
vertices are adjacent, they must be of the form (v1, S, T) and (v2, S, T), where
S E X, Te J and v1, v2 are adjacent vertices of G. If (w, i) E W x I and (w, i) is
adjacent to (v1, S, T), then fT(i) = Vl = V2 so (w, i) is not adjaint to (v2, S, T).
Hence, A c V x X x J so A has the form A = {(v1, S, T), , (v, S, T)}, where
v .. , -v are mutually adjacent vertices of G. Therefore, 6 < 6(G). Now suppose
that A contains exactly one vertex, (v, S, T), in V x X x J. Then A = {(v, S, T),
(w 1,fTI(), , I(w< _1,fTI(v))}, where w1, , w_- are mutually adjacent
vertices of H(2, G') which all lie in S. Now the set B = {(v, S, T)} U (S x {f - 1(v)})
spans a subgraph of H isomorphic to the subgraph of G spanned by the set {v0}
U V". Since A c B, this implies that 6 < b(G). Finally, suppose that A contains no
vertex of V x X x J. Then A = {(w1, i), * , (w6, i)}, where i E I and w1, ., w5
are mutually adjacent vertices of H(2, G'). Hence, 6 < b(H(2, G')) = b(G') < 6(G).
We have now shown that b(H) < b(G). By condition (b), H contains a subgraph
isomorphic to G, so b(H) = b(G). Hence, we may set H(2, G) = H. By induction,
H(2, G) is defined for all graphs G.

Now let n > 2 and suppose that H(n - 1, G) is defined for all graphs G. Set
H(n, G) = H(2, H(n - 1, G)). We have b(H(2, H(n - 1, G))) = b(H(n - 1, G)) = b(G)
so (a) is satisfied. Let C1, , C,, be a partitioning of the vertices of H(2, H(n - 1,
G)) into n classes. LetD1 = C1 U * U Cn -1 and D2 = Cn. For some i = 1 or 2,
there is a set S c Di that spans a subgraph H of H(2, H(n - 1, G)) such that H is
isomorphic to H(n - 1 , G). If i = 1, then S ncl C, ,n cnS C is a partitioning
of S into n - 1 classes. If i = 2, then S n cn, 0, , 0 is a partitioning of S into
n - 1 classes. In either case there is a set S' c S n CJ for some j with 1 < j ? n
such that H', the subgraph of H spanned by S', is isomorphic to G. Since H' is also
the subgraph of H(2, H(n - 1, G)) spanned by S', it follows that condition (b) is
satisfied.

2.2. Proof of Theorem 1. Let kl, k2 > 2 and let G EF (kl, k2). Let (C1, C2)
be the partitioning of the edges of G that places all of the edges in the class C1. For
some i = 1 or 2 there are ki mutually adjacent vertices of G with all edges joining
them in the class Ci. Now ki > 2 so Ci contains at least one edge. Hence, i = 1 so
b(G) > k1. Similarly, 6(G) ? k2. Since G was an arbitrary member of F(k1, k2),
f(kl, k2) _ max (k1, k2).

Now let {i, j} = {1, 2} and suppose that ki = 2. Then Kkj, the complete graph
on kj vertices, is in F(kl, k2). Hence, max (kl, k2) < f(kl, k2) ? 6(Kk.)=
-max(k1,k2)

To prove f(k1, k2) = max (k1, k2) in the general case, we use induction on
k1 + k2 . If k1 + k2 < 5, then ki = 2 for i = 1 or 2 and the equality has already been
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22 JON FOLKMAN
established. Suppose that k1 + k2 > 6 and that f(kl, k2) = max (k'l, k'2) whenever
kl,k'2 ? 2andk'1 + k'2 < k1 + k2.Jfk1 = 2ork2 = 2wehavealreadyestablished
the equality, so we suppose that k1, k2 _ 3. Let m = max (k1, k2). By the inductive
assumption there are graphs G1 E F(k1 - 1, k2), G2 E F(k1, k2 - 1) and G3 e F(k1
-1, k2-1) with b(G1) = max (k1-1, k2) < m,(G2)= max (k1,k2-1) < m
and b(G3) = max (k1 - 1, k2 - 1) = m - 1. To complete the proof of Theorem 1,
it suffices to construct a graph G e F(kl, k2) with b(G) < m.

We may assume that G 1 and G2 are chosen so that they have no edge or vertex
in common. Then G1 U G2 is a well-defined graph and b(G1 U G2) = max (3(G1),
b(G2)) < m. Let M be the number of m - 1 element subsets of the vertices of
G1 U G2. Let N be the number of ways the edges of H((m - 1)2M2, G3) can be
partitioned into two classes. (Here H(n, G) is as in Theorem 2.) Let V1 be the set of
vertices of H(N, G1 U G2) and let V2 be the set of vertices of H((m - 1)2M2, G3).
Finally, let X be the collection of all sets S c V1 with ISI = m - 1.

We construct a graph G as follows :5 The vertices of G are the elements of the
set (V1 x V2) U X. If(v1, v2), (v'1, v)E V1 x V2, then (v1, v2) and (v'I, v') are adja-
cent in G if and only if v1 = v'1 and v2 is adjacent to v' in H((m - 1)2M2,G3) or

= v'2andv visadjacenttov' inH(N,G1 U G2). If(vx,v2)V1 X V2andSeX,
then (v1, v2) and S are adjacent in G if and only if v1 E S. If S, S' E X then S and S' are

not adjacent in G.
We first show that b(G) < m. Let A be a set of mutually adjacent vertices of G

with JAI = 3 = b(G). Suppose that A contains an element of X. Then A contains
exactly one element of X so A = {S,(vl, v'), , (v-1,va_1)}, where SeX,
vieS c V1 and ves V2 for 1 < i < - 1. Ifv1, , v<5_1 are distinct, then 3- 1
?< S = m - 1so 0 3 m. If these vertices are not distinct, we may assume that
Vl = v2. Then v' and v' are adjacent in H((m - 1)2M2, G3)so v: A v'2. For
3 ? i ?<3 b-1, either vi 0 v'1 or vi 0 v' so either vi = v1 or vi = v2. It follows that

v1 = s2 = = v<5v 1 and v,, v, v, are distinct mutually adjacent vertices
of H((m - 1)2M2, G3). Hence, 3 - 1 < 3(H((m - 1)2M2, G3)) = 3(G3) = m - 1
sob < m.

Now suppose that A contains no element of X. ThenA = {(v1, VI), (v2, v'D,
(v,, v)} where vi E V1 and vi E V2 for 1 ? i ? 3. Since (vl, vi) and (v2, v ) are

adjacent in G, either v1 = v2 or v1 = v'2. Reasoning as above we see that either
v1 = s2 = = v<) and v , v', , v' are distinct mutually adjacent vertices of

H((m - 1)2M2, G3), or v1= = V = v' and v1, v2, , v5 are distinct mutually
adjacent vertices of H(N, G1 U G2). In the first case, 3 < b(H((m - 1)2M2, G3))
= b(G3) = m - 1 < m. In the second case, 3 < b(H(N, G1 U G2)) = b(G1 U G2)
? m.

It remains to show that G e F(kl, k2). Let (C 1, C2) be a partition of the edges of
G into two classes. Let u E V1 . If v1, v2 E V2 are adjacent in H((m - 1)2M2, G3), then
{(u, v1), (u, v2)} is an edge of G. For i = 1 or 2 let Di(u) be the set of edges, {v1, v2}, of
H((m - 1)2M2, G3) such that {(u, v1), (u, v2)} E Ci. Then (D1(u), D2(u)) is a partition
of the edges of H((m - 1)2M2, G3). There are exactly N such partitions, so we may
partition the vertices of H(N, G1 U G2) into N classes by putting u and u' into the

'Editor's note. Intuitively speaking, the construction starts with the Cartesian product of the
graphs H(N, G1 U G2) and H((m - 1)2M2, G3). The elements of X are adjoined as new vertices and
certain edges are added between new and old vertices.
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COLORING GRAPHS 23
same class if and only if (Dl(u), D2(u)) = (Dl(u'), D2(u')). By Theorem 2, there is a set
U c V1 which spans a subgraph of H(N, G1 U G2) isomorphic to G1 U G2 and
with the additional property that, for u E U, (D1(u), D2(u)) = (D1, D2) where (D1,
D2) is some fixed partition of the edges of H((m - 1)2M2, G3).

Let v E V2. Then U x {v} spans a subgraph of G isomorphic to G1 U G2 . If, for
some v E V2 and some i = 1 or 2, this subgraph contains ki mutually adjacent
vertices with all edges connecting them in the class Ci, then we have finished.
Otherwise, from the choice of G1 and G2 it follows that for each v E V2 there are sets

S1(v), S2(v)c U such that, for i = 1 or 2, ISi(v)I = ki- 1, the set Si(v) x {v} of
vertices of G are mutually adjacent in G and all edges joining them are in Ci. For
v E V2 and i = 1 or 2, choose Ti(v) so Si(v) c Ti(v) c U and ITi(v)l = m - 1. Now
U c V1 so Ti(v) E X is a vertex of G which is adjacent to every vertex in the set
Ti(v) x V2- Ti(v) x {v}. If, for some v E V2 and some i = 1 or 2, all of the edges of
G joining Ti(v) to vertices in Ti(v) x {v} are in the class Ci, then {Ti(v)} U (Si(v)
x {v}) is a set of ki mutually adjacent vertices of G with all connecting edges in Ci,
and we have finished. Otherwise, for each v E V2 there are vertices u1(v) E T1(v) and
u2(v) E T2(v) such that the edge {T1(v), (u1(v), v)} is in C2 and the edge {T2(v), (u2(v),
v)} is in C1.

Now U has the same cardinality as the set of vertices of G1 U G2 so there are
exactly M subsets of U with m - 1 elements. Hence, there are (m - 1)2M2 ordered
quadruples (u1,u2,TI,T2) withu1eT c U,u2eT2 c UandI TI = IT21 = m - 1.
We partition the vertices of H((m - 1)2M2, G3) into (m - 1)2M2 classes by putting

v and v' in the same class if and only if (u1(v), u2(v), T1(v), T2(v)) = (u1(v'), u2(v'),
T1(v'), T2(v')). By Theorem 2, there is a set V c V2 such that V spans a subgraph of
H((m - 1)2M2, G3) isomorphic to G3 and such that (u1(v), u2(v), T1(v), T2(v))
= (u1, u2, T1, T2) is independent of v as v ranges over V. We identify G3 with the
subgraph spanned by V.

Since u1,u2e U, we have (D1(ul),D2(uJ)) = (D1(u2),D2(u2)) = (D1,D2).
Since G3 E I(k1 - 1, k2 - 1) and (D1, D2) is a partition of the edges of G3, for some
i = 1 or 2 there is a set W c V such that l Wl = ki- 1, the vertices of G3 that are in
W are mutually adjacent and all edges connecting them are in Di. Let j E {1, 2}
- {i}. Then {uj} x W is a set of ki - 1 mutually adjacent vertices of G. Since Di
= Di(uj), it follows from the definition of Di(uj) that all edges joining elements of
{uj} x W are in Ci. Finally, for w E W c V, (uj, w) = (uj(w), w) is adjacent to
Tj(w) = Tj and the edge joining them is in Ci. Hence, ({uj} x W) U { Tj} is a set of
ki mutually adjacent vertices of G with all interconnecting edges in Ci.

3. Remarks. If n is any positive integer and ki > 2 is an integer for 1 < i < n,
we may define F(k1, , kn) to be the class of all graphs G with the following
property: if the edges of G are partitioned into classes C1, . , Cn , then for some i,
1 < i < n, there are ki mutually adjacent vertices in G such that all the edges joining
them are in Ci. Again by Ramsey's theorem, F(k1, , kn) contains all sufficiently
large complete graphs. We set

f(kl t kn) =min {6(G)IG E- F(kl, , kn)1

I conjecture that

f(k l , kn ) = max (k, , kn)
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24 JON FOLKMAN
for arbitrary n; however, the methods used here do not seem to be extendable to the
case n > 2.

A straightforward generalization of the proof of Theorem 1 yields the following
inequality: if k, _ k2 > > kn > 2, then

k1 ? f(kl, , kn) < k1 + min (2 (ki - 2), E (ki-2))

For n > 3, I feel that this upper bound is somewhat spurious in the sense that it

depends much more on the particular construction used to prove it than it does on
the function f.
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