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Abstract. It is shown that for arbitrary positive z there exists a graph without K, and so that all its 
subgraphs containing more than 1/2 + e portion of its edges contain a triangle (Theorem 2). This 
solves a problem of Erd6s and Negetfil. On the other hand it is proved that such graphs have 
necessarily low edge density (Theorem 4). 

Theorem 3 which is needed for the proof of Theorem 2 is an analog of Goodman's theorem [8], 
it shows that random graphs behave in some respect as sparse complete graphs. 

Theorem 5 shows the existence of a graph on less than 1012 vertices, without K4 and which is 
edge-Ramsey for triangles. 

1. Introduction 

Let G = ( V, E) be a simple graph wi thout  loops or  multiple edges (for not ions from 
graph theory we refer to 1-2]). An averaging a rgument  shows that for any k > 2 
there is a k-chromat ic  complete (complete k-partite) graph  H = (V,E') so that 

F E f q E ' [ > ( 1 - - ~ ) , E ,  holds(cf .  [2]). Since H c o n t a i n s  no Kk+ 1, we have the 
\ . v /  

following. 

Proposition 1. For every k >_ 2, every graph with e edges contains a subgraph without (i) 
Kk+ 1 with more than 1 - ~ e edges. [] 

In the case of  k = 2 we obtain a triangle-free subgraph with more  than half of 
the edges. Erd6s and Ne~etfil I-5] asked whether  the constant  1/2 can be improved 
if we make  the addit ional  assumption: G is K4-free. We answer this question in the 
negative by proving: ([G[ denotes the number  of  edges of  G). 

Theorem 2. For an arbitrary positive e there exists a K,-free graph G so that all its 
subgraphs G o with [Go[ _> (½ + e)[Gt contain a triangle. 

For  the p roof  we need a result of  independent  interest (t(G) is the number  of  
triangles in G). 

Theorem 3. Suppose R = R(n, p) is the probability space of  all random graphs on n 
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vertices with edge probability p, 1 > p > n ~-~/2, for some positive constant e. Let  ? be 
a constant, 0 < 7 < 1 and suppose R is partitioned into edge-disjoint subgraphs R 1, 
R 2 with JR1[ ,~ 7[R[. Then for almost all R ~ R ( n , p )  

t(R1 ) + t(R2 ) > 1 + 3(1 - 27)2 t(/~ ) 
4 

holds for all partitions R = R ~ U R 2 with the above property. (We say that a statement 
holds for almost a l l / ~ R  if it holds with probability 1 - o(1), where o ( 1 ) ~  0 as 
n --~ o0 . )  

Remark. The corresponding statement for the complete graph was proved by 
Goodman [-8-]. Thus our theorem shows that random graphs behave as complete 
graphs, i.e. they are like sparse complete graphs. Note that our notation x >~ y 
means that for any 6 > 0 we have x > (1 - 6)y for n > no(c~,e ). Note also that the 
constant (1 + 3(1 - 27)=)/4 is easily seen to be best possible. 

The graph G constructed in Theorem 2 is sparse - it has m 3/2 +, edges (0 < ~ < 0.1 

and m is the number  of  vertices). Replacing each vertex v of G by [ n l  = t other 

vertices vx, v 2 . . . .  , v t and joining v i, v], 1 < i, j < t, if and only if v and v' are joined 
in G we get a new graph which shows that for every fixed e > 0 there exists a positive 
constant c~ (independent of n) and graphs having n vertices and c.n 2 edges and still 
having the property of the graph from Theorem 1.2. Let c~ be the supremum of all 
cjs with the above property. P. Erdrs  [-5-t conjectured that l im~ o g~ = 0. We prove 
this here and show the following slightly stronger statement. 

Theorem 4. Let  a positive integer k and a positive real c, 0 < c < 1 be given. Then 
there exists n o = no(k, c) and e = e(k, c) such that the following holds: I f  G is a graph 

on n vertices and with c 2 edges n > n o which has the property that every bipartite 

subgraph of  i t h a s l e s s t h e n ( ~ + e ) c ( ~ ) e d g e s ,  then Gconta insKk .  

P. Erdrs  and A. Hajnal conjectured that for every k there exists a graph Q 
which contains no Kk+ 1 but if one colors the edges of Gk by two (or in general p) 
colors in an arbitrary way there is always a monochromatic Kk. Folkman [7] 
proved this conjecture for p = 2 and the general conjecture was settled by Ne~et~il 
and Rrdl  [12] - in fact they proved a more general theorem. However, there are 
many numerical problems which remain. Let f (p ,  k~, k2) be the smallest integer n 
for which there is a graph G with n vertices not containing Kk2 but if we color the 
edges of g by p colors there is always a monochromatic Kkl. Graham [9] proved 
that f(2, 3, 6) = 8 and Irving [11] proved f(2, 3,5) < 18. On the other hand both 
Folkman's and Ne~etfil, R6dl's upper bounds for f(2, 3, 4) are extremely large 
(greater than ten times iterated exponential). P. Erdrs  [4] offered max { 100 dollars, 
300 swiss francs} for a proof or disproof off(2,  3, 4) < 10 I°. Unfortunately, we were 
not able to settle this problem. However, the method of proof of Theorem 2 allows 
to show the following. 
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Theorem 5. f(2,3,4) < 7.02" 1011. 

It was pointed out by Noga Alon [1] that this result either proves or disproves a 
conjecture of R.L. Graham [10, p. 36]. 

In the proofs we will assume several elementary properties of random graphs 
(e.g. (3)). Since each of these properties holds with probability tending to 1, the same 
holds for any finite number of them. For non-proved statements concerning random 
graphs we refer to [6]. Note also that we shall often identify graphs with their edge 
sets. 

2. The proof of Theorem 3 

Let {1, 2, . . . ,  n} be the vertex set of R. Since the edges are chosen independently 
each with probability p, we have 

Prob(Ii,j, k} is a triangle) = p3. (1) 

Consequently with probability tending to one we have 

Similarly, the degree d i of vertex i satisfies 

di~np for every i = l , 2 , . . . , n .  (3) 

Moreover, if X i, ]X;[ = xi is a subset of the neighborhood of the i-th vertex, one can 
infer that 

,4, 

holds again with probability 1 - o(1) simultanously for all vertices and all X v Let 
/~ be any graph having properties (2), (3) and (4)(almost all graphs have these 
properties) and let/~ = R 1 U R2 be a partition of the edges of/~. Let us call the edges 
in R 1 blue, those in R 2 red. Denote by x~ the blue degree of the vertex i. It follows 

n2P3 
]N~(i)] ~ P ~  2 

from (3) and (4)that 

(5) 

(6) 

(7) 

where N~(i) denotes the edge set of the neighborhood of the vertex i in the graph 
/~ (NR1 (i) and NR2(i) are defined analogously) and di is the size of the neighborhood 
(vertex set) of vertex i. 

Let tb(tr) denote the number of non-monochromatic triangles with 2 blue (2 red) 
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edges, respectively. Each edge in NRI(i ) gives rise to a blue or to a non-mono-  
chromatic triangle with two blue edges adjacent to i. Summing up over i we infer 
using (6) 

3t(R1) + tb = ~ X'Z'P i=i-5- + °(n3P3) (8) 

The same consideration for NR:(i ) gives 

3t(R2) + tr = ~ (dl 2xi)2p + o(n3p3). (9) 
i=1 

From (5), (6)and (7)it follows that  the number  of edges in N~(i) - (NR, (i)(_J Ng2(i)) 
is asymptotic to xi(d~ - xi)p. Since those edges give rise to non-monochromat ic  
triangles, we infer 

2(t 0 + t , ) =  Z x , (d i -  xl)p + o(n3p3). (10) 
i 

From (8) + (9) - ( 1 0 ) w e  obtain: 

3( t (R1)+t(R2)) - ( tb  + t , ) = P Z ( d , - 2 x i )  2 +o(n3p 3) (11) 
2 i  

As Y' ,(d~- 2x,) = 2JR] - 41RII = (2 - 4y)lR [ holds, Z(di - 2x,) 2 is minimal if 
2 - 4y 

di - 2x, = - - ] R [  -- pn(1 - 27). Thus (11) yields in view of t b + t r + t(R1) + 
n 

t (R2)=t(R)  
p3n3 

4(t(R1) + t(R2)) > t(g) + - ~ ( 1  - 2y) 2 or using (2) 

t(R1) + t(R2) > 1 + 3(1 - 2?)Zt(R)" [] 
4 

The Proof of Theorem 2. Let us consider a random graph R~R(n,p) ,wi th  ed_ge 
probability p = n ~-m, 0 < e < 0.1. The expected number  of K4's in R, E(k4(R)) 

sa t i s f i e sE(k~(R) )=(~)p6~4n6~and thusa lmos ta l l  

~ R have at most 2E(k4(R)) ~ ~nn6' K4's. (12) 
12 

For /~  ~ R denote by e(/~) the set of edges in /~ which are contained in some K4. 
It follows from (12) that  

Hl+6e 
E(e(R)) < ~ - - -  holds (13) 

with_probability 1 - o(I). 
R -- e(/~) is clearly a graph without K4 and moreover  

1 3'2+ 1 l+6e lr /3/2+e I R - e ( R ) l ~ - n  / ~ - ~ n  - (14) 
2 2 

holds with probabili ty 1 - o(1). 
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in 

139 

/~ has further the property that with probability I - o(1) each edge e is contained 

/ . \  
~np 2 triangles in/~ and there are ~ 2 )  p edges in/~. (15) 

Consider now/~ s R from Theorem 3 having properties (12), (13), (14) and (15). 
We claim that G = / ¢  - e(/~) is a good choice for Theorem 2. Suppose for contradic- 
tion eo > 0 is given and R I is a triangle-free subgraph of G with 

IRtl > (~ + eo)[G[ ~ (~ + eo)lR]. (16) 

Set R 2 = / ~  -- Rx and apply Theorem 3 with ? = ½ + Co. Noting that R l is triangle- 
free we obtain 

Let us count the number of pairs, say m, (i = 1, 2) of the form (e, T), e is an edge 
of the triangle T, eERi, Tis in R. It follows from (15) that 

mi ~ ]Ri]np 2. (17) 

On the other hand each triangle in R 2 contributes 3 to m 2 and zero to m I while 
the remaining triangles in R contributes at least 1 to m 2 and at most 2 to mx. Using 
(17) we infer 

m2~> 3 ( ~ +  3eoz)t(R)+ ( 3  3e~)t(R)= ( ~ +  61o~) t(R) 

ml < 2 ( ~ -  3e2)t(R) = (~-- 6eg)t(R). 

For n > no(~ ) using (17) this leads to [Rz] > ]RI], contradicting (16). [] 

3. The Proof  of  Theorem 4 

Before we give a proof we introduce (without proof) the following easy Lemma (see 
[14] for various generalizations). 

Let G = (V, E) be a graph, we define the density d(G) of G by 

IEI 
d(c)  = f [v]21.  

Lemma. Let G, = (V., E.), (I V~I --* oe) be a sequence of graphs with the property that 

whenever G* is the subgraph of G, having [[~[-J vertices then lim,_ood(G,)= 

lim.~o d(G*) = c > O. Then for every k there exists nk such that G~ contains a 
complete graph Kk fo r every n >_ n k. 
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Let G, = (V., E.) be a sequence of graphs not containing 

v,), having property that Kk, I E . [ = c .  2 the 

every bipartite subgraph of G. has less than 

( l + e , )  (V")edgeswheree,~O, 2 

(*) 

(I v.I = v.). 

Suppose further that c. --+ c > 0 as n -~ m and c is as large as possible. Let, for 

every n, G* =(V.*,E*)beasubgraphofG. inducedonI~l-subsetofV, andhaving 

as many edges as possible. 

Suppose that there exists e' > 0 and an infinite sequence 1 
! 

{G*}~= t = {H*} such that all of the graphs H* contain a ~. 
! 

ra  m 1 t :~ bipartite subgraph Hm = (Xz U Xa,Fm) of (~ + e ) lEn..i edges.J 

(**) 

Set W., = V... - V*, by a simple averaging argument (Proposition 1) we can 
find a bipartite subgraph (Yy U Y~, F.,) of (W,., [W.,]2 N E. . )  which has at least 
½IE... N [W,.]zl edges. Thus the bipartite subgraph of G. m with bipartition either 
(X~'U Y~',XTU Y~') or (XTU Y~',X7 U Y~') has for m sufficiently large at least 

+ IE..~I edges - which contradicts our assumption on the sequence { ,},=t- 

Thus (**) does not hold and all but finitely many members of the sequence {G*}~=I 
have the property (*). Because of the maximal choice of c we infer that 

lim d(G.) = l i m  d(G*)  = c. (***) 
n ~ c o  n ~ o o  

Consider now an arbitrary sequence of partitions V. = V, 1 U Vn 2, ~l ~- 1, 2 .. . .  
having the property [I V. 11 - I VZl [ < 1. Let G2, G. z be subgraphs of G,, n = 1, 2, . . .  
induced on IS, x and V. 2, respectively. We have 

and thus 

~" C. 

_ -- 4 s . ) c , - -  = c + o(1). d(G1.) + d(GZ.) > (2 v. - 1 
v, -- 2 

This, combined with (***) yields that the assumptions of the Lemma are satisfied 
and hence G. contains K k for every n > n k. [] 
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4. The Proof of Theorem 5 

We wilt often use the following consequence of the Chernoff inequality [3] cf. 2.7 
in [6]: 

I f 0 < p < l a n d 0 < c ~ p < l t h e n  

~ ( 7 ) l f i ( 1 -  p)"-J ~ exp(rnp(~- l) + cwmlog l/~) 

where the sum is over j  such tha t j  _ c~pm (j < 7prn) provided c~ > 1 (~ < 1), resp. 

Definition. Let G be a graph with vertex set {0, 1 . . . . .  n} and let X c {0, 1,. . . ,  n} 
be a set of cardinality x + 1 and p a real number, 0 < p < 1. 

We say that X has the property (a) if for every partition X = X1 U X2 

(a) the number of edges of G which are subsets of either X~ or X2 is at least 
/ 1)(x 

0.74ix + - 2]p and that X has the property (b) if for every partition 
4 

X = X 1 U X  2 

(b) the number of edges of G with one endpoint in X~ and second in X2 is at most 

1.285p (x + 1 ) ( x -  2) [] 
4 

Consider a random graph R with vertex set {0, 1 . . . . .  n}, where edges are chosen 
independently, each with probability p. We shall divide the proof into eight steps: 

i) Let X c {0, 1, . . . ,  n}, IX] = x + 1 be a given subset of the vertex set of R. 
Denote by q~(X) the probability that X fails to have property (i) (i = a, b) as 

[ x[ + [ 21 >_-~(x+l)(x-2)=y,  wehave 

q,(x) <_ 2 ~+1 2 (Y~¢(1 -- p)Y-J 
j<O.74yp kJ,] 

< 2 ~+1 + 0741n~74 YP e x p [ ( - 0 . 2 6  . . ) ] 

"< exp[(ln2 - 9,295' 10-3p(x -- 2))(x + 1)] 

<. %(x)< 2 ~+1 ~ (Y~p-/(1- p)y-i 
j > l . 2 8 5 p y  \ i f  

< 2x+1 expI(0.285 + 1-2851n 1 .2~)YP 3 

< exp[(lne - 9.306. lO-3p(x - :))(x + 1)]. 

H) Let p(n) denote the probability that the neighborhood N~ (in R) of a fixed 
vertex k s {0, 1, . . . ,  n} has cardinality smaller than 0.97pn. 
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III) 

IV) 

v) 

We have 

p(n) < ~ (n~pi(1 _ p),-i < exp[-4.5467.10-4np].  
i<0.97pn \ l / /  

Let P. denote the probability that the neighborhood of every vertex k ~ {0, 1, 
. . . .  n} have properties (a) and (b). 

As ql (x)and qz(x)are clearly decreasing for 

103 In 2 
x > xp = P. 9.29------~ + 2, 

we have for 

0.97pn > x o (18) 

P, > 1 - (n + 1)[p(n) + qa(O.97pn) + qb(O.97pn)]. (19) 

Let s(n) denotes the probability that for a fixed pair of distinct vertices k, 
lE {0, 1 . . . . .  n} there are more than 3p2(n - 1)triangles in R having common 
edge {k, l}. 

We have 

s(n) < p ~" (n -1 )p2 - i (1 -  p2)"-:-l < pexp(-1.295p2(n - l)). 
j>3p2(n--1) J 

Thus, particularly for the probability S, that every edge of R is contained in 
at most 3p2(n - 1) triangles we get 

(n + 1 )exp (_  1.295p2( n _ 1)). (20) S , > l - p  2 

Let kt(G) denotes the number of complete l-gons in graph G. Then we have 

E(k,(R)) = (n + 
4 1) p6 

\ 

and ' 

D(k4(R)) = E(k](R))-  E2(k4(R)) 

< ( n + l ) ( ] ) p l z + ( n + l ) ( ~ ) 4 " p X 2 + ( n + l ) ( ~ ) ' 6 " p l l  
- 8 7 6 

+ 1 5 4 9 4 1)p6 + 1 ) 2 p ' 2  
+ ( n  5 ) ( 4 ) ( 3 ) p  + ( n  _ ( n  4 . 

Thus, according to Chebycheff inequality we have 

1 (n+1):l 001(n+l) } 4  4 ,6 O,X, 

(21) 
1,6" 105 7,2" 105 9,6- 105 1 < -~ + + . 

-- n pn 2 p3(n3 -- n) fn + l'~ 
4 p6 ; 
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Similarly one can show 

(22) 
3,6- 105 1,8" 105 < - - + - -  

n pn 2 

VI) Let G = (V, E)be now a graph such that the neighborhood Nk has properties 
(a) and (b) for every k e {0, 1 . . . . .  n}. Consider a coloring ~: E -~ {1, 2}. Denote 
by T 1 the number  of triangles which are monochromat ic  and by T z the 
number  of triangles which are colored by two colors. 

Then it follows by (a) and (b)that  

3T1 + T2 _> 0.37" 3. r 

and 2T2 __< 0.6425.3T 

where T = T(G) is the total number  of triangles in G. It follows immediately 
from above inequalities that 

T 1 > 0.04875T. 

Moreover, if every edge G is contained in at most 3p2(n - 1) triangles (for 

real p, 0 < p < 1) and G contains at least 0.99 ( n  + 1"] p3 triangles then w e  
\ 3 / 

get that the minimal number  of edges that can destroy all monochromatic  
triangles is at least 

0 , 0 4 8 7 5 . 0 . 9 9 ( n + l )  
0,04875 T >_ 3 p3 _> 2,681- 10-3n2p. 

3 p 2 ( n -  1) 3 p Z ( n -  1) 

VII) Suppose now that k4(G) < 1 , 0 1 ( n + l )  4 p6. Destroy all 4-gons by removing 

(n  + 1)p6 edges. at most 1.01 4 

If (l.01) (n  + l )  4 p6 < 2,681- 10-3n2p 
(23) 

or equivalently p5 < 63,7- 10-3n -z 

then there are still some monochromat ic  triangles left and we are done. 
VIII) Set 

p = 0,576n-Z/5. 

Then (23) holds. Note that (23) gets the following form 

103 In 2 
nl/5 > 2 + 2 = 233,7 

(0,576) 0,97-9,295 

which holds for n + 1 = 7.02- 1011 

(24) 

(25) 

Now (19), (20), (21) and (22)imply, for the above choice ofp  and n that 
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P. > 0,99 

S. > 0,99 

R. > 0,99 

Q. > 0,99 

Hence, there exists a graph G ~ R (with 7,02.1011 vertices) such that 
~) neighborhood of any vertex has properties (a) and (b) 

+ 

k3(G) > O,99(n 31)p  3 
y) every edge of  G is contained in at mos t  3p2(n - 1) triangles 

After deleting at most  1 ,01(  n +  1)  4 p6 edges which destroy all complete 

4-gons we get (as shown in VII) the desired graph. [ ]  

Acknowledgement. The authors are indebted to E. Szemerrdi for many helpful comments and 
fruitful discussions. 
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