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It is shown that every red�blue coloring of the plane, without two blue points
distance 1 apart, must have a red translate of every three-point configuration. A
seven-point configuration S and a red�blue coloring are exhibited, which avoids
both distance one in blue and translates of S in red. � 2001 Academic Press

Key Words: Euclidean Ramsey; translates.

1. INTRODUCTION: RESULTS

Juhasz showed that for any red�blue coloring of the plane with no two
blue points distance one apart, there is a red congruent copy of every 4
point configuration. In the same paper, she found a 12-point configuration
and a red�blue coloring of the plane that forbids distance 1 in the blue set
and congruent copies of that configuration in the red [3]. What happens
if ``congruent copy'' is replaced by ``translate''? Certainly it should be easier
to find configurations and colorings that forbid translates of those con-
figurations; however, here it is shown that under these conditions it still is
impossible to find very small configurations and colorings.

An n-coloring of A is a partition of A into color classes C1 , ..., Cn . In this
paper, all two colorings are red and blue. Call a red�blue coloring of a
Euclidean space admissible if no two blue points are distance one apart,
and call an n-coloring proper if each color class forbids the distance one.
The chromatic number of a Euclidean space S, denoted /(S), is the
smallest n such that there exists a proper n-coloring of that space. An
n-point configuration is a set of n points [a1 , ..., an] in m-dimensional
Euclidean space Rm. A translate of the configuration A is A+v, for some
vector v.
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Theorem 1. Every admissible coloring of the plane has a red translate of
every three point configuration. In fact, every admissible coloring of Rm has
a red translate of every n point configuration, where n�(1+o(1))(1.2)n.

Theorem 2. There exists a seven-point configuration and an admissible
red-blue coloring of the plane so that the seven-point configuration is
forbidden in the red set.

2. PROOFS

Proposition 1. If there exists an n-point configuration A and an
admissible coloring of Rm forbidding red translates of A, /(Rm)�n.

Proof. Suppose such a coloring and such a configuration A exist. Label
the vertices of A a1 , ..., an . Color each point p of Rm with the ith color if
p+ai is blue. If p+ai is blue for more than one value of i, pick the smallest
i. Now each point in the plane is colored, because there are no red trans-
lates of A. Suppose that two points b and c colored with the i th color were
distance 1 apart. Then in the red�blue coloring of the plane given by
assumption, b+ai is blue, and c+ai is again blue. But if b and c are dis-
tance 1 apart, b+ai and c+ai are distance one apart, and we have two
blue points a distance 1 from each other, a contradiction. K

Now Theorem 1 follows from the known bounds for the chromatic
number of Rm. If there were an admissible coloring of the plane and a three-
point configuration forbidden in the red set by the coloring, we would have
a three coloring of the plane forbidding distance 1. But /(Rm)>3 by [2],
so such a coloring does not exist. Similarly, if there were an n-point
configuration and admissible coloring of Rm we would have a proper
n-coloring, but by [1], /(Rm)>n.

Also, we have a partial converse to Proposition 1.

If an n-coloring of Rm has color classes C1 , ..., Cn , and C i=C1+vi , for
some fixed vectors v1 , ..., vn , call the coloring regular.

Proposition 2. If Rm can be properly n-colored by a regular coloring,
then there exists an admissible two-coloring of Rm and an n-point configura-
tion A so that translates of A are forbidden in the red set.

Proof. Assume v1=0. Let A be the set of points [v1 , ..., vn], and two-
color the plane by letting C1 be blue, and every other point be red. We
wish to show that each point of any translate of A in the original coloring
lies in a different color class, so that since there are n classes, some point
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of A will always be in C1 . Suppose not. Then for some point p, and some
i and j, 1�i< j, p+vi and p+vj are both in the same color class, say Ca .
By assumption, Ca=C1+va , so ( p+vi&va) and ( p+vj&va) are both in
C1 . But ( p+vi&va)+vj=( p+vj&va)+vi , a contradiction, because the
left-hand side is colored Cj , but the right is colored Ci . K

Now Theorem 2 follows easily by applying Proposition 2 to the famous
hexagonal coloring of Isbell [2].

A connection can be made with these problems and the problem
considered by Juhasz.

Theorem 3. Either every admissible coloring of the plane has a red
translate of every four-point configuration, or there exists an admissible
coloring of the plane and a seven-point configuration so that congruent copies
of the seven point configuration are forbidden in the red.

Proof. If there existed an admissible red�blue coloring and a four-point
configuration A=[a1 , a2 , a3 , a4] so that translates of the configuration
were forbidden in the red, we would have a proper four-coloring of the
plane. If we allow a1=0, the blue from the two-coloring will be the color
1 of the four-coloring, and the other three color classes will be a partition
of the red. Now consider the seven-point configuration shown in Fig. 1,
a Moser spindle [2].

Clearly it takes more than three colors to properly color the spindle, so
since the red set is partitioned into only three different color classes, it
cannot contain a Moser spindle, so we are done. K

FIG. 1. A Moser spindle, with vertices distance one apart adjacent.
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