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By a Euclidean Ramsey theorem an assertion of the following form is 
meant: let X, ,..., Xr, be configurations in the n-dimensional Euclidean 
space En, then for any coloring of En in r colors there is some i and some $6; 
consisting only of points of the i-th color such that %; is congruent to Zi . 
Here we shall deal with the case it = r = 2. A detailed account on Euclidean 
Ramsey theorems can be found in [l, 21; for a further result, see [3]. 

ErdSs et al. asked in [2, p. 5351 whether the following proposition is valid: 
if the points of E2 are 2-colored (red and blue) so that no two blue points 
are at distance 1 apart then there will be four red points forming a unit 
square (for E3, the analogous statement is obvious). In this paper we show, 
that the answer is affirmative even if we say “arbitrary four-point con- 
figuration” instead of “unit square” (Theorem 1). A supplementary result 
(Theorem 2) shows that Theorem 1 becomes certainly false if we replace 
“four” by “twelve” in it. The interval 4 < n < 12 is no man’s land at 
present. 

Further on, by a coloring we shall mean always a 2-coloring of E2 in 
red and blue. 

First we introduce some notions. Given an arbitrary coloring, a circle will 
be called t-alternating, if any two points on it having distance t are of different 
color (we exclude the degenerate case when t exceeds the diameter of the 
circle). We say that the circle yp(r) of center P and radius r and circle ye(r) 
form a complementary pair, if for any red point on yp(r) (or on ye(r)), the 
corresponding point on the other circle is blue (Xe yP(r) and X’ E ye(r) 
are corresponding points if Xx’ is a translate of PQ). 

Concerning these notions we prove two simple lemmas which will be very 
useful in the sequel. 

LEMMA 1. Given any coloring without blue points of distance t, both 
members of a complementary pair of radius r (r > t/2) are t-alternating. 

Proof. Let yp(r) and y&r) be a complementary pair. If for X, YE yp(r) 
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d(X, Y) (the distance of X and Y) equals t, then X and Y cannot both be 
blue at the same time. Moreover, they may not be red simultaneously, since 
then x’ and Y’ would be blue. 

LEMMA 2. Given any coloring without blue points of distance t, if the 

circle yO(r) is t-afternating, then the circle y&J (r]. = ( d4rz - t 2 + t v’?9/2) 
consists of red points only. 

Proof. Any point on y&,) is a vertex of a suitable regular triangle whose 
opposite side is a chord of yO(r) of length t. 

Before stating the next lemma let us agree to call a four-point configuration 
determining a rhombus with angle 60” and side t shortly a regular t-rhombus. 

LEMMA 3. Given any coloring without blue points of distance t there exists 
a red regular t-rhombus. 

Proof. First we suppose that there exist two blue points, say A and B, 
with d(A, B) = t 43. Then the circles yA(t) and yB(t) are red. Let C and D 
denote their common points. A, B, C and D form a regular t-rhombus. 
Consider all translates (A’, B’, C’, D’> of this rhombus, such that A’ E yA(f). 
We have also B’ E ys(t), C’ E y&t) and D’ E ro(t). A’ and B’ are red every 
time. If C’ and D’ are both red then we have the red configuration as desired. 
In the contrary case if C’ is red then D’ is blue. Thus, by Lemma 1, both 
ye(t) and rD(t) are r-alternating. Hence it follows that the diametrally opposite 
points of y&t) (as well as yD(t)) are of different color; furthermore, by 
Lemma 2, the circles y,-(t ~‘3) and yD(t 1/3) are red. 

Now let us consider the point lattice generated by A, B, C, D (Fig. 1). 
Suppose that our lemma is false. Since A and B are blue, E, F, H, K, 0 have 
to be red, hence G and L are blue. As L is blue, N must be red; as 0, K, N 
are red, P must be blue. The points A and G have distance t d/3, so the circle 
yE(t 43) is red; similarly L and P are blue and d(L, P) = t q/5, whence 
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FIGURE 1 
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~,,(f ~‘3) is red, too. As E and IV are centrally symmetric with respect to C, 
one of the points of Y~(I d3) n ‘ye(t) and one of yE(t d/3) n ye(t) are 
diametrally opposite on ye(t) and they are red, which contradicts our assertion 
above. Thus, in the case when there exist blue points of distance t &, 
the assertion of the lemma is proved. 

In the other case, let 0 be blue. Then y,,(t) and ~,,(t d/5) are red. If the circle 
y,,(2t) has a red point P, then P, P, , P, , and P3 ({PI, Pz} = ~,,(t ~‘3) n 
yP(l), {P3} = ye(t) n yp(t)) form a red regular t-rhombus. Otherwise, all 
points of y0(2t) are blue and so we have blue points of distance t, again a 
contradiction. 

LEMMA 4. Let {A, B, C, D} be a configuration having two points with 
distance a. Given any coloring without btue points of distance 1, if there exists 
a red configuration {PI, P, , P, , Q, , Q2, Q& such that (P, , P, , P3) is 
a regular triangle with unit side and {Q1 , Q2 , Q3} arises from {P, , P, , P3} 
by a translation by distance a, then we can find a red configuration congruent 
to {A, B, C, D}. 

Proof Let {P, , P, , P, , Q, , Qz , Q3} a configuration which fulfils 
the condition of lemma, and let (P, , Q, , R, , S,} be congruent to {A, B, C, D}. 
Denote by Si and Rj the images of S, and R, , respectively, under the trans- 
lation moving P, into Pi (i = 2, 3). Then (R, , R, , R3) as well as (S, , S, , .!&I 
are regular triangles with unit side. Thus at least two points from RI , RP , R, 
-say R, and R,-are red. At the same time, at least one point from S, , S, 
-say &-is red. Then {Pz , Qz , R, , Sz} is a red configuration which is 
congruent to (A, B, C, D}. 

Now we are ready to prove the promised result. 

THEOREM 1. Let {A, B, C, D} be an arbitrary configuration. Given any 
coloring without two blue points at distance I, there exists a red configuration 
which is congruent to (A, B, C, D>. 

Proof First we observe that for any coloring and any (A, B, C, D} 
at least one of the following three assertions is valid: 

(1) A, B, C, and D are the four vertices of a parallelogram with side 
length a and b, and there exist no blue points at distance a or 6. 

(2) No distance of blue points is equal to the distance of two points 
from A, B, C, and D. 

(3) Among the points A, B, C, D there exist two points, say A and B, 
such that AB and CD do not bisect each other (i.e., if A, B, C, D are vertices 
of a parallelogram, then AB is a side-and not a diagonal-of it), and there 
exist blue points whose distance equals to d(A, B). 
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We shall prove the statement of the theorem for these three cases separately. 

(1) In this case Lemma 3 guarantees the existence of a red regular 
a-rhombus {P, Q, R, S> (Fig. 2). Let {P, Q, Y, X} be congruent to {A, B, C, D}. 
If X and Y are red, we are finished. In the contrary case one of them is blue. 
If Y is blue, then let us consider the translation moving P into S. It also moves 

FIGURE 2 

Q into R, X into 2, and Y into I/ (Fig. 2a). Taking into account d( Y, 2) = 
d(Y, V) = a, we have 2 and V red, i.e., {S, R, V, Z} is a red configuration 
congruent to {A, B, C, D}. Now suppose that X is blue. First consider the 
clockwise 60” rotation around P (Fig. 2b), which rotates X into X’. As 
d(X, X’) = b and X is blue, X’ must be red. If the image Y’ of Y under the 
considered rotation is red then the proof is complete. If Y’ is blue then we 
are back at the first case. 

(2) In this case let d(A, B) = a. By Lemma 3, there is a red regular 
a-rhombus {P, Q, R, S> (Fig. 3). Let {P, Q, Y, X} be congruent to {A, B, C, D}. 
If X and Y are red, we are finished. In the contrary case, one of them is 
red, and the other is blue. Then consider the counter-clockwise 60” rotation 
around Q. It moves X into X’, and Y into Y’. If X’ and Y’ are red, the proof 
is complete. If not, then one of them is red, and the other is blue, moreover, 
X and X’ as well as Y and Y’ are of distinct colors. Now take the clockwise 
60” rotation around S. It moves X’ into X*, and Y’ into Y*. If at least one 
from X* and Y* is not red, then as before we get that X’ and X* as well as 
Y’ and Y* are of distinct colors. Since one from X and Y, say Y, is blue, 
Y* is blue too. As the product of the two above rotations equals to a trans- 
lation by distance a, we see that d(Y, Y*) = a and they are blue, contrary 
to the assumption (2). 

(3) Let PO and Q, blue points such that d(P,, , Q,) = d(A, B). Further- 
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FIGURE 3 

more, let {P,, , Q, , R,, , S,,} be congruent to {A, B, C, D} (Fig. 4). Clearly, 
the circles yPO(l) and ~$1) are red. If one of the points R,, &-say R,-- 
is blue, then ~~~(1) is red, too. When we move the configuration 
{PO, Q, , R, , SO) so that P,, , Q, , and R, run on the circles yPO(l), ro,(l), 
and yRO(l), respectively, then S,, is moving on ~~~(1). If in the course of this 
motion we never get a red configuration, then all points of ySO(l) are blue, 
whence the existence of blue points at distance 1 follows, a contradiction. 
Thus we have to consider only that case when R, and SO are red. If in the 
course of the above motion there is no situation in which the moved con- 

FIGURE 4 
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figuration is red (the images of P0 and Q,, are red every time!) then, by 
Lemma 1, ySys;(l) and ~~~$1) are l-alternating, whence, using Lemma 2, 
it turns out that yS,( 1/3) and, yRO( ~‘5) are red. Analogous considerations 
are valid for the image of {P, , Q, , R, , S,) under reflection in the midpoint 
F of Poe,, , and yield that y,;(l) and yR;(l) are l-alternating, while yS;( ~‘3) 
and yR;(l/3) are red. 

Consider those regular triangles with side 1 whose bases are chords of 
yS,(1/3) and whose third vertices are outside this circle. These third vertices 
form another circle ys,((4ii + 1/3)/2). Analogously, take the circle 
yR,((dii + 1/3)/2). It is easy to see that for 

and 

**EYR v’fi+ d3 
0 ( 2 1 n Ys@/3), {y*, z*> = yx*(l) n y&e), 

all points X, Y, Z, X*, Y*, Z* are red, and the regular triangle {X*, Y*, Z*} 
of side 1 is a translate of {X, Y, Z} under that translation which moves S, 
into R,. As d(S,, , R,) = d(C, D), Lemma 4 guarantees the existence of a 
red configuration congruent to {A, B, C, D}. 

Of course, it may happen that yS,(( dii + 43)/2) and yR;(v’3) do not 
intersect. This is the case if 

qs R’) > fi + 3 2/T 
03 0 2 - 

Then we can proceed as follows. 
For any circle ye(r) (r 2 &)), any point of ro((m + 4312) is the 

third vertex of a suitable regular triangle of unit side, whose base is a chord 
of ‘ye(r). This remark suggests the definition of the sequence ri as follows: 
let 

rl = 1 and rla = 
d4r:, - 1 + l/f 

2 . 

Observe that if there exist no two red regular triangles with unit side such that 
one is translated into the other by the translation moving So into R, , and 
for n, the circles yRO(rPI) and r&,) are red, then y&,,+J and ~.$r,+,) 
are l-alternating, implying that Y~~(Y,+~) and ~~,(m+~) are red. Considering 
that r2 = ~‘3 and yRo( 6% yS,(~3) are red, we get that yRo(rzk) and ys,(rzk) 
(k = 1,2,...) are always red. Note that the sequence rsk diverges; furthermore, 
r2k+l - r2k--l < 6 for any natural number k. Thus, among the circles 
ySo(r3), ys,(rs), etc. we can find one, say ySo(r2k+l), such that it intersects the 
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red circle yR;( V/3). If X E yS0(r2k+l 
and Xx E YI&~~+J 17 Y&‘J) 

) n Y~;(l/3~ {K Zl = YAl) n ySo(r2J 
so that d(X, X*) = d(S,, , R,), {Y*, Z*> = 

y,,(l) n YR,(r2J, then all points X, Y, Z, X *, Y*, Z* are red, and the regular 
triangle {X*, Y*, Z*> of unit side is a translate of {X, Y, Z} under the trans- 
lation moving S, into R, . 

The other case in which the circles ys,(( dii + d/3)/2) and yRo( ~'3) do 
not intersect is when 

Now let A4 be the midpoint of R,S,, and M’ the midpoint of R$$. Consider 
the translates of {P,, , R, , S,, , Q,,) by all vectors kM’M with k integer (Fig. 5). 
If for a non-negative integer n the circles yP,(rzn+J and y0,(r2n+l) are red, 
then moving {P, , R, , S, , Qn} so that P, runs on ypn(r,,+l) and Qn runs 
on yo,(rsn+J the circles Y~,(Y~~+~) and yS,(r2n+l) turn out to be l-alternating 
whence, by Lemma 2, yR,(rz(n+l)) and ys,,(r,(,+,)) are red. Now moving 
IQ 12+1, S, , R, , Pntl) so that R, runs on yR,(r2(n+l)) and S, runs on 
ys,(rz(n+l)) we can see that yP,+l(r2tn+l)) and yo,+l(rz(n+l)) are l-alternating 
when- yP,+1(r2(n+l)+l) and yO,+l(rZ(n+l)+l) are red. As yp,,(l) and YO,(~) 
are red, we have that yPk(rekfl) and yo,(rzk+J must be red for any non- 
negative integer k. By the same reasoning, YP-,(rak+J and ~o-,(r$~+~) are red, 
too. But if k is big enough then d(Pk , Pm,) > ~‘312, whence the existence of 
the desired pair of red regular triangles of unit side follows. Thus, we can 
apply Lemma 4. The proof is complete. 

Consider now any coloring of the plane without blue points being at 
distance 1 apart. Encouraged by the preceding result we might hope that 
for any finite configuration there must be a red configuration congruent to 
it. However, in [2, pp. 534-5353, a coloring and a configuration ~6 consisting 
of 1012 points is given so that any configuration which is congruent to .X 
contains necessarily a blue point. As the following theorem shows, the number 
of points in X may be reduced considerably. 

FIGURE 5 
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THEOREM 2. There exist a coloring of the plane without blue points at 
distance 1 and a configuration .X consisting of 12 points such that any con- 
jiguration which is congruent to .X contains necessarily a blue point. 

Proof. Consider in the plane a point lattice whose base parallelogram is 
a regular 2-rhombus. Let every lattice point be the center of a blue open disc 
of radius l/2. For every disc the boundary points under the horizontal 
diameter as well as the left endpoint of this diameter are blue, too. The 
remaining points are red (Fig. 6a). Obviously, under this coloring no blue 
points are at distance 1 apart. 

FIGURE 6 

Now observe that on the plane colored in this way any closed disc of 
radius 2 1/J/3 + 4 must contain at least one of the blue discs (together 
with boundary points). On the other hand, for any point lattice generated 
by a regular d7/2-rhombus each blue disc (considered together with its 
blue boundary points) contains at least one lattice point. Let C be the center 
of a base triangle of a such lattice 8 and take the circle y&2 d3/3 + 4). 
Inside this circle there are exactly 12 lattice points from dp. The configuration 
X consisting of these 12 points (Fig. 6b) fulfils the requirement of the theorem 
as it can be seen easily from the preceding observations. 
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