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There exists a 2-colouring of the plane with red and blue and a configuration K 
of eight points (a regular heptagon plus center) such that there are no two red 
points at distance 1 from each other, and every configuration congruent to K has 
at least one red point. But in this 2-colouring, for every five-point configuration K, 
there is a translate of K all of whose points are blue. © 1994 Academic Press, Inc. 

The investigation of  Ramsey-type problems in the Euclidean space was 
initiated in a series of articles by Erd6s et al. in 1973 [2] .  Solving a 
problem of Erd6s (see I-3, p. 535]),  Juh/tsz proved that  given any colouring 
of the plane by two colours (red and blue), and a four-point  configurat ion 
K, one can find either two red points at distance 1 from each other  or a 
congruent  copy of K all of whose points are blue. However,  Juhfisz also 
proved that  this theorem does not  remain true for all configurations K with 
at least 12 points. 

The aim of  this note is to find a counterexample with only eight points. 

THEOREM 1. There exists a 2-colouring of  the plane with red and blue 
and a configuration K o f  eight points such that (i) there are no two red points 
at distance 1 f rom each other; (ii) every configuration congruent to K has at 
least one red point. 

We use the following 2-colouring of the plane. 

DEFINITION (Standard 2-Colouring). Consider a (fixed) regular triangular 
lattice where the min imum distance between two lattice points is 2. A point  
P ~ R 2 is coloured red if and only if there is a lattice point  whose distance 
from P is smaller than 1/2. Every other  point  is coloured blue. 
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LEMMA. Given a regular triangular lattice with minimum distance 2, any 
closed disc of radius 2/x/3 necessarily contains at least one lattice point. 

Proof The radius of the circumscribed circle of the regular triangle of 
side 2 is 2/xf3. 

Proof of Theorem 1. Consider the standard 2-colouring of the plane, it 
is clear that there are no two red points at distance 1 from each other. Let 
A 1 A 2 . . .  A 7 form a regular heptagon with center O of circumscribed radius 
0.9. Let K =  {A1, A2, ..., A7, O}. 

Assume now, in order to obtain a contradiction, that there is a 
congruent copy K' of K, all of whose points are coloured blue. Without 
danger of confusion let us denote the vertices of K' also by A1, A2 ..... A7, O. 

By the definition of standard 2-colouring, there can be no lattice points 
in the open discs of radius 1/2 around the elements of K'. The circles of 
radius 1/2 around A1, A2 ..... A7 cover the entire circumference of the circle 
around O, because 0.9<cos(~/7). Hence these eight discs around the 
elements of K' all together cover the heptagon conv(K'). On the other 
hand, by the lemma, the closed disc of radius 2/xf3 centered at O contains 
at least one lattice point Z. Hence Z must lie in one of the seven congruent 
shaded moonlike regions shown in Fig. 1 and Fig. 2; say, in the closed 
region bounded by the circular arcs PR, RS, and PS. 

It is easy to see that in this region there is no point whose distance from 
S is larger than SP= SR. Denote the intersection points of the circles 
around A7 and A6, A 6 and As, A5 and A4, A4 and A3 by B, E, H, and F 
(See Fig. 2). 
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FIGURE 1 
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FIGURE 2 

Let D (and G) denote the intersection point  of the circle of radius 1/2 
a round  A 6 (resp., A4) and the line through B (resp., F)  parallel to OS.  

Some straightforward calculations show that  (with rh=0 .9 ,  r e =  1/2, 
ra = 2 / x ~ )  

it + x/r~ { _ r2 sin2(Tz/7) ~ 1.123 S O  = r ~, cos 

~ P A L S = / _ P A l O - ( r c - / O S A 1 - / A I O S )  

 -2r2 
= arccos rh + r c -  a ~ + arcsin rh sin + -  

2rhr c \ r  c 7 

- 4 1  ( 9  . r~, 6;t 
= arccos 1 ~ - +  arcsin , -  sin if)- ~-~ 0.083, 

S P  = S R  = 2re sin / P A  1S ,~, 0.041, 
2 

2re 
S B  = S F =  2 S 0  sin -ff-~ 1.756, 

3z  
S E =  S H =  2 S 0  sin -~-~ 2.190. 
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Using that / S A 4 D  = 37~/7 and / S D A 4  = / D S A 4  = 2~/7, we get 

2 2~ x / S O  2 + 2rhSO cos(2zr/7) + r h ~ 2.276. SD = 2 cos ~ -  

It is easy to see that B F =  SE  because we get BF by a rotation around 
O from SE. Since BD 1[ FG and DG = B F =  SE, the arcs BD and FG are 
separated by the parallel strip between the lines BD and FG whose width 
is BF. Thus, the minimum distance between the arcs BD and GF is BF. It  
is not hard to compute that 

Z F  <<. SF  + S Z  <~ SF + SR ~ 1.797 < 2. 

Similarly, ZB ~< 1.797 < 2. 

ZD >~ SD - S Z  >~ SD - SR ~ 2.234 > 2. 

Similarly, ZG >~ 2.234 > 2. 

Z E  >~ S E -  S Z  >~ S E -  SR ~ 2.148 > 2. 

Similarly, ZH>~ 2.148 > 2. 

Therefore the circle of radius 2 around Z intersects the arcs BD and FG. 
Let M and N denote the corresponding intersection points (see Fig. 2). The 
arc M N  of this circle is completely covered by the discs of radius 1/2 
around the elements of K'. Otherwise M N  would intersect one of the arcs 
ME, EH, or HN; however, the nearest points of these arcs to Z are M, E, 
H, and N, and we have already seen that ZE, ZH,  ZD, and ZG are greater 
than 2, a contradiction. Since MN>~ B F >  2, the union of the discs of radius 
1/2 around the elements of K '  cover an arc of the circle of radius 2 around 
Z, whose angle is greater than ~/3. So there is at least one lattice point on 
this arc (because the circle of radius 2 around Z contains exactly six lattice 
points). Thus one of the 8 open discs of radius 1/2 around the elements of 
K'  contains a lattice point, and the center of this disc must be red. This 
contradiction completes the proof of Theorem 1. 

PROPOSITION 2. Given any five-point configuration K =  (ABCDE) in the 
plane, one can f ind translate of  K all o f  whose vertices are blue in the 
standard 2-colouring. 

Proof  o f  Proposition 2. Suppose that every translate of A B C D E  has 
at least one red point in the standard 2-colouring. Denote the set of the 
red points by T. Let TB, Tc, TD, and T E denote congruent copies of T 
translated by the vectors BA, CA, DA, and EA, respectively. We claim that 
the set T w T~ w --- w TE covers the whole plane. Let O be any point of the 
plane. Translate the configuration A B C D E  so that A moves into O. 
According to our assumption, this translate has at least one red point, say 
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FIGURE 3 

B(= 0 + AB). However, in this case T8 covers O. The set T is periodic, 
hence it has a density. The density of T (see Fig. 3) is the shaded (red) area 
divided by the area of the parallelogramm. That is 7t/8 ,,f3. Of course, 
TB ..... TE have the same density. Thus the density of the covering 

T * =  T u  TBu .-. u TE is 5~/8,,f3. The set T* consists of congruent 
circles and covers the plane. It is well-known (see, e.g., [6, p. 172]) that if 
we cover the plane with congruent circles, the density of this covering is at 

least 27r/.,,/~. But 2 z / , , / ~  > 5z/8 .,f3, a contradiction. This completes the 
proof. This supports our conjecture that for any colouring and for any five- 
point configuration K, one can find either two red points at distance 1 from 
each other or an isometric copy of K all of whose points are blue. 
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