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Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion 
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/
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Parallelism is the key to processing very large 
graphs in a timely manner
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Main focus of my work is shared-memory parallelism
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Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72 
processors is about $20,000.

• Can rent a similar machine (96 processors and 
1.5TB memory) for $11/hour on Google Cloud 

A single shared-memory machine can already 
store the largest publicly available graph 
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges
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Goal: work-efficient and low 
(polylogarithmic) depth algorithms
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(dependence length)
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Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its 
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about 

your datasets

Work-efficiency matters in practice
• Work-efficient algorithms can be much faster 

than work-inefficient algorithms

Up to 9x faster using a work-efficient k-
core algorithm (described in this talk)



9

Graph Systems: examples

Pregel
PowerGraph
PowerLyra
Parallel BGL
GraphLab
Green-Marl
GraphMat
Ringo
SNAP
GraphIt
Ligra
Julienne
GBBS
STAPL

GraphX (Spark)
ASPIRE
GoFFish
Presto
GraphChi
Blogel
GraM
Giraph
PAGE
MOCgraph
GrapH
LightGraph
Gluon
Graphine

Sage
Graphite
GraFBoost
X-Stream
TurboGraph
TurboGraph++
Ligra+
MMap
PathGraph
GridGraph
NXgraph
Chaos
FlashGraph
Graphene

GraphMat
EmptyHeaded
Congra
CongraPlus
Laika
SociaLite
Graphphi
TuFast
Maiter
LCC-Graph
TopoX
Gluon-Async
GraphA
L-PowerGraph

………



9

Graph Systems: examples

Pregel
PowerGraph
PowerLyra
Parallel BGL
GraphLab
Green-Marl
GraphMat
Ringo
SNAP
GraphIt
Ligra
Julienne
GBBS
STAPL

GraphX (Spark)
ASPIRE
GoFFish
Presto
GraphChi
Blogel
GraM
Giraph
PAGE
MOCgraph
GrapH
LightGraph
Gluon
Graphine

Sage
Graphite
GraFBoost
X-Stream
TurboGraph
TurboGraph++
Ligra+
MMap
PathGraph
GridGraph
NXgraph
Chaos
FlashGraph
Graphene

GraphMat
EmptyHeaded
Congra
CongraPlus
Laika
SociaLite
Graphphi
TuFast
Maiter
LCC-Graph
TopoX
Gluon-Async
GraphA
L-PowerGraph

………

Unfortunately existing graph systems typically study a very small 
set of simple problems, such as BFS.

Can we solve a broad set of static graph problems on very large 
graphs?
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Theoretically-Efficient Parallel Graph Algorithms can be Fast and Scalable 

[D, Blelloch, Shun, SPAA’18 Best Paper]

❖ Introduce the Graph-Based Benchmark Suite (GBBS) for 
graph problems with over 20 important problems

❖ GBBS algorithms achieve state-of-the-art results on the 
largest publicly available graphs

github.com/paralg/gbbs

Subgraph Problems
k-Core Decomposition
k-Truss Decomposition
Apx. Densest Subgraph
Triangle Counting
Higher-Clique Counting

Connectivity Problems
Low-Diameter Decomposition
Connectivity
Spanning Forest
Biconnectivity
Minimum Spanning Forest
Strongly Connected Components

Covering Problems
Maximal Ind. Set
Maximal Matching
Apx. Set Cover
Graph Coloring

Shortest Path Problems
Breadth-First Search
Betweenness Centrality
Bellman-Ford
General Weight SSSP
Integral Weight SSSP
SS Widest Path
k-Spanner

Eigenvector Problems
PageRank
Personalized PageRank
Personalized SimRank
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of magnitude using comparable hardware.

Outperform distributed memory results using 
orders of magnitude less hardware.
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GBBS can analyze O(100B) edge graphs in seconds to minutes
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A broad set of fundamental graph problems can be solved 
on a graph with over 200 billion edges in 3 minutes
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Main Challenge:
How do we build simple and provably-efficient implementations of 

these algorithms that work on the largest real-world graphs?
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GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP,  TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface 

in the lineage of Ligra [SB’12]

❖ Provides many useful primitives

• Map
• Reduce
• Filter
• Pack
• Intersect

Vertex Operations

• Filter
• Pack
• Contract

Graph Operations

Graph |V| |E| Size (CSR) Compressed Bytes/edge

WDC Hyperlink 3.5B 128B 1080GB 446GB 1.74

WDC Hyperlink (Sym) 3.5B 225B 928 GB 351GB 1.56

❖ Compressed graph representations
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k-Core Decomposition

2-core3-core

1-core

maximal connected subgraph of G where all vertices have 
degree at least k within the subgraph

k-core : 

coreness : largest k-core that a given vertex participates in

Widely used in network analysis tasks such as 
unsupervised clustering of social and biological networks
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The Peeling Algorithm

• Current degree of remaining vertices decreases as 
vertices are peeled from the graph

• Once a vertex’s current degree is less than or equal to 
the current core number, it gets peeled

k = 1 k = 1 k = 1

All vertices “below threshold” can be peeled in parallel
Our contribution is to give a general interface for bucketing
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GBBS Algorithm

ρ is the number of peeling roundswhere



A Work-Efficient k-core Decomposition Algorithm

❖ Actual code in GBBS is 
under 50 lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

GBBS Algorithm

Our algorithm is the first work-efficient algorithm for 
k-core decomposition with non-trivial parallelism

ρ is the number of peeling roundswhere
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k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G 
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

GBBS [DBS’18]

184 seconds

72

1 TB

Exact

Highly Affordable

1.95x faster than the approximate distributed result by SRM’16, using 
56.8x fewer hyper-threads and 16.3x less memory
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GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:

❖ Parallel k-clique enumeration [SDS’21]

❖ Graph Embedding [QDTPW’21]

❖ Structural Graph Clustering [TDS’21]

❖ Batch-Dynamic Graph Orientation [LSYDS’22]

❖ Fast Parallel Graph Connectivity [DHS’21]

SAGE
Semi-Asymmetric
Graph EngineArbClique
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GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:

❖ Parallel k-clique enumeration [SDS’21]

❖ Graph Embedding [QDTPW’21]

❖ Structural Graph Clustering [TDS’21]

❖ Batch-Dynamic Graph Orientation [LSYDS’22]

❖ Fast Parallel Graph Connectivity [DHS’21]

Used at Google:

❖ Fast and scalable implementations of parallel graph 
clustering algorithms (e.g., Affinity Clustering)

❖ Being used to develop and evaluate parallel hierarchical 
agglomerative clustering (HAC) algorithms

SAGE
Semi-Asymmetric
Graph EngineArbClique



Faster k-Means to 
Accelerate ANNS

20
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Clustering

❖ Given a set of points  with a notion of distance between the points, 
group the points into a number of clusters so that:
❖ Members of the same cluster are close / similar to each other
❖ Members of different clusters are dissimilar

Usually:
❖ Points are in a high-dimensional space, e.g., 
❖ Distance is measured using Euclidean distance, but other measures 

also possible (e.g., Jaccard, edit-distance, etc)

P

P ∈ ℝd, d ≥ 100
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Clustering
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Clustering Problem: Building Bucketing-Based Indexes

❖ Exact retrieval requires exhaustive scan in the worst case; settle for 
approximation instead.

❖ Measure recall@k: the fraction of output candidates in true top k neighbors
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Clustering Problem: Building Bucketing-Based Indexes

❖ Build:
❖ Assign points to one (or more) 

buckets
❖ Nearby points likely to be in the 

same buckets
❖ Query:

❖ Probe a subset of buckets for the 
queried point

❖ Compare with all points in these 
buckets and report top-k
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Graph Indexes

q

s

❖ Main ideas:
❖ Build graphs with polylog(n) 

degree
❖ Satisfy the “relative neighbor” 

property (RNGs):
❖ Points  connected by an edge if 

there does not exist a third point  
that is closer to both  than 
they are to each other

p, q
r

p, q
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FAISS Index: k-Means Bucketing + Graph over Centroids

❖ k-Means clustering partitions the data into 
k convex clusters

❖ Idea: run k-means with reasonably large k 
(e.g., on an  point dataset, we 
might use 

n = 1e9
k = 1e6)
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FAISS Index: k-Means Bucketing + Graph over Centroids

❖ Such a large value of  creates an interesting 
routing problem—given a query , which 
buckets (clusters) should we probe?

❖ Idea: just build another ANN index over the 
centroids. In this case, a graph index (e.g., 
HNSW or DiskANN)

k
q

❖ In practice, we will figure 
out the  closest centroids 
to the query and probe the 
clusters for these centroids

k′￼
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k-Means for Product Quantization

❖ Vectors in modern applications are large
❖ Recent OpenAI text embeddings have 

~1600 dimensions. Used to be 8 times 
larger until recently

❖ More dimensions useful in applications, but 
costly to store and search

❖ PQ: main idea
❖  dimensions
❖ Reduce range of each dimension

❖ i.e., use uint8 instead of float

D → D*
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the position of the centroid 

28 = 256



29

k-Means for Product Quantization

❖ PQ: main idea
❖  dimensions
❖ Reduce range of each dimension

❖ i.e., use uint8 instead of float

D → D*

❖ Range reduction works by using 
the id of a centroid (say one of 

 centroids)
❖ Original point can be 

approximated by remembering 
the position of the centroid 

28 = 256

All of these applications require fast k-means clustering

Can we build fast implementations with good accuracy (ideally 
with some theoretical guarantees) and good scalability?
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Our plan: implement a variety of k-means baselines 

❖ k-means objective: partition input points into 
 clusters  minimizing:k C1, …, Ck

k

∑
i=1

∑
x∈Ci

∥x − μi∥2

μi = 𝗆𝖾𝖺𝗇(Ci) =
1

|Ci | ∑
x∈Ci

x

❖ Related to the idea of minimizing the 
variance of a cluster (also called “Sum-of-
Squared Deviations”)
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Lloyd’s Algorithm

❖ Lloyd’s algorithm (baseline)
❖ Consists of two steps. Suppose some initial 

centers  given:

(1) Assignment:
❖ assign each  to the cluster 

corresponding to its nearest center
(2) Update:
❖ recompute  based on the set of points 

assigned to 

c1, …, ck

p ∈ P

ci
Ci
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Lloyd’s Algorithm

❖ Lloyd’s algorithm (baseline)
❖ Consists of two steps. Suppose some initial 

centers  given:

(1) Assignment:
❖ assign each  to the cluster 

corresponding to its nearest center
(2) Update:
❖ recompute  based on the set of points 

assigned to 

c1, …, ck

p ∈ P

ci
Ci

What is the cost of one Lloyd’s iteration in terms of ?n, k, d

What potential for optimizations are there?
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Better initialization: k-means++

❖ Instead of picking  random centers initially:
❖ Pick one center uniformly at random
❖ For each point  not yet elected as a center, 

compute , the distance between  and 
its nearest center

❖ Sample an unchosen point to be chosen as 
the center where points are sampled with 
probability proportional to 

k

p
D(x) p

D(x)2

❖ Amazingly, can show that the centers that 
result from this procedure are an  
approximation of OPT (in expectation)

O(log n)
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Scalable initialization: k-means||

❖ A slightly more complex scheme, but admits 
more parallelism:
❖ Sample  points in each round
❖ Repeat for approximately  rounds
❖ Yields  points that are then 

reclustered into  initial centers 

❖ Theory: initial  centers give a 
constant factor approximation of OPT

O(k)
O(log n)

O(k log n)
k

O(k log n)
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Avoiding distance comparisons
❖ Costly part of Lloyd iteration is comparing each 

point  with all  centers (costs ) 
❖ Idea: use triangle inequality to avoid distance 

computations for points

p k O(nkd)

p p→d(p, C1(p))
d(p, C1(p)) + δ(C1(p))

d(p, C2(p))
d(p, C2(p)) − δmax
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Project plan:

❖ Build a highly optimized shared-memory library 
of k-means implementations

❖ Evaluate existing algorithms for large :
❖  points
❖  centers
❖

Evaluate performance on real-world embedding 
datasets from ANN search applications

(Hopefully) design new algorithms and heuristics 
to obtain scalability improvements at billion-scale!

n, k, d
n = 1B
k = 1M
d ∈ [100,1600]
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Massively Parallel 
Computation

Adaptive Massively 
Parallel Computation

Batch-Dynamic 
Graph Processing

Euler Tour Trees

Low-
Outdegree 
Orientation

Dynamic 
Connectivity

Static Graph 
ProcessingRC-Trees

ConnectIt

GBBS

Sage

Graph Clustering

Streaming Graph 
Processing

Aspen

Julienne

Theoretically-
Efficient Parallel 

Graph Algorithms

Thank you!

Shared-Memory 
Model

Connectivity and 
Related Problems

Semi-
Asymmetric 

Model

Graph-
Based HAC

Graph 
Compression

laxman@umd.edu


