
Parallelism Background and

Fast Parallel Spatial Clustering Algorithms

1

Laxman Dhulipala
University of Maryland, College Park
cs.umd.edu/~laxman

2

My Research

2

My Research

High-performance systems and algorithms that
provide theoretical guarantees and are easy to use

3

My Research

Practice Theory

High-performance systems and algorithms that
provide theoretical guarantees and are easy to use

3

My Research

Practice Theory

Provably-Efficient and
Scalable Systems

New Models for
Parallel Computation

Parallel Algorithm
Design and Analysis

High-performance systems and algorithms that
provide theoretical guarantees and are easy to use

3

My Research

Practice Theory

Provably-Efficient and
Scalable Systems

New Models for
Parallel Computation

Parallel Algorithm
Design and Analysis

High-performance systems and algorithms that
provide theoretical guarantees and are easy to use

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

4

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

4

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/

1995 2000 2005 2010 2015 2020
Number of Vertices + Edges

101

103

105

107

109

1011

1013

1015

Y
ea

r

Graph Type
Web

Social

Collaboration

Biology

Other

human brain graph (expected)
n = 1011 m = 1014

Year of sourcing vs total number of vertices and edges
for real-world graphs from the SNAP and LAW datasets

4

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/

1995 2000 2005 2010 2015 2020
Number of Vertices + Edges

101

103

105

107

109

1011

1013

1015

Y
ea

r

Graph Type
Web

Social

Collaboration

Biology

Other

human brain graph (expected)
n = 1011 m = 1014

Year of sourcing vs total number of vertices and edges
for real-world graphs from the SNAP and LAW datasets

Parallelism is the key to processing very large
graphs in a timely manner

4

5

Parallelism
Parallel machines are everywhere!

5

Parallelism
Parallel machines are everywhere!

5

Parallelism
Parallel machines are everywhere!

5

Parallelism
Parallel machines are everywhere!

5

Parallelism
Parallel machines are everywhere!

5

Parallelism
Parallel machines are everywhere!

Main focus of my work is shared-memory parallelism

6

Shared-Memory Parallelism

6

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

6

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

6

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

6

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

A single shared-memory machine can already
store the largest publicly available graph
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges

7

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

7

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

7

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

7

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = 𝖶𝗈𝗋𝗄 /#𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗈𝗋𝗌 + O(𝖣𝖾𝗉𝗍𝗁)

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

7

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = 𝖶𝗈𝗋𝗄 /#𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗈𝗋𝗌 + O(𝖣𝖾𝗉𝗍𝗁)

A work-efficient parallel algorithm has work
that asymptotically matches that of the best
sequential algorithm for the problem

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

7

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Goal: work-efficient and low
(polylogarithmic) depth algorithms

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = 𝖶𝗈𝗋𝗄 /#𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗈𝗋𝗌 + O(𝖣𝖾𝗉𝗍𝗁)

A work-efficient parallel algorithm has work
that asymptotically matches that of the best
sequential algorithm for the problem

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

8

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

8

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Input-agnostic design
• Design codes without worrying too much about

your datasets

8

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Input-agnostic design
• Design codes without worrying too much about

your datasets

8

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about

your datasets

8

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about

your datasets

Work-efficiency matters in practice
• Work-efficient algorithms can be much faster

than work-inefficient algorithms

8

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about

your datasets

Work-efficiency matters in practice
• Work-efficient algorithms can be much faster

than work-inefficient algorithms

Up to 9x faster using a work-efficient k-
core algorithm (described in this talk)

9

Graph Systems: examples

Pregel
PowerGraph
PowerLyra
Parallel BGL
GraphLab
Green-Marl
GraphMat
Ringo
SNAP
GraphIt
Ligra
Julienne
GBBS
STAPL

GraphX (Spark)
ASPIRE
GoFFish
Presto
GraphChi
Blogel
GraM
Giraph
PAGE
MOCgraph
GrapH
LightGraph
Gluon
Graphine

Sage
Graphite
GraFBoost
X-Stream
TurboGraph
TurboGraph++
Ligra+
MMap
PathGraph
GridGraph
NXgraph
Chaos
FlashGraph
Graphene

GraphMat
EmptyHeaded
Congra
CongraPlus
Laika
SociaLite
Graphphi
TuFast
Maiter
LCC-Graph
TopoX
Gluon-Async
GraphA
L-PowerGraph

………

9

Graph Systems: examples

Pregel
PowerGraph
PowerLyra
Parallel BGL
GraphLab
Green-Marl
GraphMat
Ringo
SNAP
GraphIt
Ligra
Julienne
GBBS
STAPL

GraphX (Spark)
ASPIRE
GoFFish
Presto
GraphChi
Blogel
GraM
Giraph
PAGE
MOCgraph
GrapH
LightGraph
Gluon
Graphine

Sage
Graphite
GraFBoost
X-Stream
TurboGraph
TurboGraph++
Ligra+
MMap
PathGraph
GridGraph
NXgraph
Chaos
FlashGraph
Graphene

GraphMat
EmptyHeaded
Congra
CongraPlus
Laika
SociaLite
Graphphi
TuFast
Maiter
LCC-Graph
TopoX
Gluon-Async
GraphA
L-PowerGraph

………

Unfortunately existing graph systems typically study a very small
set of simple problems, such as BFS.

Can we solve a broad set of static graph problems on very large
graphs?

10

Theoretically-Efficient Parallel Graph Algorithms can be Fast and Scalable

[D, Blelloch, Shun, SPAA’18 Best Paper]

❖ Introduce the Graph-Based Benchmark Suite (GBBS) for
graph problems with over 20 important problems

❖ GBBS algorithms achieve state-of-the-art results on the
largest publicly available graphs

github.com/paralg/gbbs

Subgraph Problems
k-Core Decomposition
k-Truss Decomposition
Apx. Densest Subgraph
Triangle Counting
Higher-Clique Counting

Connectivity Problems
Low-Diameter Decomposition
Connectivity
Spanning Forest
Biconnectivity
Minimum Spanning Forest
Strongly Connected Components

Covering Problems
Maximal Ind. Set
Maximal Matching
Apx. Set Cover
Graph Coloring

Shortest Path Problems
Breadth-First Search
Betweenness Centrality
Bellman-Ford
General Weight SSSP
Integral Weight SSSP
SS Widest Path
k-Spanner

Eigenvector Problems
PageRank
Personalized PageRank
Personalized SimRank

Benchmarking Connectivity on WebDataCommons Graph

102 103 104 105

Memory Used (GB)

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSVGBBS

External Memory

Distributed Memory

Shared Memory

100 101 102 103 104 105 106

Number of Processors

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSV

GBBS

External Memory

Distributed Memory

Shared Memory

Benchmarking Connectivity on WebDataCommons Graph

102 103 104 105

Memory Used (GB)

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSVGBBS

External Memory

Distributed Memory

Shared Memory

100 101 102 103 104 105 106

Number of Processors

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSV

GBBS

External Memory

Distributed Memory

Shared Memory

Outperform external memory results by orders
of magnitude using comparable hardware.

Benchmarking Connectivity on WebDataCommons Graph

102 103 104 105

Memory Used (GB)

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSVGBBS

External Memory

Distributed Memory

Shared Memory

100 101 102 103 104 105 106

Number of Processors

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSV

GBBS

External Memory

Distributed Memory

Shared Memory

Outperform external memory results by orders
of magnitude using comparable hardware.

Outperform distributed memory results using
orders of magnitude less hardware.

12

GBBS can analyze O(100B) edge graphs in seconds to minutes

Br
ea
dt
h-
Fi
rst

Se
ar
ch

In
te
gr
al-

W
eig

ht
SS

SP

Be
llm

an
-F
or
d

Si
ng

le-
So

ur
ce

W
id
es
t P

at
h

Si
ng

le-
So

ur
ce

Be
tw

ee
nn

es
s Ce

nt
ra
lit
y

O
(k
)-S

pa
nn

er

Lo
w-

Diam
et
er

Dec
om

po
sit

ion

Co
nn

ec
tiv

ity

Sp
an

ni
ng

Fo
re
st

Bi
co

nn
ec
tiv

ity

St
ro
ng

ly
Co

nn
ec
te
d
Co

m
po

ne
nt
s

M
in
im

um
Sp

an
ni
ng

Fo
re
st

M
ax
im

al
In
de

pe
nd

en
t S

et

M
ax
im

al
M
at
ch

in
g

Gr
ap

h
Co

lor
in
g

k-
Co

re

Ap
pr
ox
im

at
e
Se

t C
ov

er

Ap
pr
ox
im

at
e
Den

se
st

Su
bg

ra
ph

Pa
ge

Ra
nk

Ite
ra
tio

n
0

25

50

75

100

125

150

175

200

R
u
n
n
in

g
T

im
e

(S
ec

on
d
s)

11

58 59
48

37 36

20 25
35

165

185 187

32

108

158

184

98

51

13

12

GBBS can analyze O(100B) edge graphs in seconds to minutes

Br
ea
dt
h-
Fi
rst

Se
ar
ch

In
te
gr
al-

W
eig

ht
SS

SP

Be
llm

an
-F
or
d

Si
ng

le-
So

ur
ce

W
id
es
t P

at
h

Si
ng

le-
So

ur
ce

Be
tw

ee
nn

es
s Ce

nt
ra
lit
y

O
(k
)-S

pa
nn

er

Lo
w-

Diam
et
er

Dec
om

po
sit

ion

Co
nn

ec
tiv

ity

Sp
an

ni
ng

Fo
re
st

Bi
co

nn
ec
tiv

ity

St
ro
ng

ly
Co

nn
ec
te
d
Co

m
po

ne
nt
s

M
in
im

um
Sp

an
ni
ng

Fo
re
st

M
ax
im

al
In
de

pe
nd

en
t S

et

M
ax
im

al
M
at
ch

in
g

Gr
ap

h
Co

lor
in
g

k-
Co

re

Ap
pr
ox
im

at
e
Se

t C
ov

er

Ap
pr
ox
im

at
e
Den

se
st

Su
bg

ra
ph

Pa
ge

Ra
nk

Ite
ra
tio

n
0

25

50

75

100

125

150

175

200

R
u
n
n
in

g
T

im
e

(S
ec

on
d
s)

11

58 59
48

37 36

20 25
35

165

185 187

32

108

158

184

98

51

13

A broad set of fundamental graph problems can be solved
on a graph with over 200 billion edges in 3 minutes

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Work and Depth of GBBS Results

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Work and Depth of GBBS Results

Main Challenge:
How do we build simple and provably-efficient implementations of

these algorithms that work on the largest real-world graphs?

14

GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP, TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface

in the lineage of Ligra [SB’12]

14

GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP, TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface

in the lineage of Ligra [SB’12]

❖ Provides many useful primitives

• Map
• Reduce
• Filter
• Pack
• Intersect

Vertex Operations

• Filter
• Pack
• Contract

Graph Operations

14

GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP, TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface

in the lineage of Ligra [SB’12]

❖ Provides many useful primitives

• Map
• Reduce
• Filter
• Pack
• Intersect

Vertex Operations

• Filter
• Pack
• Contract

Graph Operations

Graph |V| |E| Size (CSR) Compressed Bytes/edge

WDC Hyperlink 3.5B 128B 1080GB 446GB 1.74

WDC Hyperlink (Sym) 3.5B 225B 928 GB 351GB 1.56

❖ Compressed graph representations

15

k-Core Decomposition

15

k-Core Decomposition

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

15

k-Core Decomposition

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

15

k-Core Decomposition

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

15

k-Core Decomposition

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

15

k-Core Decomposition

2-core

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

15

k-Core Decomposition

2-core3-core

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

15

k-Core Decomposition

2-core3-core

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

Widely used in network analysis tasks such as
unsupervised clustering of social and biological networks

16

The Peeling Algorithm

k = 1

16

The Peeling Algorithm

k = 1 k = 1

16

The Peeling Algorithm

k = 1 k = 1 k = 1

16

The Peeling Algorithm

• Current degree of remaining vertices decreases as
vertices are peeled from the graph

k = 1 k = 1 k = 1

16

The Peeling Algorithm

• Current degree of remaining vertices decreases as
vertices are peeled from the graph

• Once a vertex’s current degree is less than or equal to
the current core number, it gets peeled

k = 1 k = 1 k = 1

16

The Peeling Algorithm

• Current degree of remaining vertices decreases as
vertices are peeled from the graph

• Once a vertex’s current degree is less than or equal to
the current core number, it gets peeled

k = 1 k = 1 k = 1

All vertices “below threshold” can be peeled in parallel
Our contribution is to give a general interface for bucketing

A Work-Efficient k-core Decomposition Algorithm

❖ Actual code in GBBS is
under 50 lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

GBBS Algorithm

ρ is the number of peeling roundswhere

A Work-Efficient k-core Decomposition Algorithm

❖ Actual code in GBBS is
under 50 lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

GBBS Algorithm

Our algorithm is the first work-efficient algorithm for
k-core decomposition with non-trivial parallelism

ρ is the number of peeling roundswhere

18

k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

18

k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

GBBS [DBS’18]

184 seconds

72

1 TB

Exact

Highly Affordable

18

k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

GBBS [DBS’18]

184 seconds

72

1 TB

Exact

Highly Affordable

1.95x faster than the approximate distributed result by SRM’16, using
56.8x fewer hyper-threads and 16.3x less memory

19

GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:

❖ Parallel k-clique enumeration [SDS’21]

❖ Graph Embedding [QDTPW’21]

❖ Structural Graph Clustering [TDS’21]

❖ Batch-Dynamic Graph Orientation [LSYDS’22]

❖ Fast Parallel Graph Connectivity [DHS’21]

SAGE
Semi-Asymmetric
Graph EngineArbClique

19

GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:

❖ Parallel k-clique enumeration [SDS’21]

❖ Graph Embedding [QDTPW’21]

❖ Structural Graph Clustering [TDS’21]

❖ Batch-Dynamic Graph Orientation [LSYDS’22]

❖ Fast Parallel Graph Connectivity [DHS’21]

Used at Google:

❖ Fast and scalable implementations of parallel graph
clustering algorithms (e.g., Affinity Clustering)

❖ Being used to develop and evaluate parallel hierarchical
agglomerative clustering (HAC) algorithms

SAGE
Semi-Asymmetric
Graph EngineArbClique

Faster k-Means to
Accelerate ANNS

20

21

Clustering

❖ Given a set of points with a notion of distance between the points,
group the points into a number of clusters so that:
❖ Members of the same cluster are close / similar to each other
❖ Members of different clusters are dissimilar

Usually:
❖ Points are in a high-dimensional space, e.g.,
❖ Distance is measured using Euclidean distance, but other measures

also possible (e.g., Jaccard, edit-distance, etc)

P

P ∈ ℝd, d ≥ 100

22

Clustering

23

Clustering Problem: Building Bucketing-Based Indexes

❖ Exact retrieval requires exhaustive scan in the worst case; settle for
approximation instead.

❖ Measure recall@k: the fraction of output candidates in true top k neighbors

24

Clustering Problem: Building Bucketing-Based Indexes

❖ Build:
❖ Assign points to one (or more)

buckets
❖ Nearby points likely to be in the

same buckets
❖ Query:

❖ Probe a subset of buckets for the
queried point

❖ Compare with all points in these
buckets and report top-k

25

Graph Indexes

q

s

❖ Main ideas:
❖ Build graphs with polylog(n)

degree
❖ Satisfy the “relative neighbor”

property (RNGs):
❖ Points connected by an edge if

there does not exist a third point
that is closer to both than
they are to each other

p, q
r

p, q

26

FAISS Index: k-Means Bucketing + Graph over Centroids

❖ k-Means clustering partitions the data into
k convex clusters

❖ Idea: run k-means with reasonably large k
(e.g., on an point dataset, we
might use

n = 1e9
k = 1e6)

27

FAISS Index: k-Means Bucketing + Graph over Centroids

❖ Such a large value of creates an interesting
routing problem—given a query , which
buckets (clusters) should we probe?

❖ Idea: just build another ANN index over the
centroids. In this case, a graph index (e.g.,
HNSW or DiskANN)

k
q

❖ In practice, we will figure
out the closest centroids
to the query and probe the
clusters for these centroids

k′￼

28

k-Means for Product Quantization

❖ Vectors in modern applications are large
❖ Recent OpenAI text embeddings have

~1600 dimensions. Used to be 8 times
larger until recently

❖ More dimensions useful in applications, but
costly to store and search

❖ PQ: main idea
❖ dimensions
❖ Reduce range of each dimension

❖ i.e., use uint8 instead of float

D → D*

29

k-Means for Product Quantization

❖ PQ: main idea
❖ dimensions
❖ Reduce range of each dimension

❖ i.e., use uint8 instead of float

D → D*

❖ Range reduction works by using
the id of a centroid (say one of

 centroids)
❖ Original point can be

approximated by remembering
the position of the centroid

28 = 256

29

k-Means for Product Quantization

❖ PQ: main idea
❖ dimensions
❖ Reduce range of each dimension

❖ i.e., use uint8 instead of float

D → D*

❖ Range reduction works by using
the id of a centroid (say one of

 centroids)
❖ Original point can be

approximated by remembering
the position of the centroid

28 = 256

All of these applications require fast k-means clustering

Can we build fast implementations with good accuracy (ideally
with some theoretical guarantees) and good scalability?

30

Our plan: implement a variety of k-means baselines

❖ k-means objective: partition input points into
 clusters minimizing:k C1, …, Ck

k

∑
i=1

∑
x∈Ci

∥x − μi∥2

μi = 𝗆𝖾𝖺𝗇(Ci) =
1

|Ci | ∑
x∈Ci

x

❖ Related to the idea of minimizing the
variance of a cluster (also called “Sum-of-
Squared Deviations”)

31

Lloyd’s Algorithm

❖ Lloyd’s algorithm (baseline)
❖ Consists of two steps. Suppose some initial

centers given:

(1) Assignment:
❖ assign each to the cluster

corresponding to its nearest center
(2) Update:
❖ recompute based on the set of points

assigned to

c1, …, ck

p ∈ P

ci
Ci

31

Lloyd’s Algorithm

❖ Lloyd’s algorithm (baseline)
❖ Consists of two steps. Suppose some initial

centers given:

(1) Assignment:
❖ assign each to the cluster

corresponding to its nearest center
(2) Update:
❖ recompute based on the set of points

assigned to

c1, …, ck

p ∈ P

ci
Ci

31

Lloyd’s Algorithm

❖ Lloyd’s algorithm (baseline)
❖ Consists of two steps. Suppose some initial

centers given:

(1) Assignment:
❖ assign each to the cluster

corresponding to its nearest center
(2) Update:
❖ recompute based on the set of points

assigned to

c1, …, ck

p ∈ P

ci
Ci

What is the cost of one Lloyd’s iteration in terms of ?n, k, d

What potential for optimizations are there?

32

Better initialization: k-means++

❖ Instead of picking random centers initially:
❖ Pick one center uniformly at random
❖ For each point not yet elected as a center,

compute , the distance between and
its nearest center

❖ Sample an unchosen point to be chosen as
the center where points are sampled with
probability proportional to

k

p
D(x) p

D(x)2

❖ Amazingly, can show that the centers that
result from this procedure are an
approximation of OPT (in expectation)

O(log n)

33

Scalable initialization: k-means||

❖ A slightly more complex scheme, but admits
more parallelism:
❖ Sample points in each round
❖ Repeat for approximately rounds
❖ Yields points that are then

reclustered into initial centers

❖ Theory: initial centers give a
constant factor approximation of OPT

O(k)
O(log n)

O(k log n)
k

O(k log n)

34

Avoiding distance comparisons
❖ Costly part of Lloyd iteration is comparing each

point with all centers (costs)
❖ Idea: use triangle inequality to avoid distance

computations for points

p k O(nkd)

p p→d(p, C1(p))
d(p, C1(p)) + δ(C1(p))

d(p, C2(p))
d(p, C2(p)) − δmax

35

Project plan:

❖ Build a highly optimized shared-memory library
of k-means implementations

❖ Evaluate existing algorithms for large :
❖ points
❖ centers
❖

Evaluate performance on real-world embedding
datasets from ANN search applications

(Hopefully) design new algorithms and heuristics
to obtain scalability improvements at billion-scale!

n, k, d
n = 1B
k = 1M
d ∈ [100,1600]

36

Massively Parallel
Computation

Adaptive Massively
Parallel Computation

Batch-Dynamic
Graph Processing

Euler Tour Trees

Low-
Outdegree
Orientation

Dynamic
Connectivity

Static Graph
ProcessingRC-Trees

ConnectIt

GBBS

Sage

Graph Clustering

Streaming Graph
Processing

Aspen

Julienne

Theoretically-
Efficient Parallel

Graph Algorithms

Thank you!

Shared-Memory
Model

Connectivity and
Related Problems

Semi-
Asymmetric

Model

Graph-
Based HAC

Graph
Compression

laxman@umd.edu

