# Parallelism Background and Fast Parallel Spatial Clustering Algorithms

Laxman Dhulipala University of Maryland, College Park cs.umd.edu/~laxman





















Provably-Efficient and Scalable Systems

Parallel Algorithm Design and Analysis



New Models for Parallel Computation





# Practice

Provably-Efficient and Scalable Systems Parallel Algorithm Design and Analysis



New Models for Parallel Computation



# Large-Scale Graph Processing

WebDataCommons hyperlink graph

- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store



# Large-Scale Graph Processing

WebDataCommons hyperlink graph

- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store
- Largest publicly available graph

"...[the 2012 graph is the] largest hyperlink graph that is available to the public outside companies such as Google, Yahoo, and Microsoft."

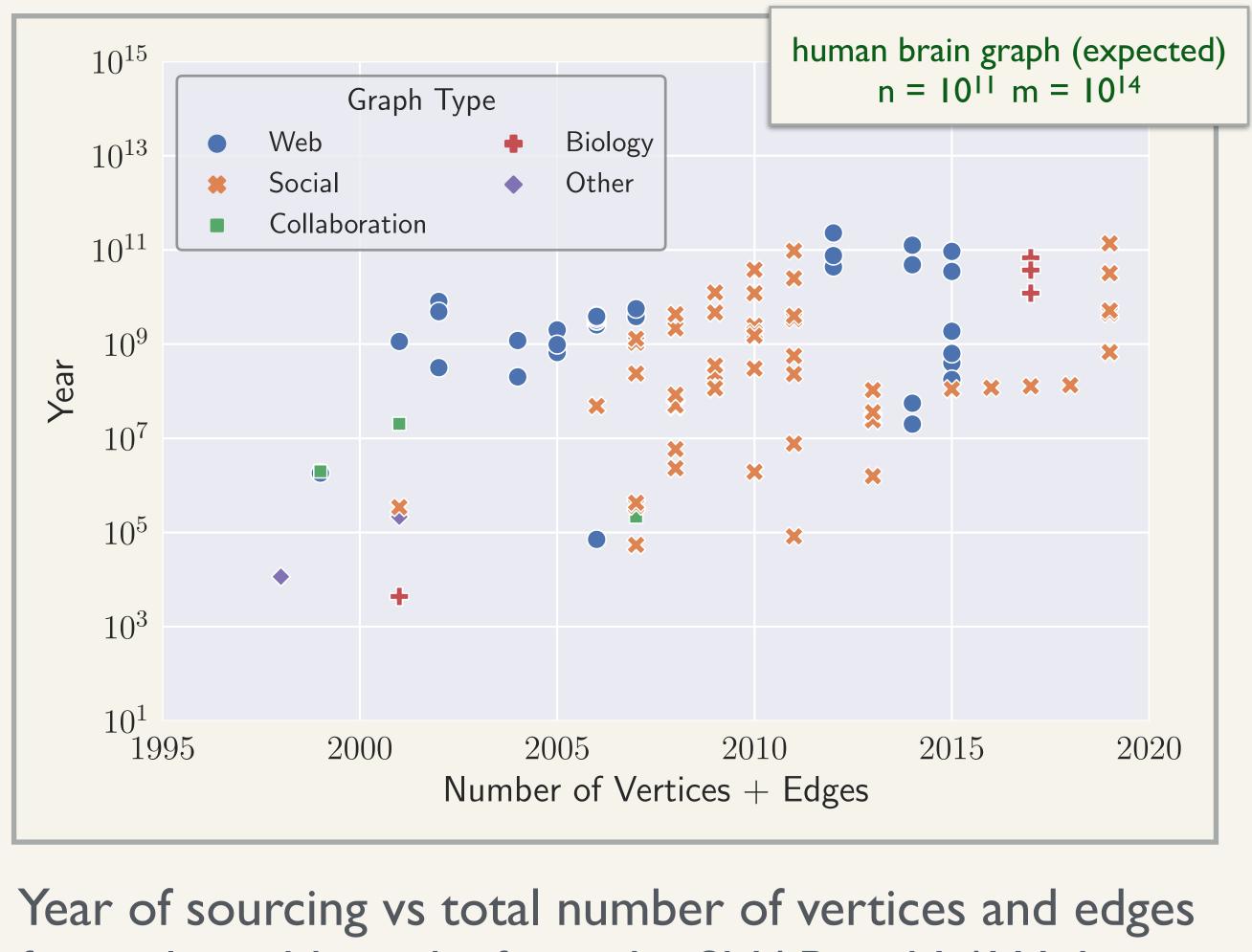


# Large-Scale Graph Processing

WebDataCommons hyperlink graph

- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store
- Largest publicly available graph

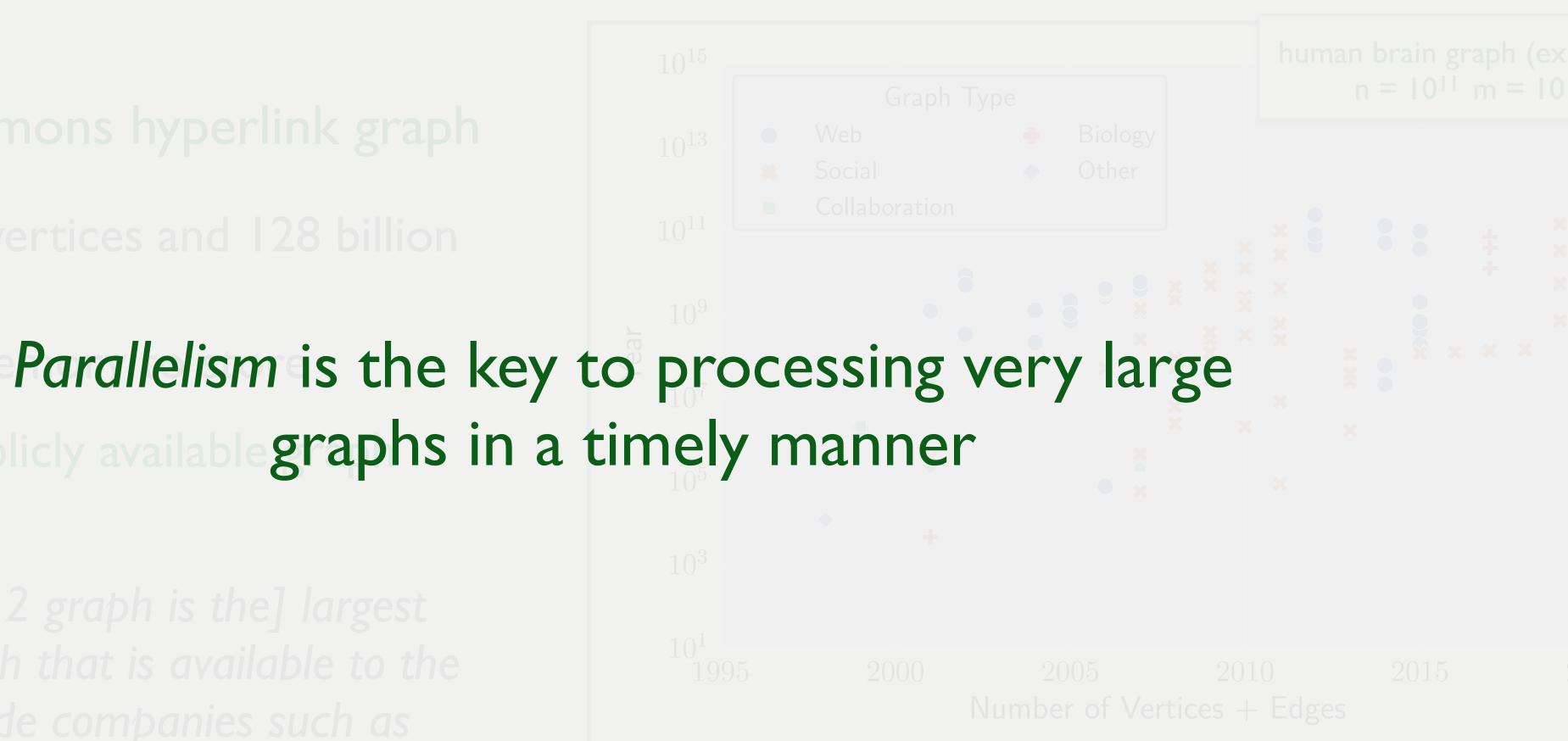
"...[the 2012 graph is the] largest hyperlink graph that is available to the public outside companies such as Google, Yahoo, and Microsoft."

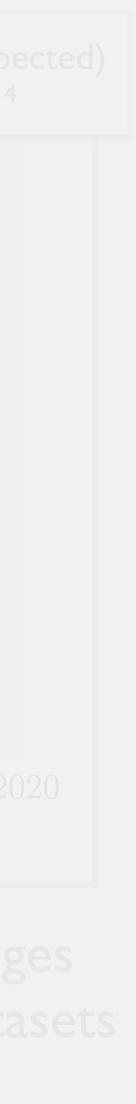


for real-world graphs from the SNAP and LAW datasets



- Largest publicly available graphs in a timely manner

























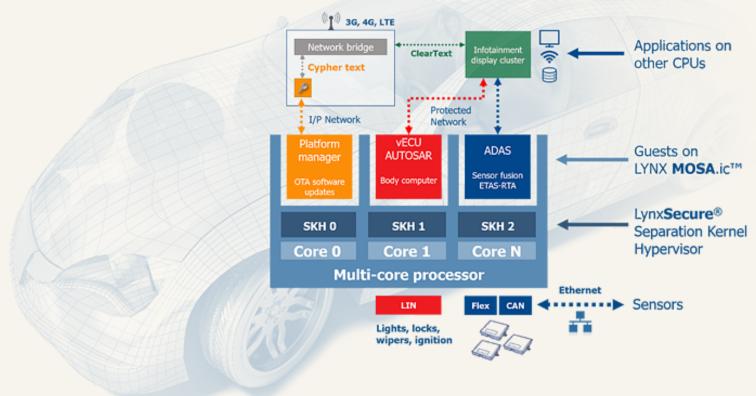














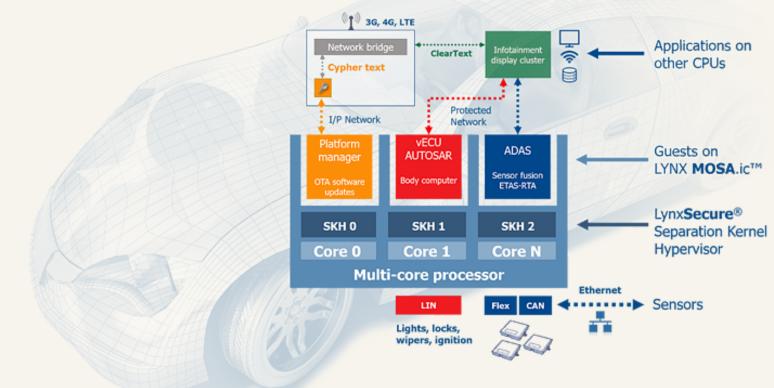




Parallel machines are everywhere!







Main focus of my work is shared-memory parallelism





## Shared-Memory Machines

• Cost for a ITB memory machine with 72 processors is about \$20,000.





## Shared-Memory Machines

• Cost for a ITB memory machine with 72 processors is about \$20,000.





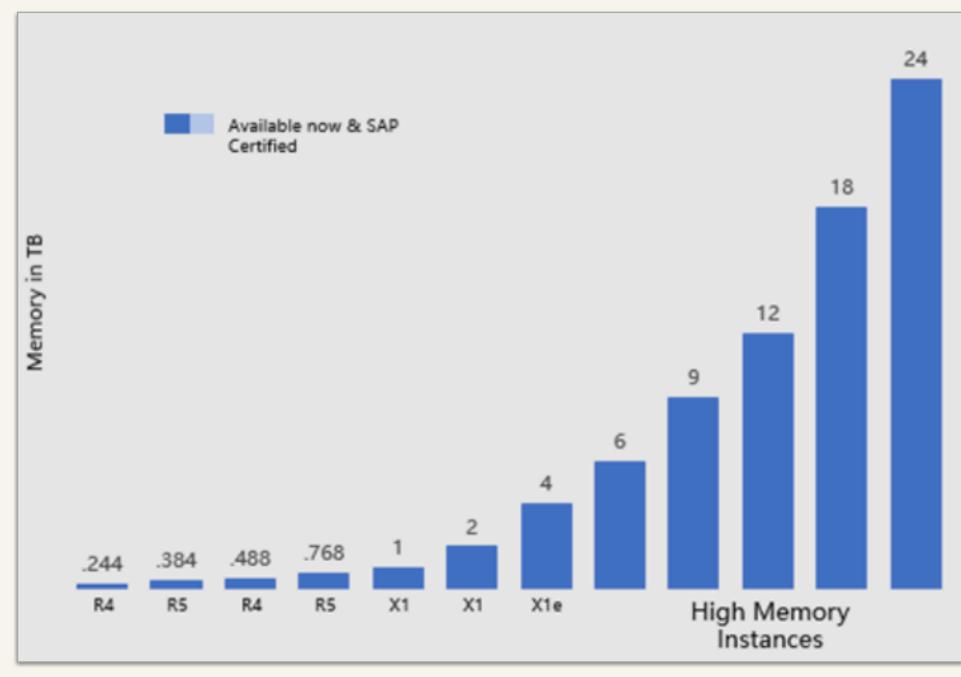


6

## Shared-Memory Machines

- Cost for a ITB memory machine with 72 processors is about \$20,000.
- Can rent a similar machine (96 processors and I.5TB memory) for \$11/hour on Google Cloud





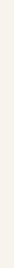






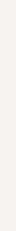


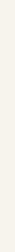














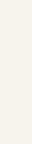






































## Shared-Memory Machines

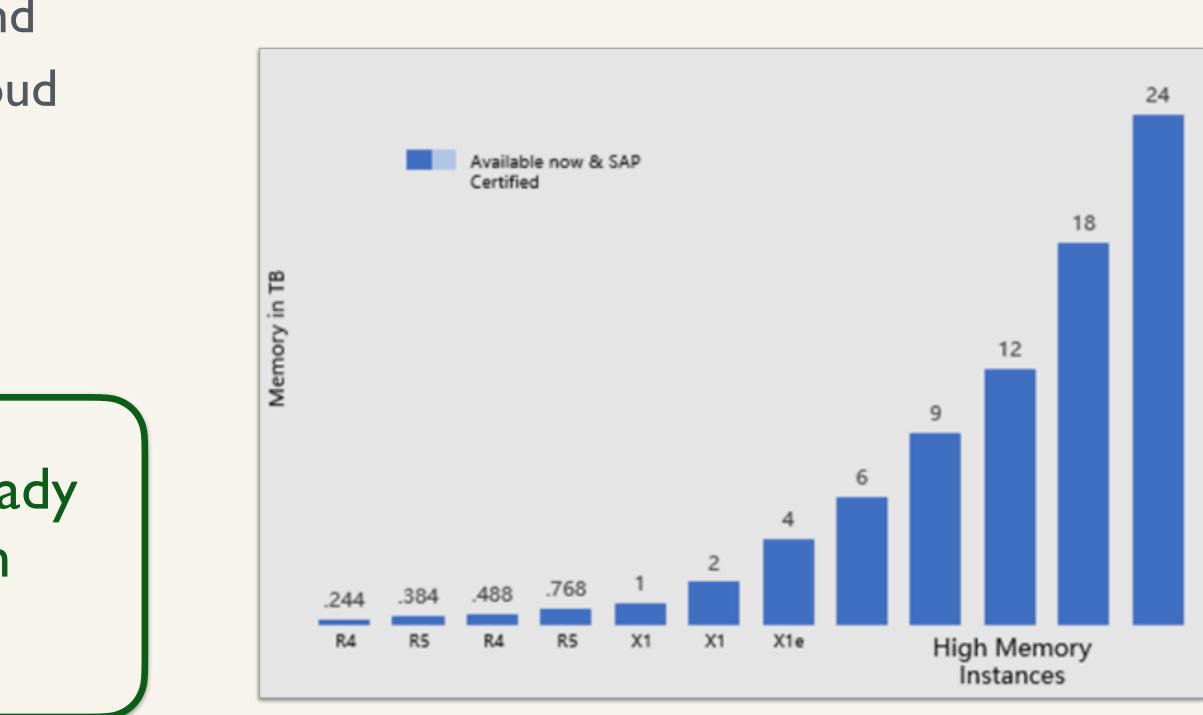
- Cost for a ITB memory machine with 72 processors is about \$20,000.
- Can rent a similar machine (96 processors and I.5TB memory) for \$11/hour on Google Cloud

# WebDataCommons Graph

• 3.5 billion vertices and 128 billion edges

A single shared-memory machine can already store the largest publicly available graph datasets, with plenty of room to spare





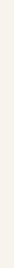






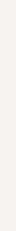


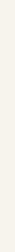














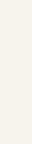




























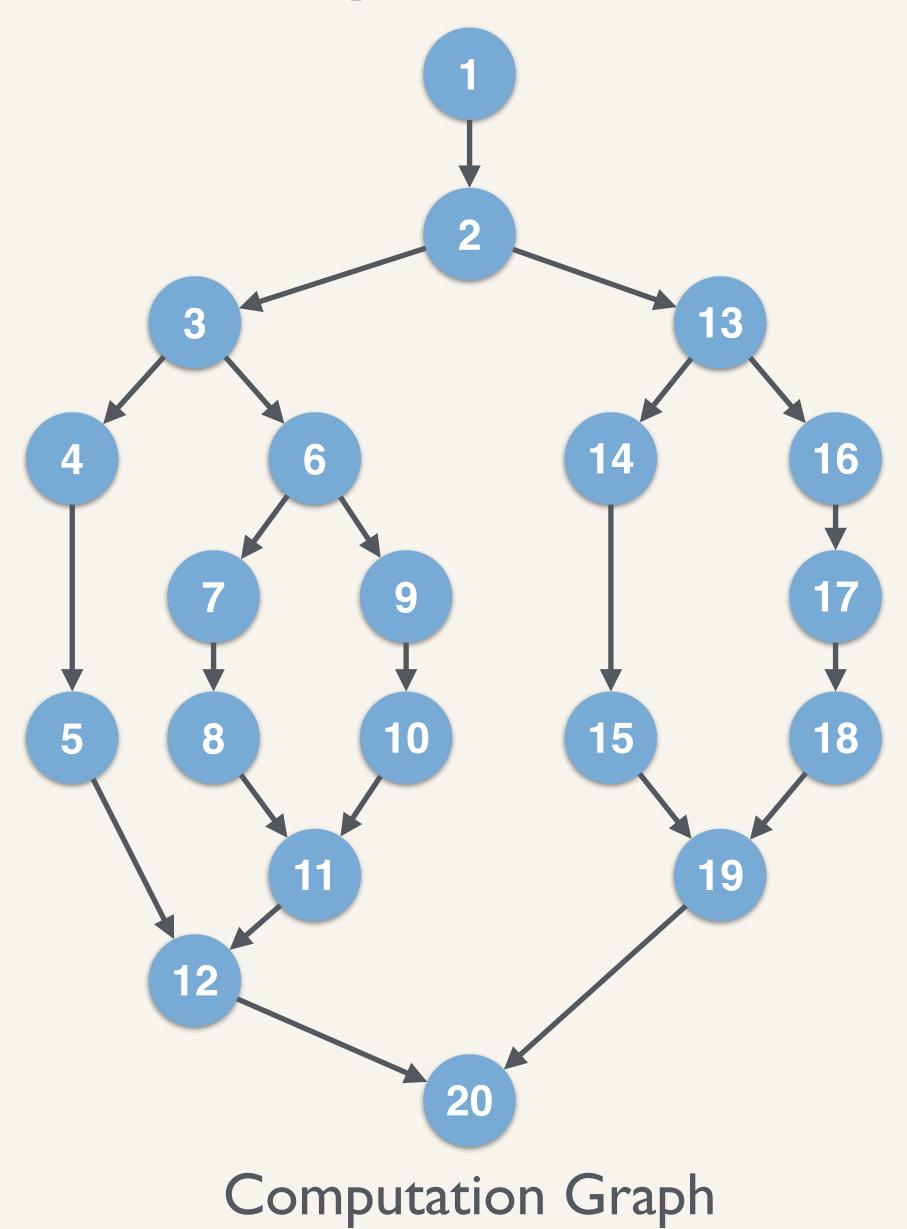




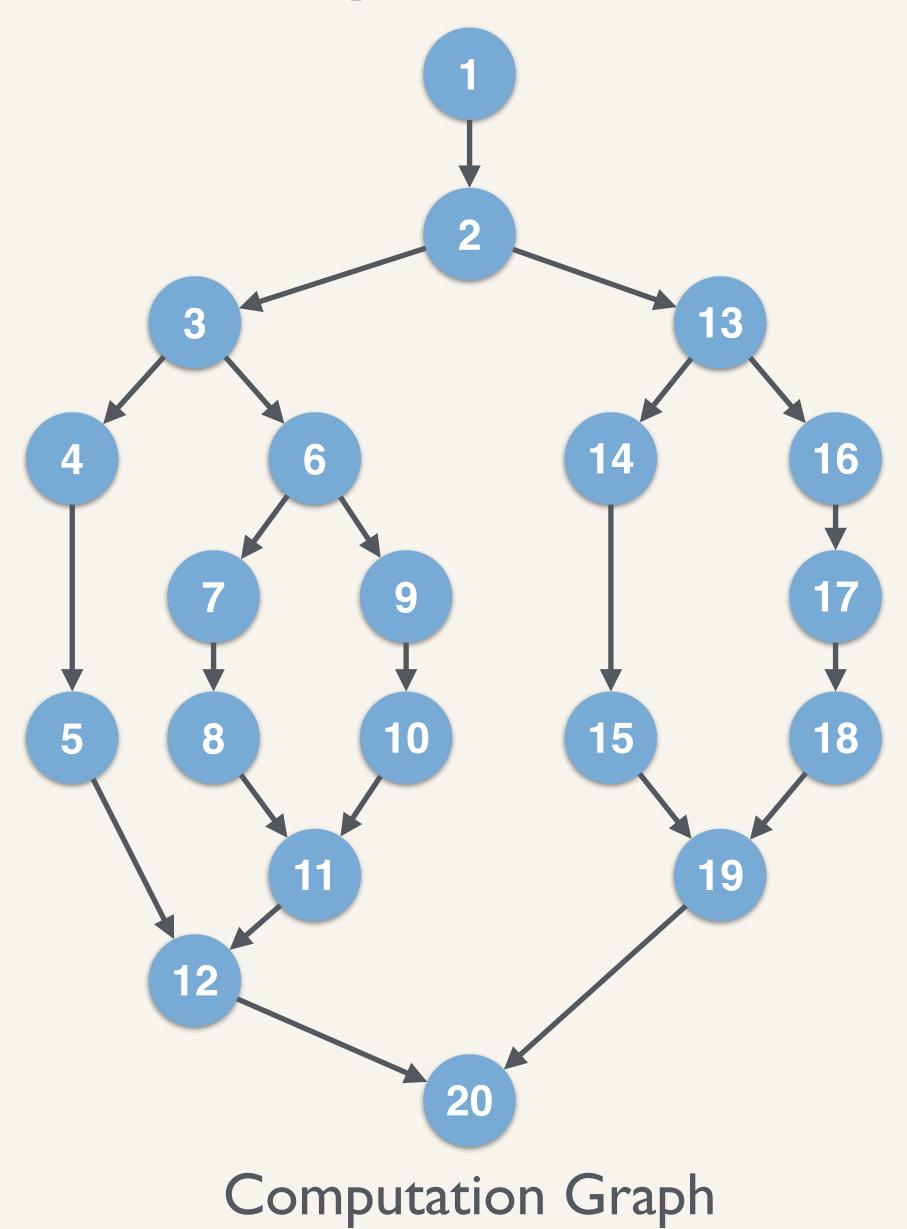






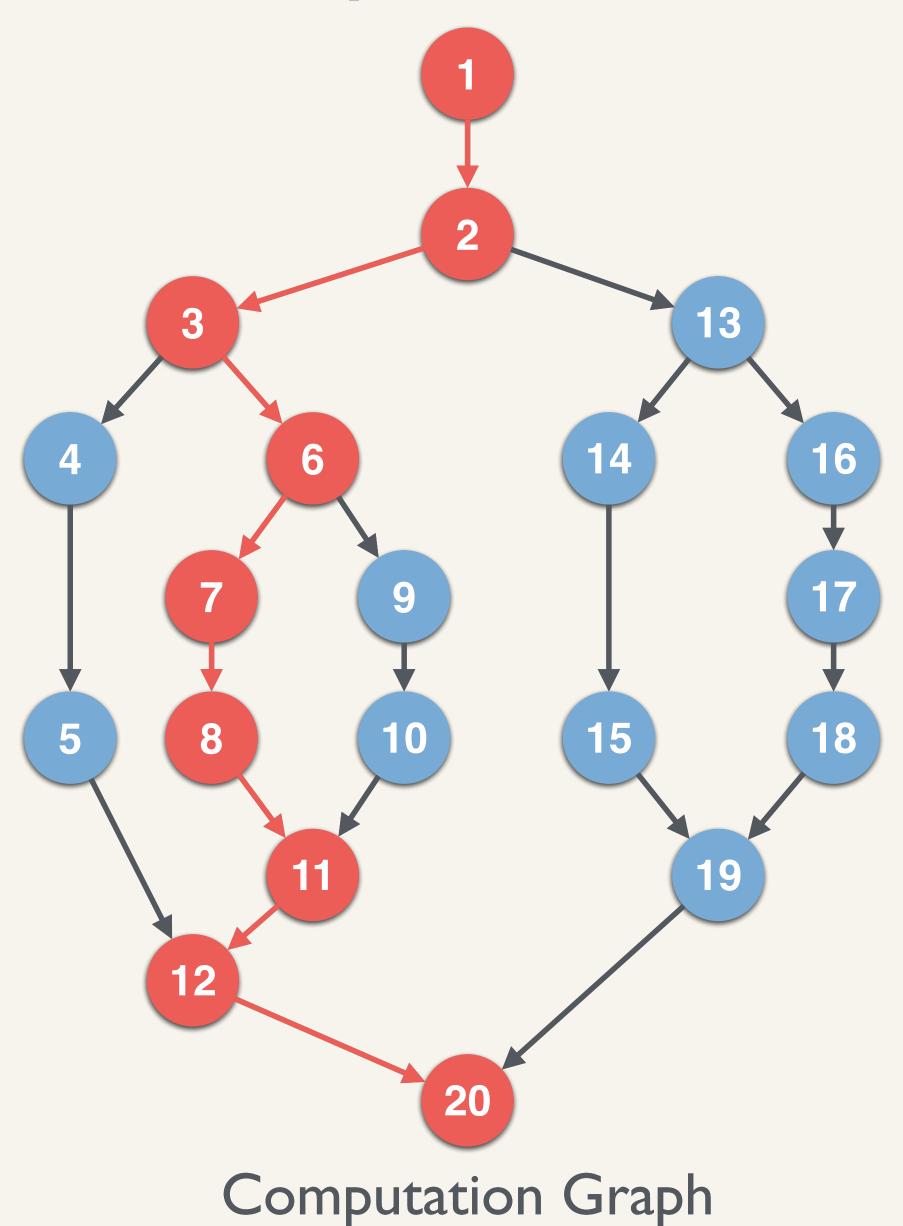






Work = total number of vertices in the computation graph

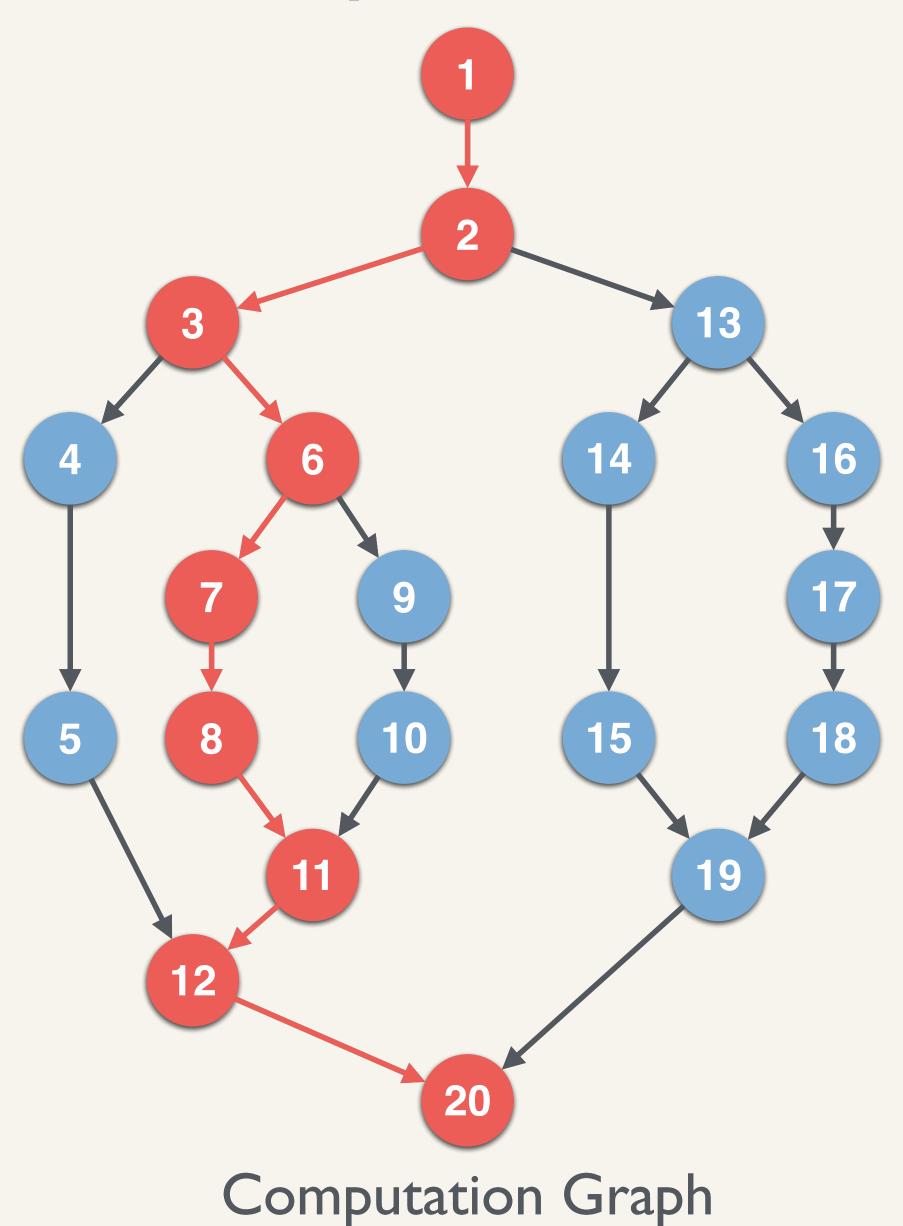




Work = total number of vertices in the computation graph

**Depth** = longest directed path in the graph (dependence length)





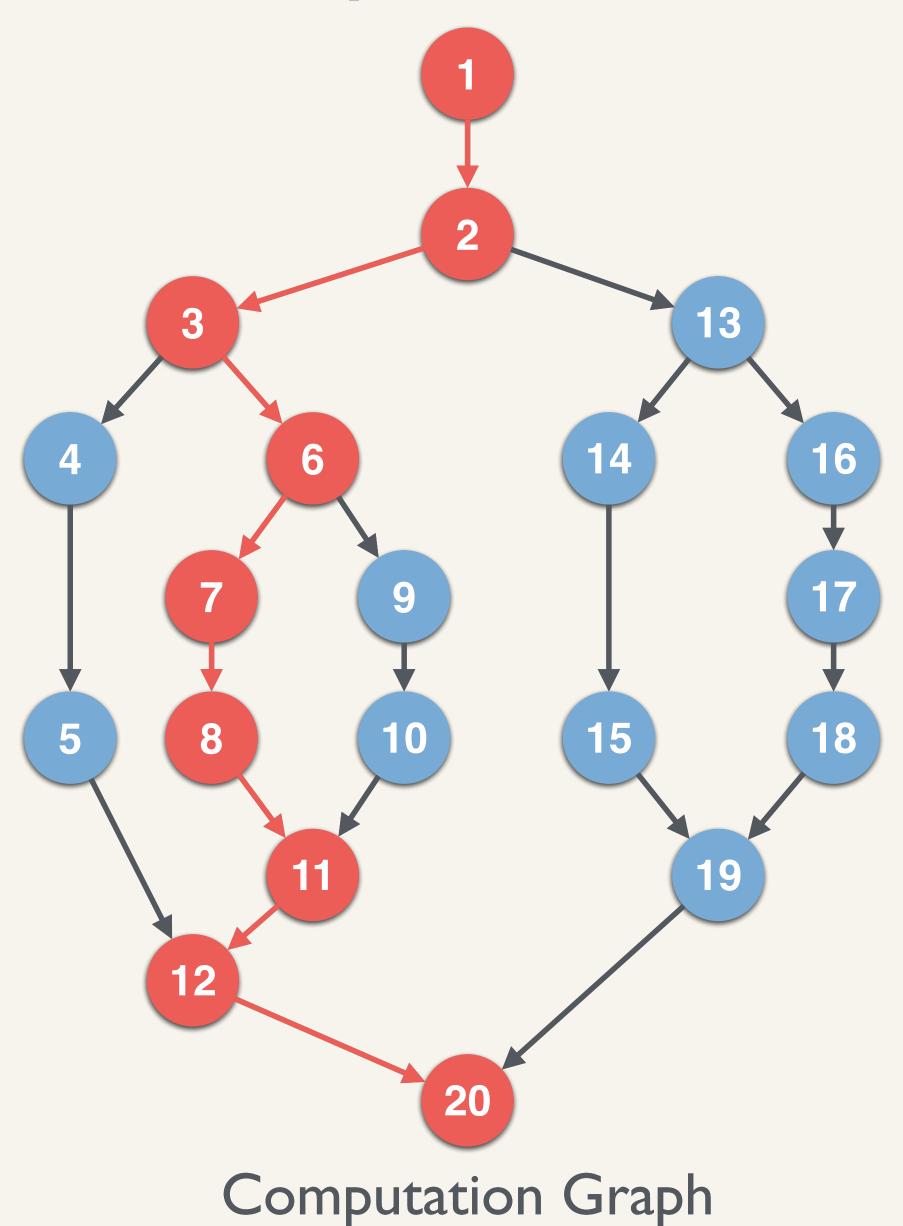
Work = total number of vertices in the computation graph

**Depth** = longest directed path in the graph (dependence length)

Running Time = Work/#Processors + O(Depth)







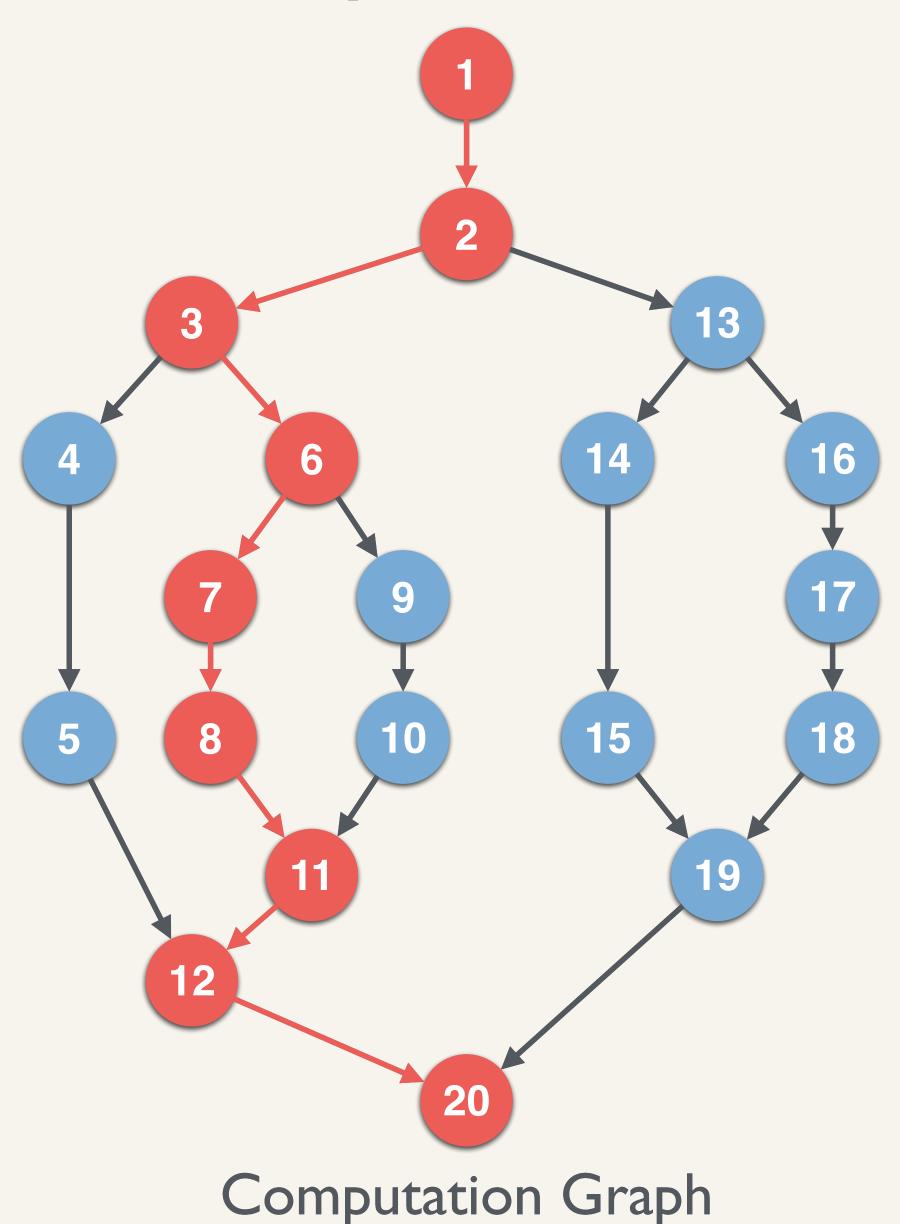
Work = total number of vertices in the computation graph

- **Depth** = longest directed path in the graph (dependence length)
- Running Time = Work/#Processors + O(Depth)

A work-efficient parallel algorithm has work that asymptotically matches that of the best sequential algorithm for the problem







Work = total number of vertices in the computation graph

- **Depth** = longest directed path in the graph (dependence length)
- Running Time = Work/#Processors + O(Depth)

A work-efficient parallel algorithm has work that asymptotically matches that of the best sequential algorithm for the problem

Goal: work-efficient and low (polylogarithmic) depth algorithms





A parallel algorithm is theoretically work and depth

Why do we care about theoretical bounds?

### A parallel algorithm is theoretically-efficient if it has good bounds on its



work and depth

Why do we care about theoretical bounds?

Input-agnostic design

 Design codes without worrying too much about your datasets

### A parallel algorithm is theoretically-efficient if it has good bounds on its



work and depth

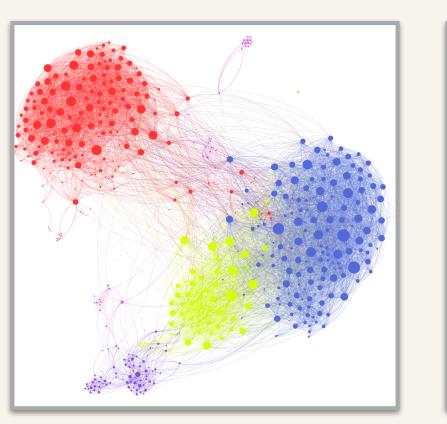
Input-agnostic design

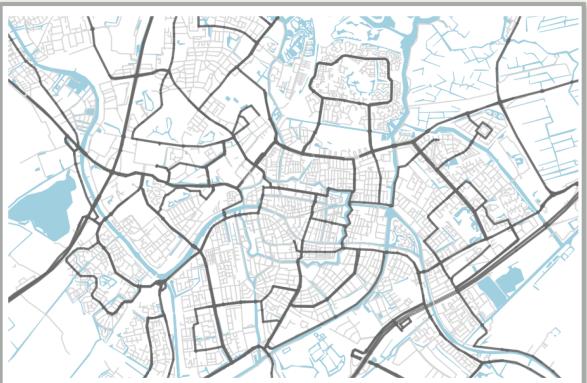
• Design codes without worrying too much about your datasets

### A parallel algorithm is theoretically-efficient if it has good bounds on its

### Why do we care about theoretical bounds?









work and depth

Input-agnostic design

 Design codes without worrying too much about your datasets

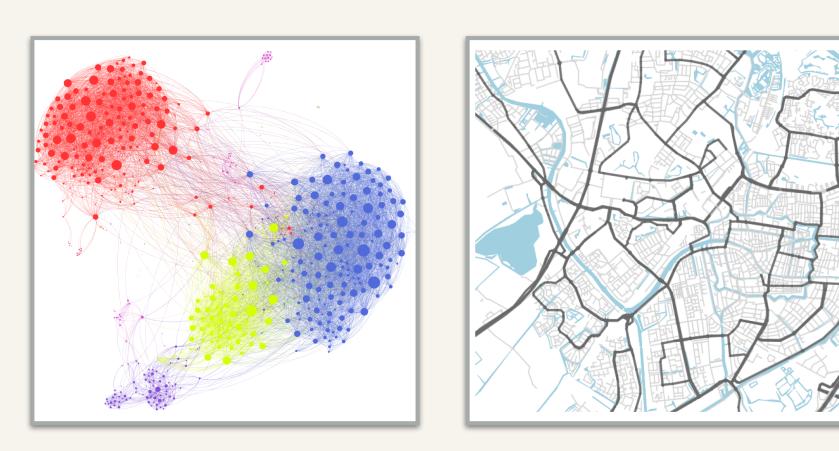
#### Robustness to bad inputs

- Perform well even on new classes of graphs
- Understand how they will scale on larger graphs

### A parallel algorithm is theoretically-efficient if it has good bounds on its

### Why do we care about theoretical bounds?









work and depth

### Input-agnostic design

 Design codes without worrying too much about your datasets

#### Robustness to bad inputs

- Perform well even on new classes of graphs
- Understand how they will scale on larger graphs

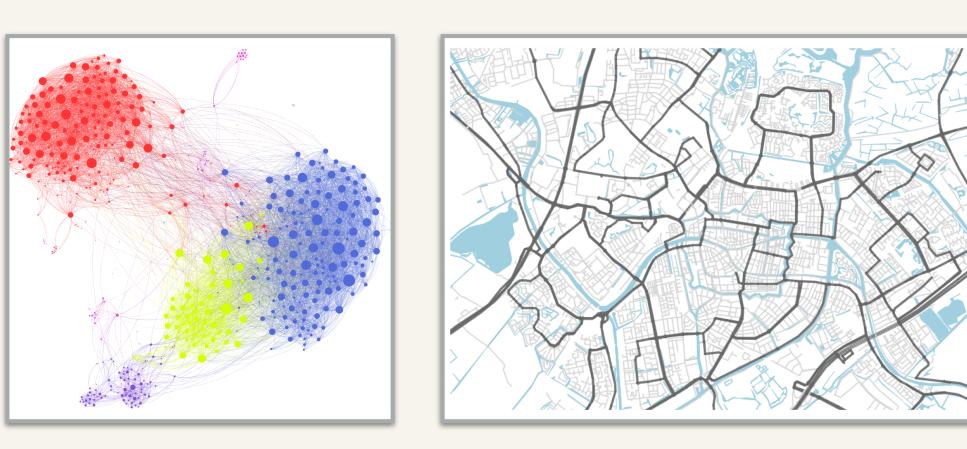
## Work-efficiency matters in practice

• Work-efficient algorithms can be much faster than work-inefficient algorithms

### A parallel algorithm is theoretically-efficient if it has good bounds on its

## Why do we care about theoretical bounds?









work and depth

### Input-agnostic design

 Design codes without worrying too much about your datasets

#### Robustness to bad inputs

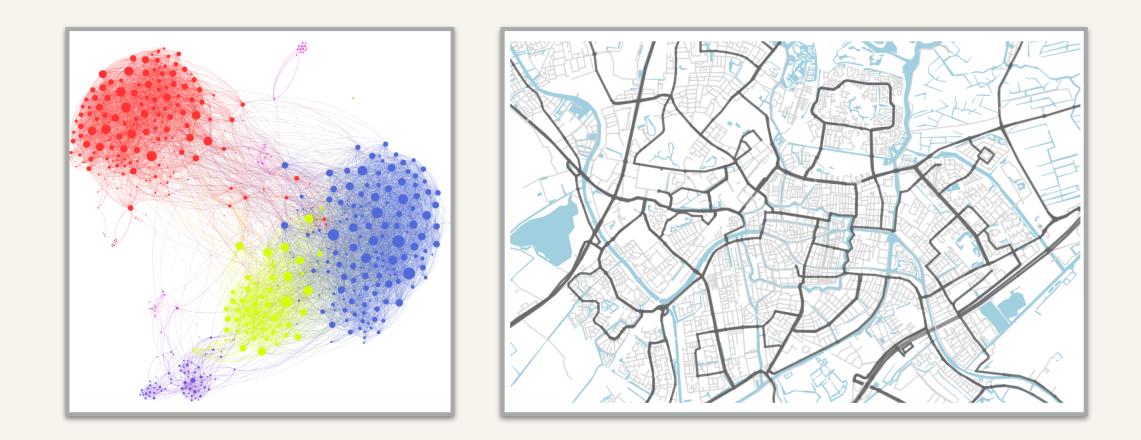
- Perform well even on new classes of graphs
- Understand how they will scale on larger graphs

## Work-efficiency matters in practice

• Work-efficient algorithms can be much faster than work-inefficient algorithms

## A parallel algorithm is theoretically-efficient if it has good bounds on its

## Why do we care about theoretical bounds?



Up to 9x faster using a work-efficient kcore algorithm (described in this talk)





# Graph Systems: examples

Pregel PowerGraph PowerLyra Parallel BGL GraphLab Green-Marl GraphMat Ringo **SNAP** Graphlt Ligra Julienne GBBS **STAPL** 

GraphX (Spark) **ASPIRE** GoFFish Presto GraphChi Blogel GraM Giraph PAGE MOCgraph GrapH LightGraph Gluon Graphine

Sage Graphite GraFBoost X-Stream TurboGraph TurboGraph++ Ligra+ MMap PathGraph GridGraph NXgraph Chaos FlashGraph Graphene

GraphMat EmptyHeaded Congra CongraPlus Laika SociaLite Graphphi TuFast Maiter LCC-Graph TopoX **Gluon-Async** GraphA L-PowerGraph



. . . . . . . .

Unfortunately existing graph systems typically study a very small GraphLab Can we solve a broad set of static graph problems on very large

- set of simple problems, such as BFS.

  - graphs?
    - GridGraph

# [D, Blelloch, Shun, SPAA'18 Best Paper]

- \* Introduce the Graph-Based Benchmark Suite (GBBS) for graph problems with over 20 important problems
- \* GBBS algorithms achieve state-of-the-art results on the largest publicly available graphs

#### **Connectivity Problems**

Low-Diameter Decomposition Connectivity Spanning Forest Biconnectivity Minimum Spanning Forest Strongly Connected Components

#### **Eigenvector Problems**

PageRank Personalized PageRank Personalized SimRank

#### Subgraph Problems

k-Core Decomposition k-Truss Decomposition Apx. Densest Subgraph Triangle Counting **Higher-Clique Counting** 

### github.com/paralg/gbbs

Theoretically-Efficient Parallel Graph Algorithms can be Fast and Scalable

#### **Covering Problems**

- Maximal Ind. Set Maximal Matching Apx. Set Cover
- Graph Coloring

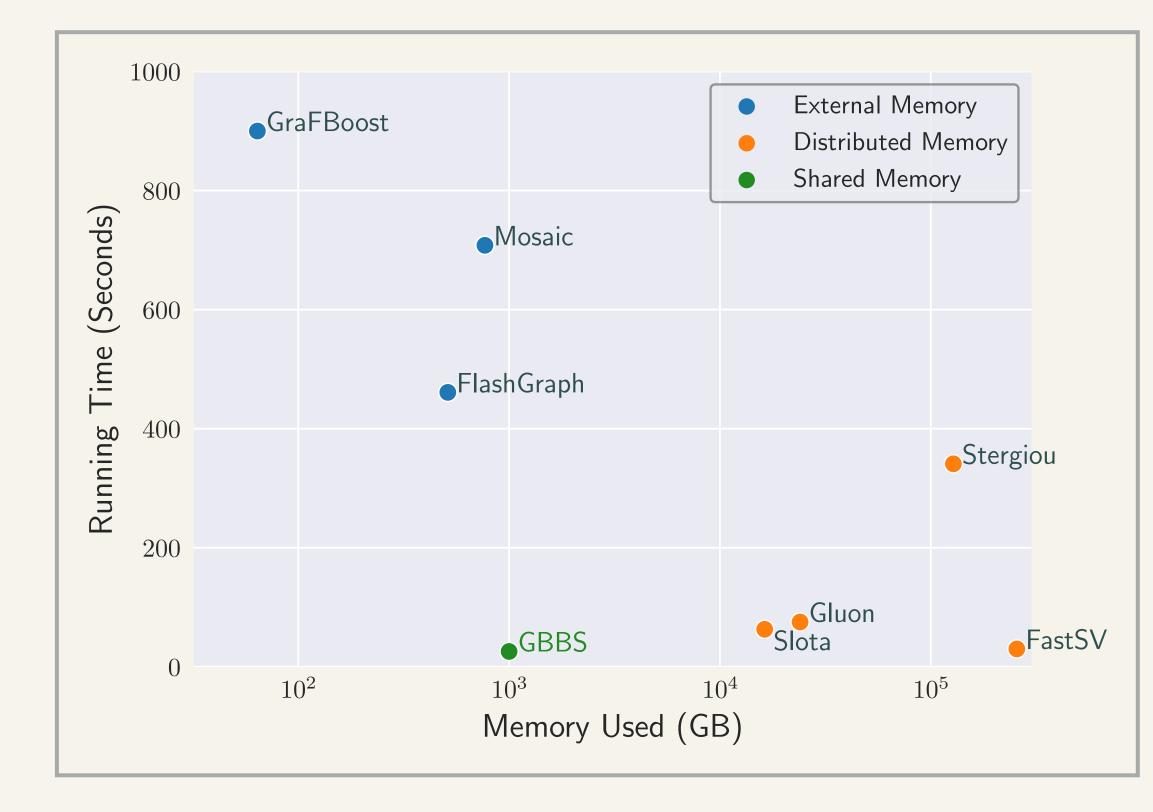
#### Shortest Path Problems

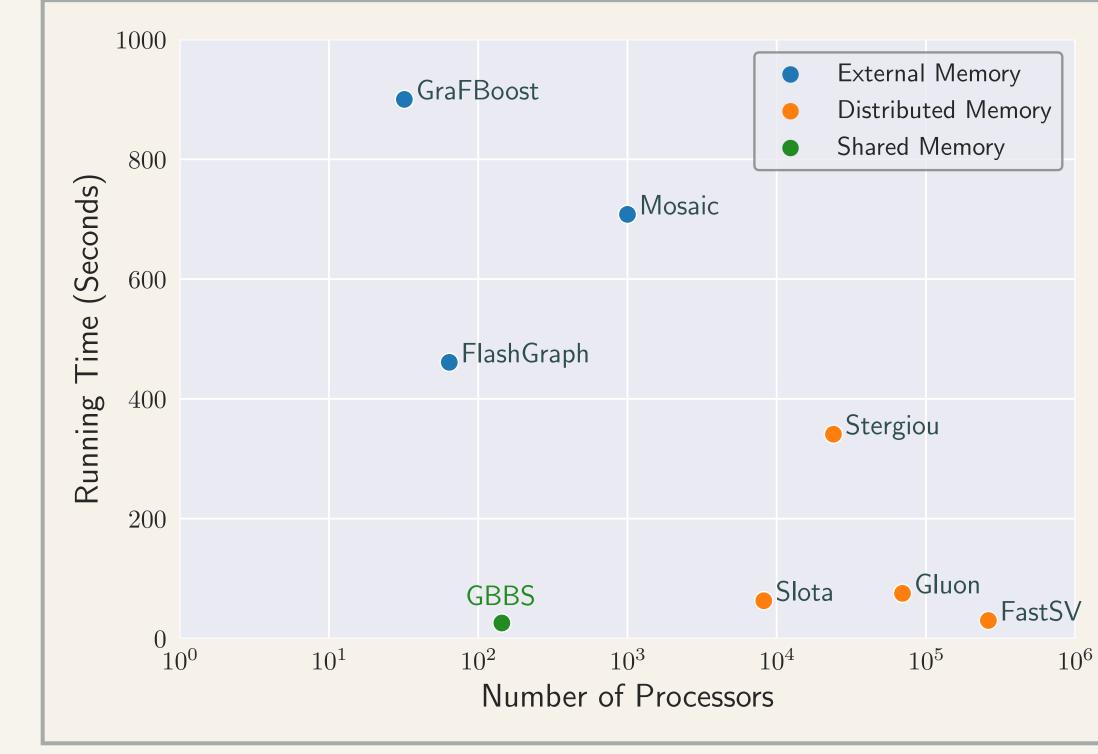
Breadth-First Search **Betweenness Centrality** Bellman-Ford **General Weight SSSP** Integral Weight SSSP SS Widest Path k-Spanner



10

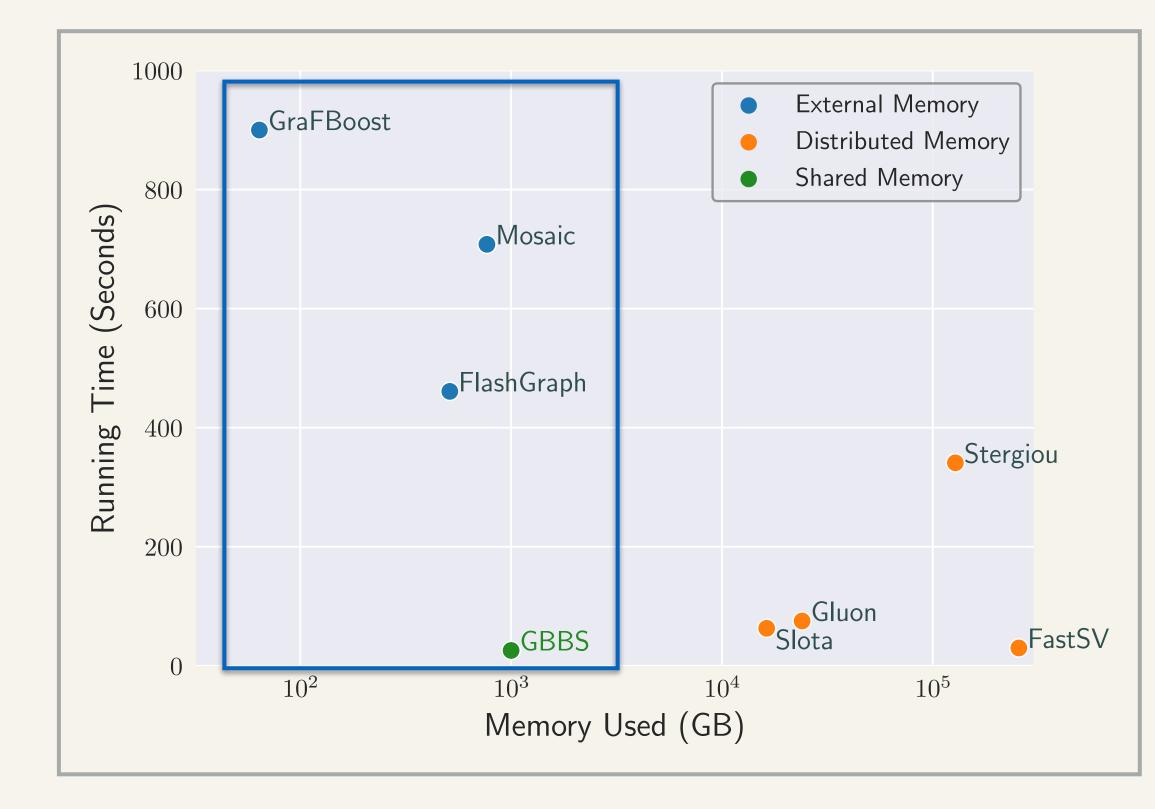
# Benchmarking Connectivity on WebDataCommons Graph



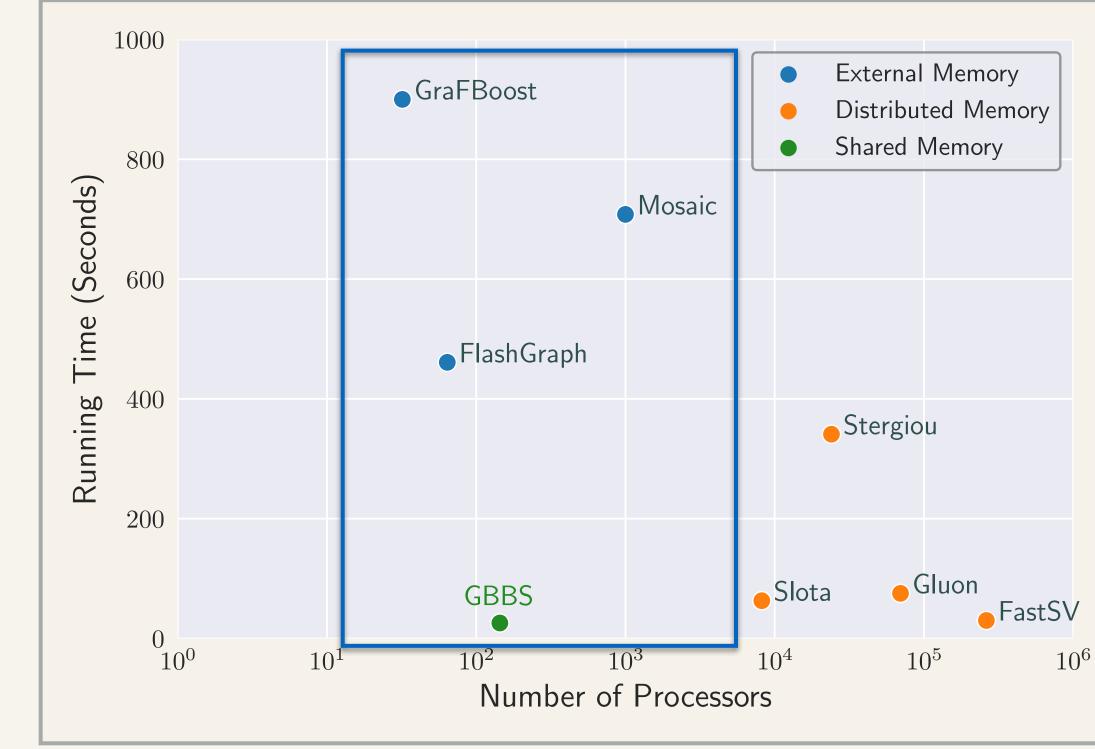




# Benchmarking Connectivity on WebDataCommons Graph

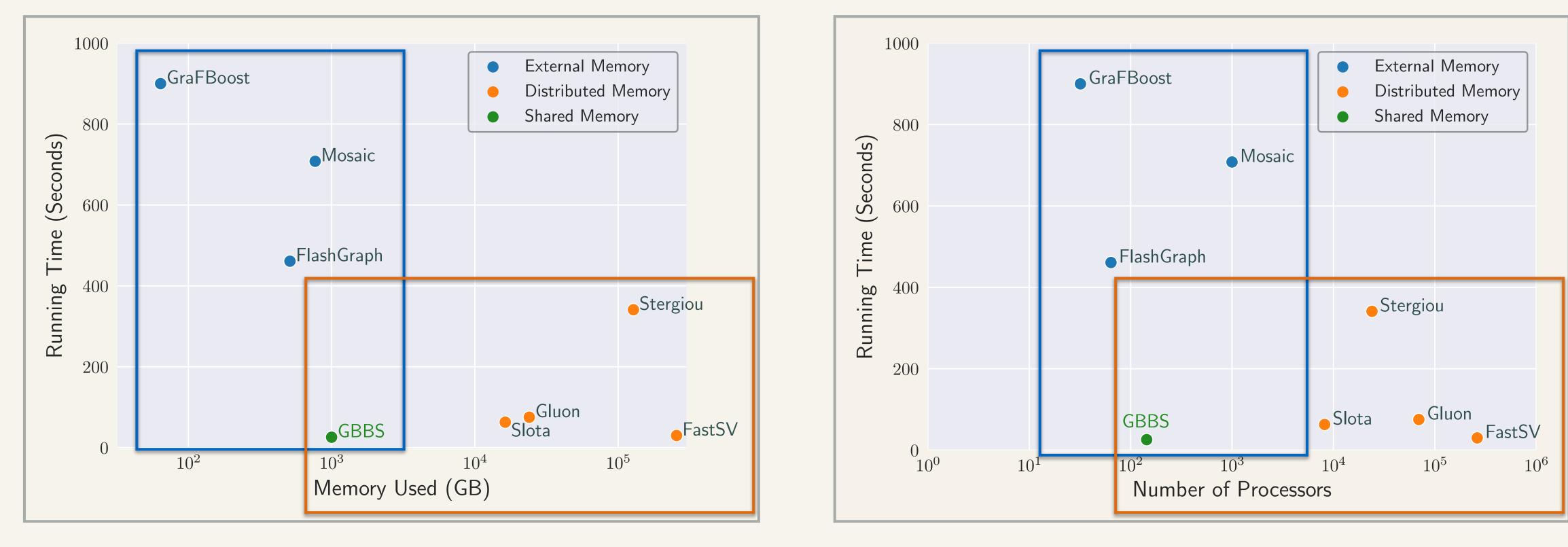


Outperform external memory results by orders of magnitude using comparable hardware.





# Benchmarking Connectivity on WebDataCommons Graph

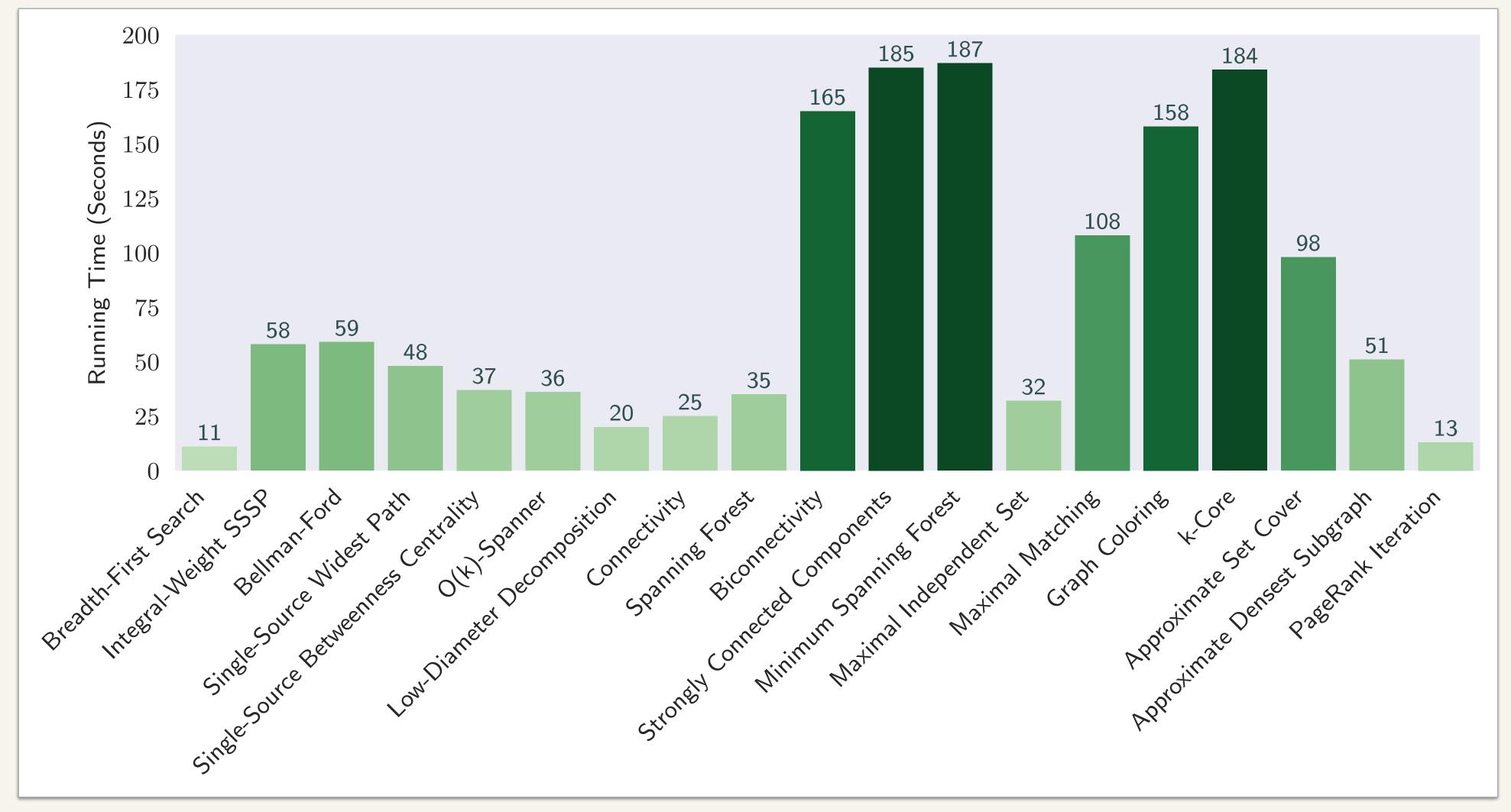


Outperform external memory results by orders of magnitude using comparable hardware.

Outperform distributed memory results using orders of magnitude less hardware.

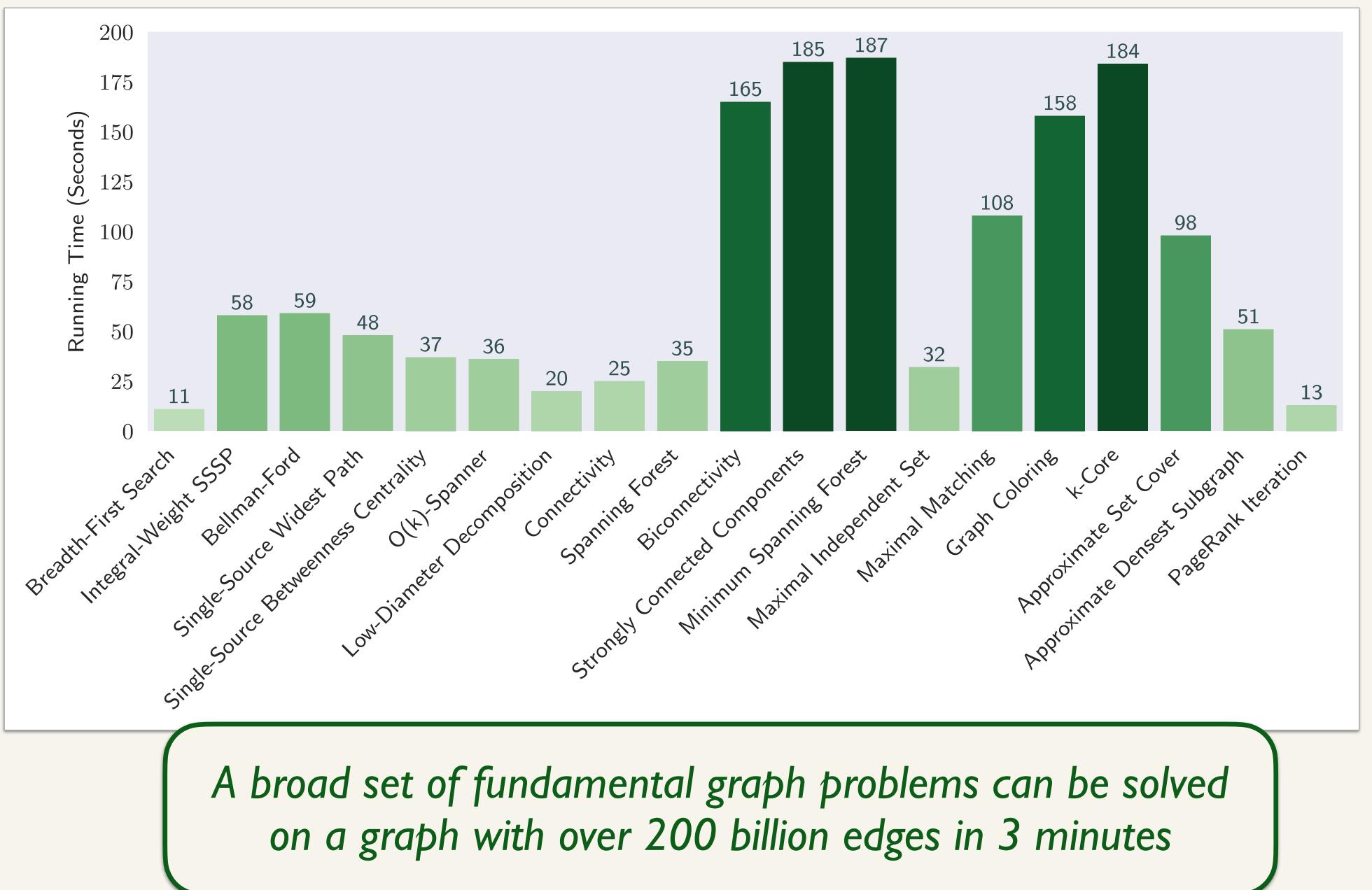


## GBBS can analyze O(100B) edge graphs in seconds to minutes





## GBBS can analyze O(100B) edge graphs in seconds to minutes





### Work and Depth of GBBS Results

#### Problem

Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

#### <sup>†</sup>: in expectation \*: whp

| Work                                | Depth                                 |
|-------------------------------------|---------------------------------------|
| O(m)                                | $\tilde{O}(\operatorname{diam}(G))$   |
| $O(m)^{\dagger}$                    | $\tilde{O}(\operatorname{diam}(G))^*$ |
| $O(\operatorname{diam}(G) \cdot m)$ | $\tilde{O}(\operatorname{diam}(G))$   |
| $O(\operatorname{diam}(G) \cdot m)$ | $\tilde{O}(\operatorname{diam}(G))$   |
| O(m)                                | $\tilde{O}(\operatorname{diam}(G))$   |
| <i>O</i> ( <i>m</i> )               | $\tilde{O}(k \log n)^*$               |
| <i>O</i> ( <i>m</i> )               | $O(\log^2 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\log^3 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\log^3 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\max(CC, BFS))$                    |
| $O(m \log n)^{\dagger}$             | $\tilde{O}(\operatorname{diam}(G))^*$ |
| $O(m \log n)$                       | $O(\log^2 n)$                         |
| $O(m)^{\dagger}$                    | $O(\log^2 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\log^2 n)^*$                       |
| <i>O</i> ( <i>m</i> )               | $O(\log n + L \log \Delta)$           |
| $O(m)^{\dagger}$                    | $O(\rho \log n)^*$                    |
| $O(m)^{\dagger}$                    | $O(\log^3 n)^*$                       |
| $O(m^{3/2})$                        | $O(\log n)$                           |
| <i>O</i> ( <i>m</i> )               | $O(\log^2 n)$                         |
| O(n+m)                              | $O(\log n)$                           |

### Work and Depth of GBBS Resu

#### Problem

Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Main Challenge: How do we build simple and provably-efficient implementations of these algorithms that work on the largest real-world graphs?

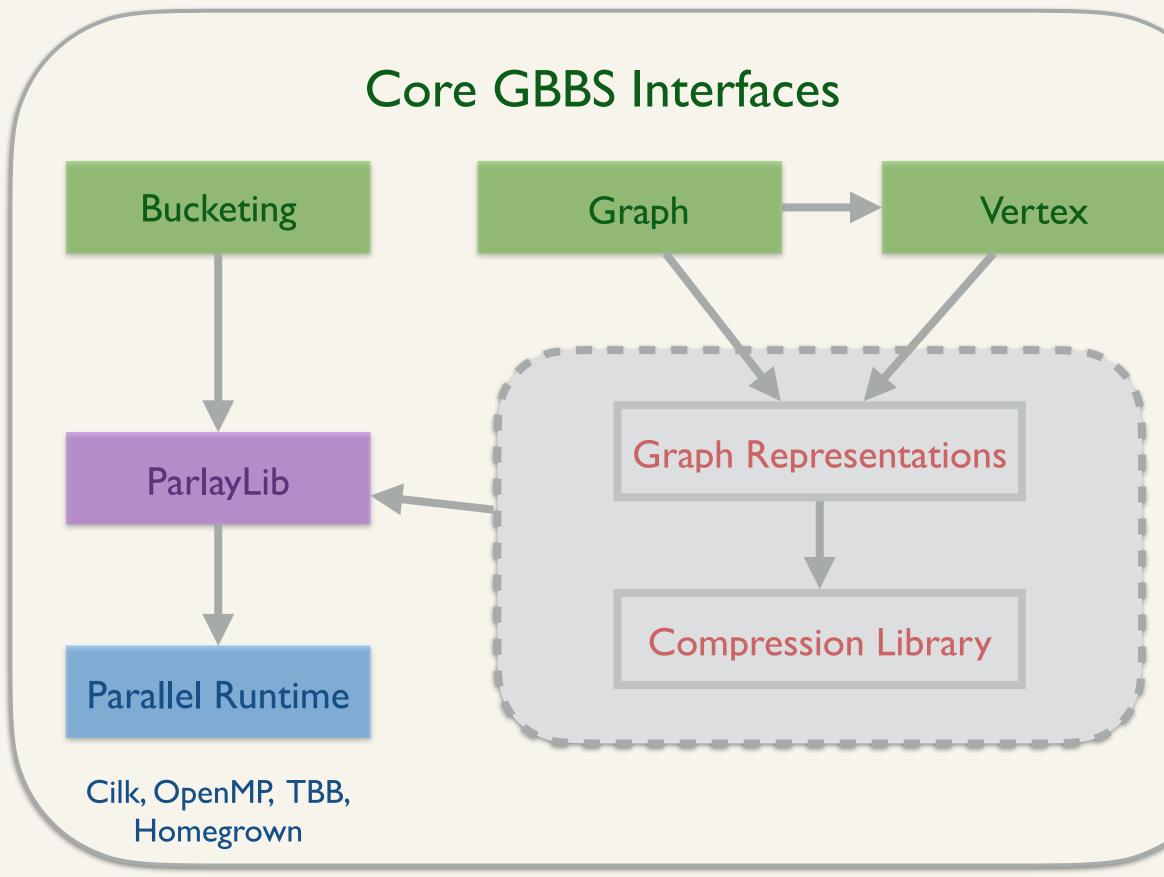
PageRank Iteration

| Work                                | Depth                                 |
|-------------------------------------|---------------------------------------|
| O(m)                                | $\tilde{O}(\operatorname{diam}(G))$   |
| $O(m)^{\dagger}$                    | $\tilde{O}(\operatorname{diam}(G))^*$ |
| $O(\operatorname{diam}(G) \cdot m)$ | $\tilde{O}(\operatorname{diam}(G))$   |
| $O(\operatorname{diam}(G) \cdot m)$ | $\tilde{O}(\operatorname{diam}(G))$   |
| O(m)                                | $\tilde{O}(\operatorname{diam}(G))$   |
| <i>O</i> ( <i>m</i> )               | $\tilde{O}(k \log n)^*$               |
| <i>O</i> ( <i>m</i> )               | $O(\log^2 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\log^3 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\log^3 n)^*$                       |
| $O(m)^{\dagger}$                    | O(max(CC, BFS))                       |
| $O(m \log n)^{\dagger}$             | $\tilde{O}(\operatorname{diam}(G))^*$ |
| $O(m \log n)$                       | $O(\log^2 n)$                         |
| $O(m)^{\dagger}$                    | $O(\log^2 n)^*$                       |
| $O(m)^{\dagger}$                    | $O(\log^2 n)^*$                       |

|        | 0(105 11)   |  |
|--------|-------------|--|
| O(n+m) | $O(\log n)$ |  |

#### **GBBS Library**

\* High-level graph processing interface in the lineage of *Ligra* [SB'12]







## **GBBS Library**

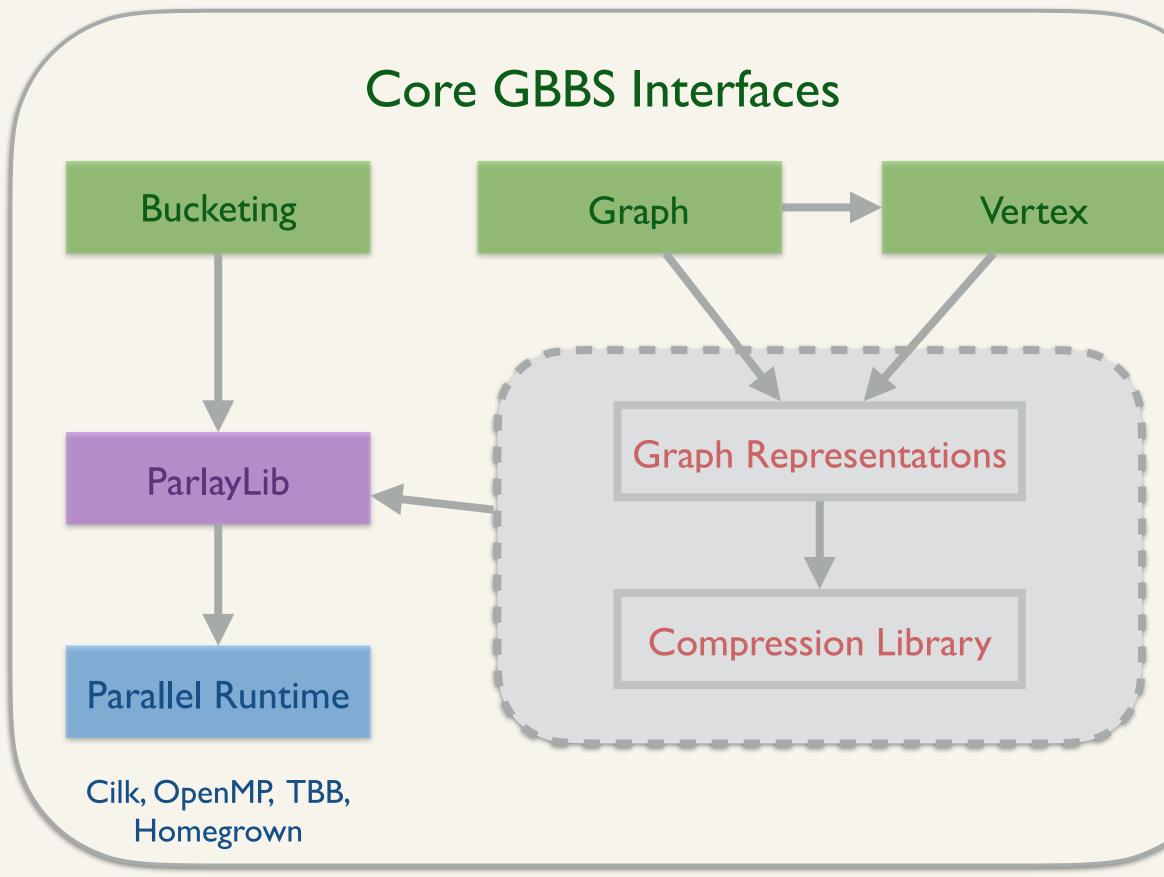
- \* High-level graph processing interface in the lineage of *Ligra* [SB'12]
- \* Provides many useful primitives

Vertex Operations

- Map
- Reduce
- Filter
- Pack
- Intersect

Graph Operations

- Filter
- Pack
- Contract







## **GBBS Library**

- \* High-level graph processing interface in the lineage of *Ligra* [SB'12]
- \* Provides many useful primitives

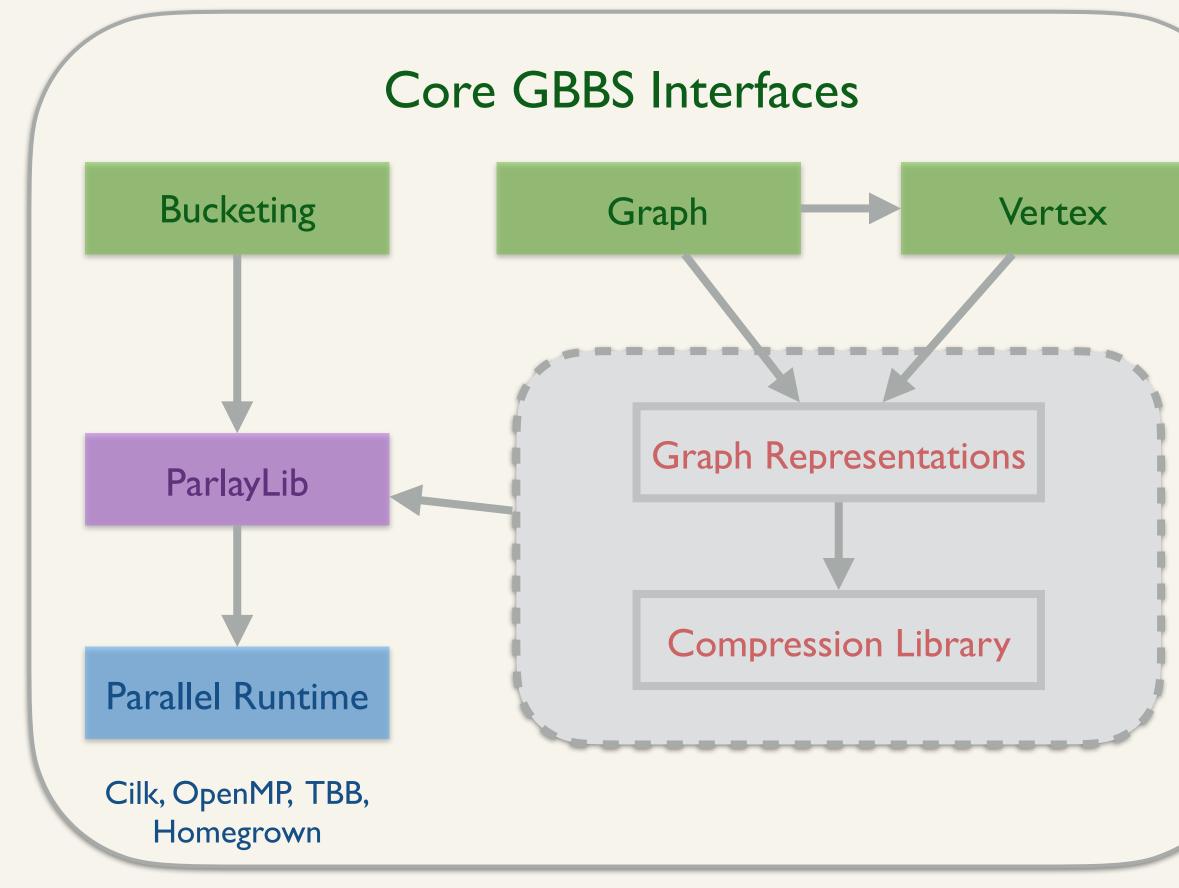
Vertex Operations

- Map
- Reduce
- Filter
- Pack
- Intersect

Graph Operations

- Filter
- Pack
- Contract

\* Compressed graph representations



| Graph               | V    | <i>E</i> | Size (CSR) | Compressed | Bytes |
|---------------------|------|----------|------------|------------|-------|
| WDC Hyperlink       | 3.5B | I 28B    | 1080GB     | 446GB      | 1.7   |
| WDC Hyperlink (Sym) | 3.5B | 225B     | 928 GB     | 351GB      | 1.    |





degree at least k within the subgraph

# k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

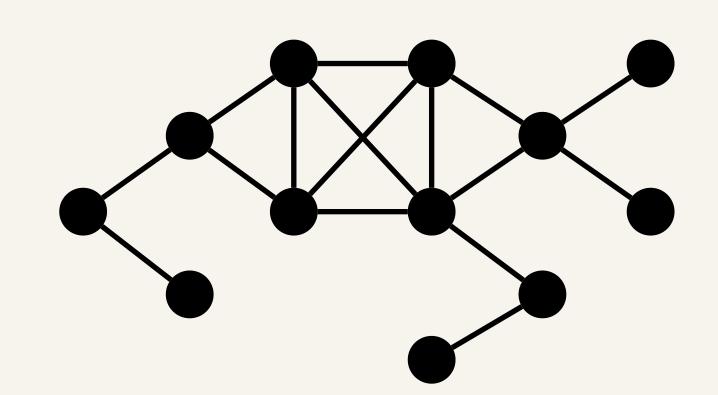
coreness : largest k-core that a given vertex participates in

# k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

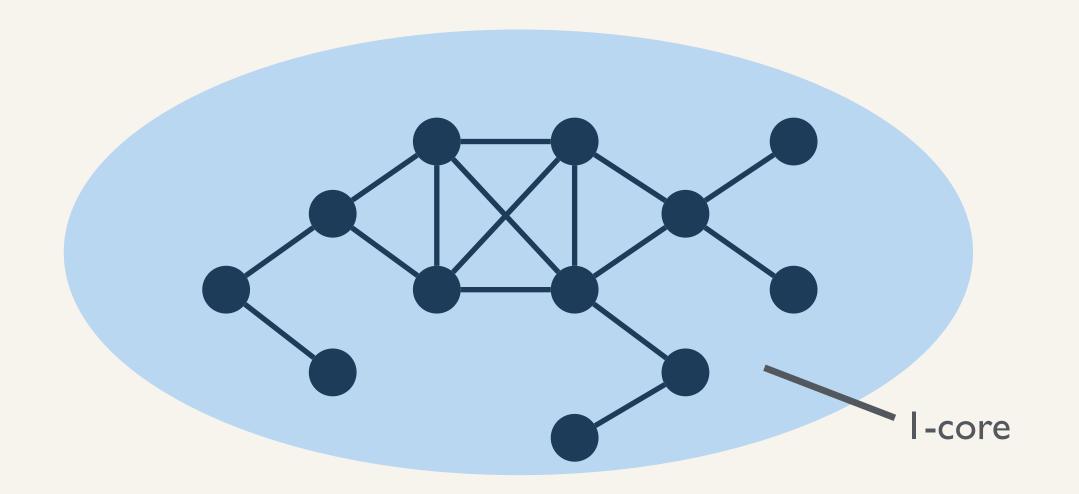


# k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

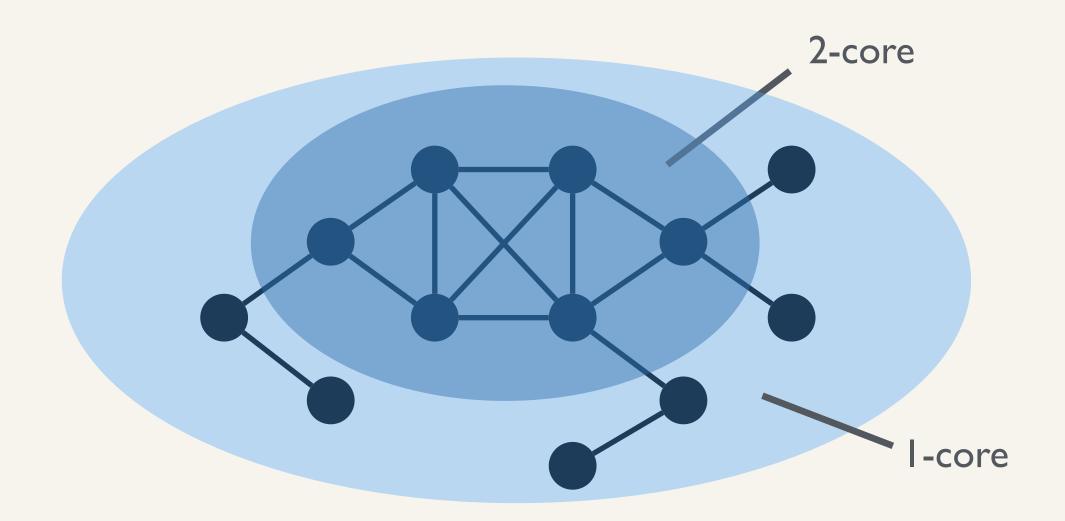


# k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

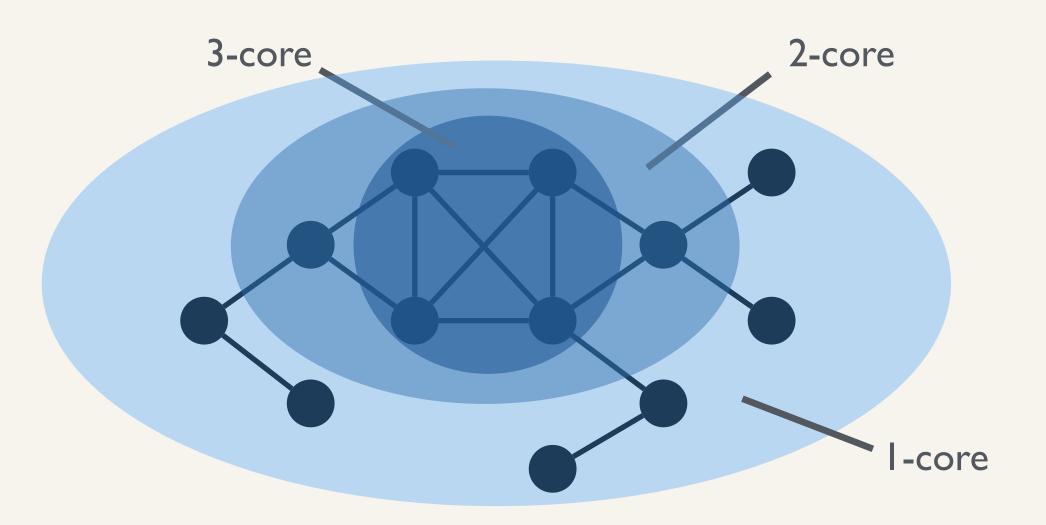


# k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

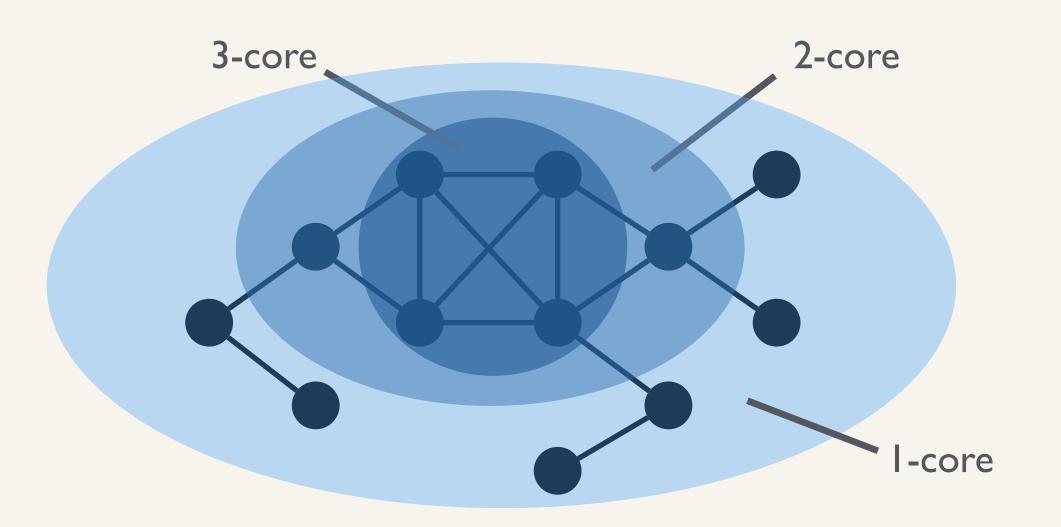


# k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

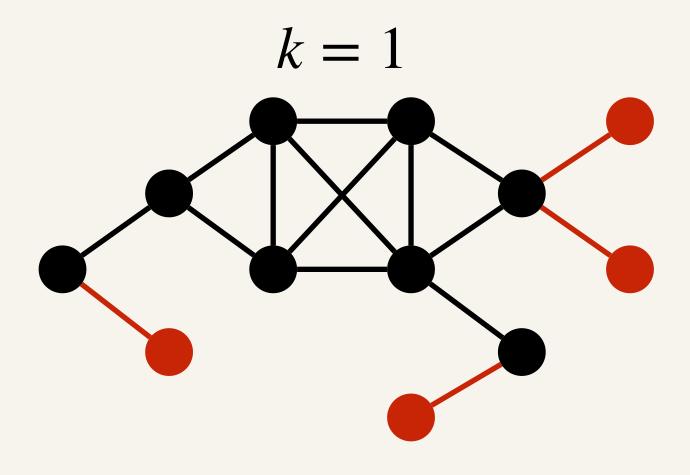
coreness : largest k-core that a given vertex participates in



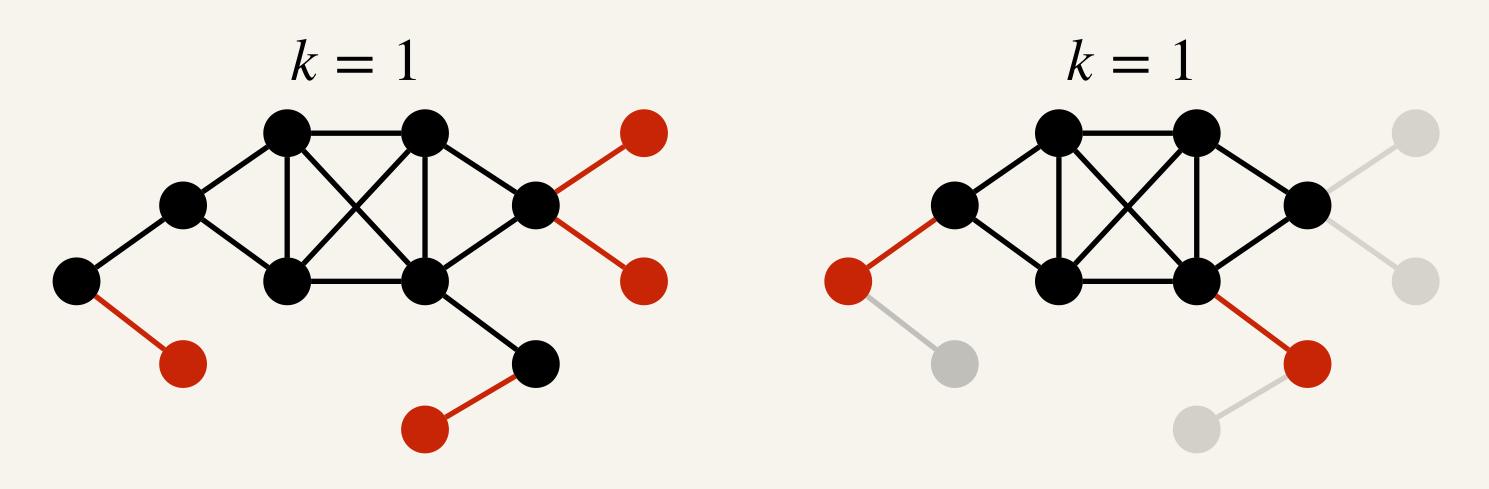
Widely used in network analysis tasks such as unsupervised clustering of social and biological networks

# k-core : maximal connected subgraph of G where all vertices have

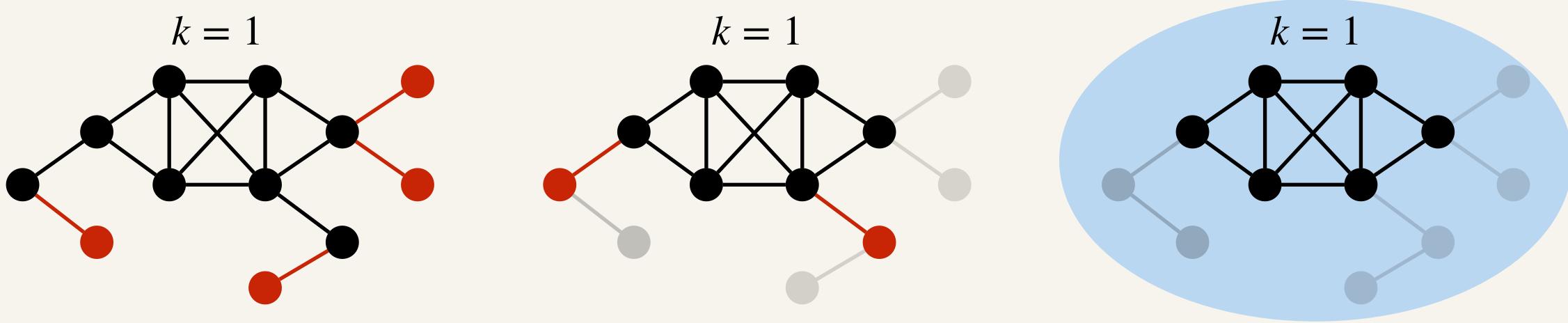




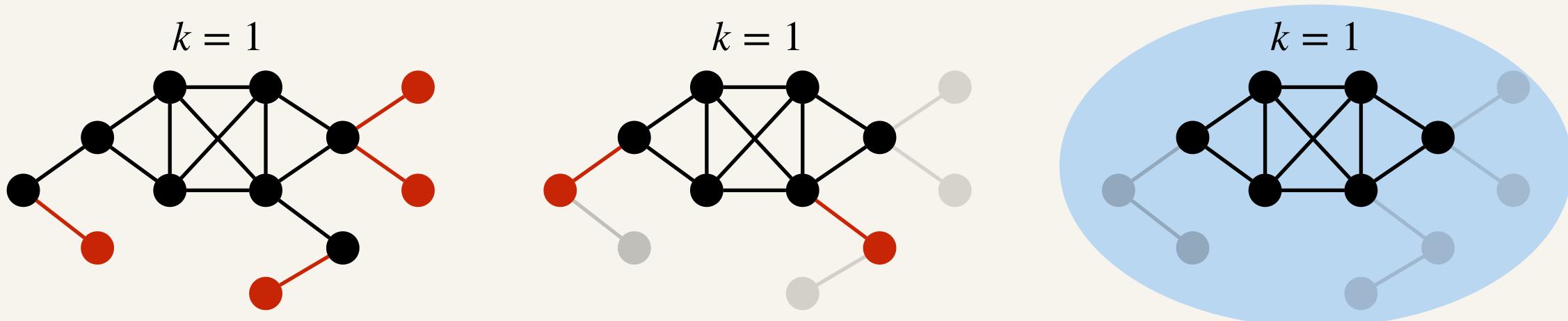






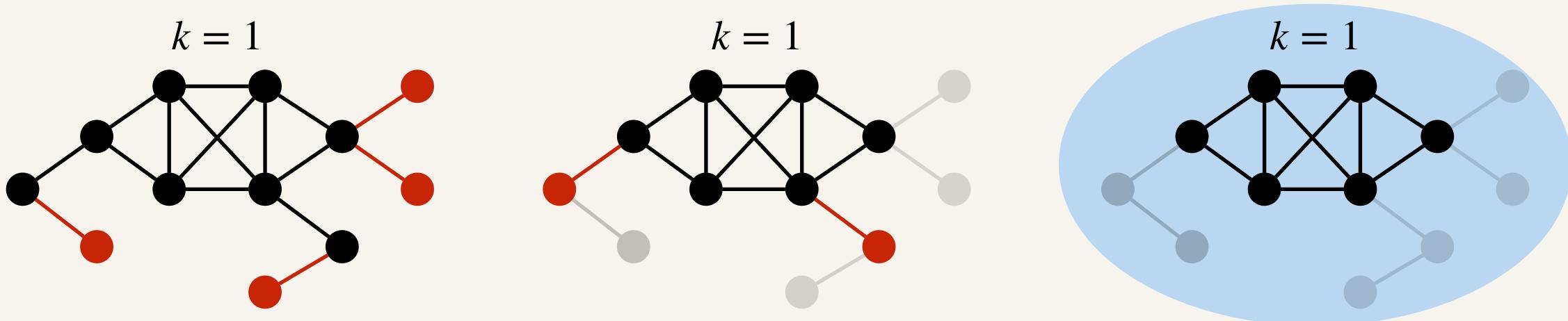






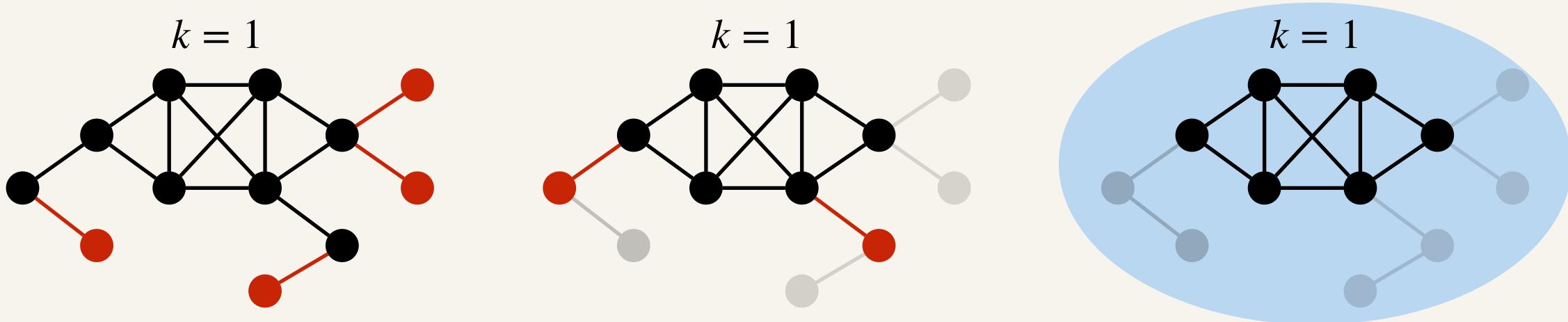
 Current degree of remaining vertices decreases as vertices are peeled from the graph





- Current degree of remaining vertices decreases as vertices are peeled from the graph
- Once a vertex's current degree is less than or equal to the current core number, it gets peeled





- Current degree of remaining vertices decreases as vertices are *peeled* from the graph
- Once a vertex's current degree is less than or equal to the current core number, it gets peeled

All vertices "below threshold" can be peeled in parallel Our contribution is to give a general interface for bucketing



### **A Work-Efficient k-core Decomposition Algorithm**

#### **GBBS** Algorithm

- \* Actual code in GBBS is under 50 lines of C++
- \* Parallel cost:

O(m+n) expected work

 $O(\rho \log n)$  depth whp

where  $\rho$  is the number of peeling rounds

| Algo          | rithm 1 k-core (Coreness)                                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1: C          | $oreness[0, \ldots, n) \coloneqq 0$                                                                                               |
| 2: <b>p</b> 1 | rocedure $CORENESS(G(V, E))$                                                                                                      |
| 3:            | $VERTEXMAP(V, fn v \rightarrow Coreness[v] \coloneqq d(v_i)) \qquad \qquad \triangleright \text{ initialized to initial degrees}$ |
| 4:            | B := MAKEBUCKETS( V , Coreness, INCREASING)<br>▷ buckets processed in increasing order                                            |
| 5:            | Finished := 0                                                                                                                     |
| 6:            | while (Finished $<  V $ ) do                                                                                                      |
| 7:            | $(k, ids) \coloneqq B.NEXTBUCKET() $ $\triangleright$ current core number, and vertices peeled this step                          |
| 8:            | Finished := Finished +  ids                                                                                                       |
| 9:            | $condFn \coloneqq \mathbf{fn} \ v \rightarrow \mathbf{return} \ true$                                                             |
| 10:           | $applyFn := \mathbf{fn} (v, edgesRemoved) \rightarrow$                                                                            |
| 11:           | $inducedD \coloneqq D[v]$                                                                                                         |
| 12:           | if $(inducedD > k)$ then                                                                                                          |
| 13:           | newD := max(inducedD - edgesRemoved, k)                                                                                           |
| 14:           | Coreness[v] := newD                                                                                                               |
| 15:           | bkt := B.GETBUCKET(inducedD, newD)                                                                                                |
| 16:           | if $(bkt \neq \text{NULLBKT})$ then                                                                                               |
| 17:           | return Some(bkt)                                                                                                                  |
| 18:           | return None                                                                                                                       |
| 19:           | Moved := NGHCOUNT(G, ids, condFn, applyFn) > Moved is an bktdest vertexSubset                                                     |
| 20:           | B.UPDATEBUCKETS(Moved) > update the buckets of vertices in Moved                                                                  |
| 21:           | return Coreness                                                                                                                   |

### A Work-Efficient k-core Decomposition Algorithm

#### **GBBS** Algorithm

- \* Actual code in GBBS is under 50 lines of C++
- \* Parallel cost:

O(m+n) expected work

 $O(\rho \log n)$  depth whp

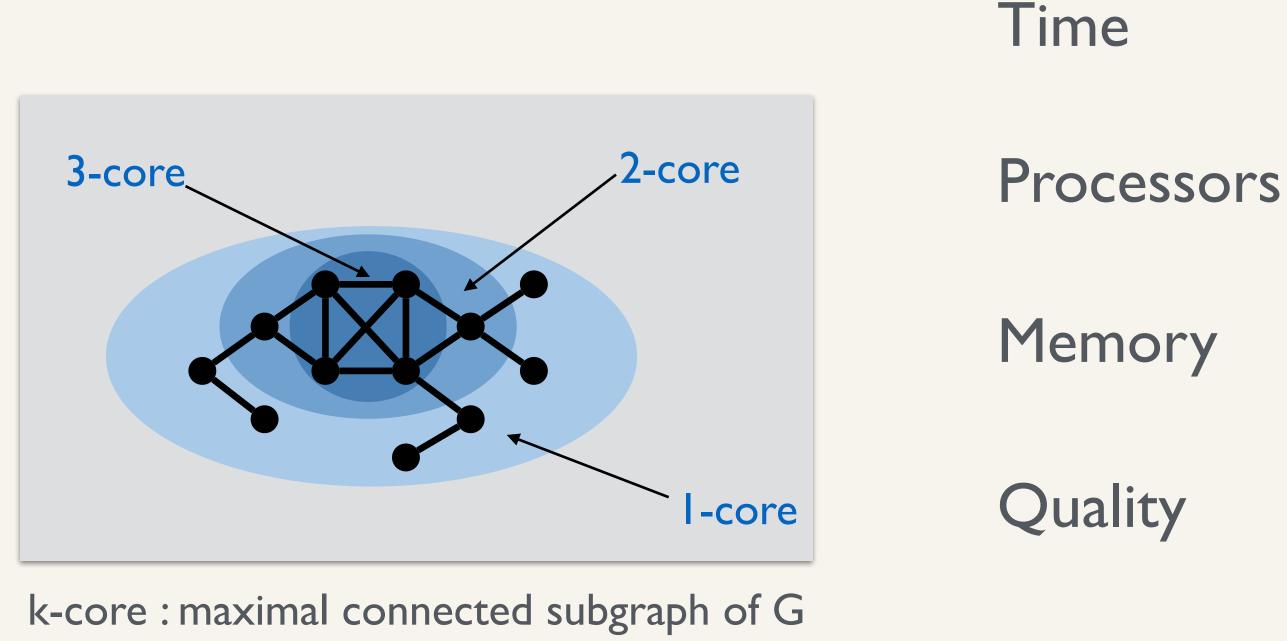
where  $\rho$  is the number of peeling rounds

Our algorithm is the first work-efficient algorithm for k-core decomposition with non-trivial parallelism

| Algorithm 1 k-core (Coreness)                                                                       |
|-----------------------------------------------------------------------------------------------------|
| 1: $Coreness[0,, n) := 0$                                                                           |
| 2: procedure $CORENESS(G(V, E))$                                                                    |
| 3: VERTEXMAP $(V, \mathbf{fn} v \to Coreness[v] \coloneqq d(v_i))$ > initialized to initial degrees |
| 4: B := MAKEBUCKETS( V , Coreness, INCREASING) ▷ buckets processed in increasing order              |
| 5: Finished $:= 0$                                                                                  |
| 6: while (Finished $\langle  V  \rangle$ do                                                         |
| 7: (k, ids) := B.NEXTBUCKET() ▷ current core number, and vertices peeled this step                  |
| 8: Finished := Finished + $ ids $                                                                   |
| 9: $condFn := \mathbf{fn} \ v \to \mathbf{return}$ true                                             |
| 10: $applyFn := \mathbf{fn} (v, edgesRemoved) \rightarrow$                                          |
| 11: $inducedD \coloneqq D[v]$                                                                       |
| 12: <b>if</b> $(inducedD > k)$ <b>then</b>                                                          |
| 13: $newD := max(inducedD - edgesRemoved, k)$                                                       |
| 14: $Coreness[v] := newD$                                                                           |
| 15: $bkt := B.GETBUCKET(inducedD, newD)$                                                            |
| 16: <b>if</b> $(bkt \neq \text{NULLBKT})$ <b>then</b>                                               |
| 17: return Some(bkt)                                                                                |
| 18: return None                                                                                     |
| 19: Moved := NGHCOUNT(G, ids, condFn, applyFn) ▷ Moved is an bktdest vertexSubset                   |
| 20: B.UPDATEBUCKETS(Moved) ▷ update the buckets of vertices in Moved                                |
| 21: return Coreness                                                                                 |

## k-Core Decomposition on the WebDataCommons Graph

Cost



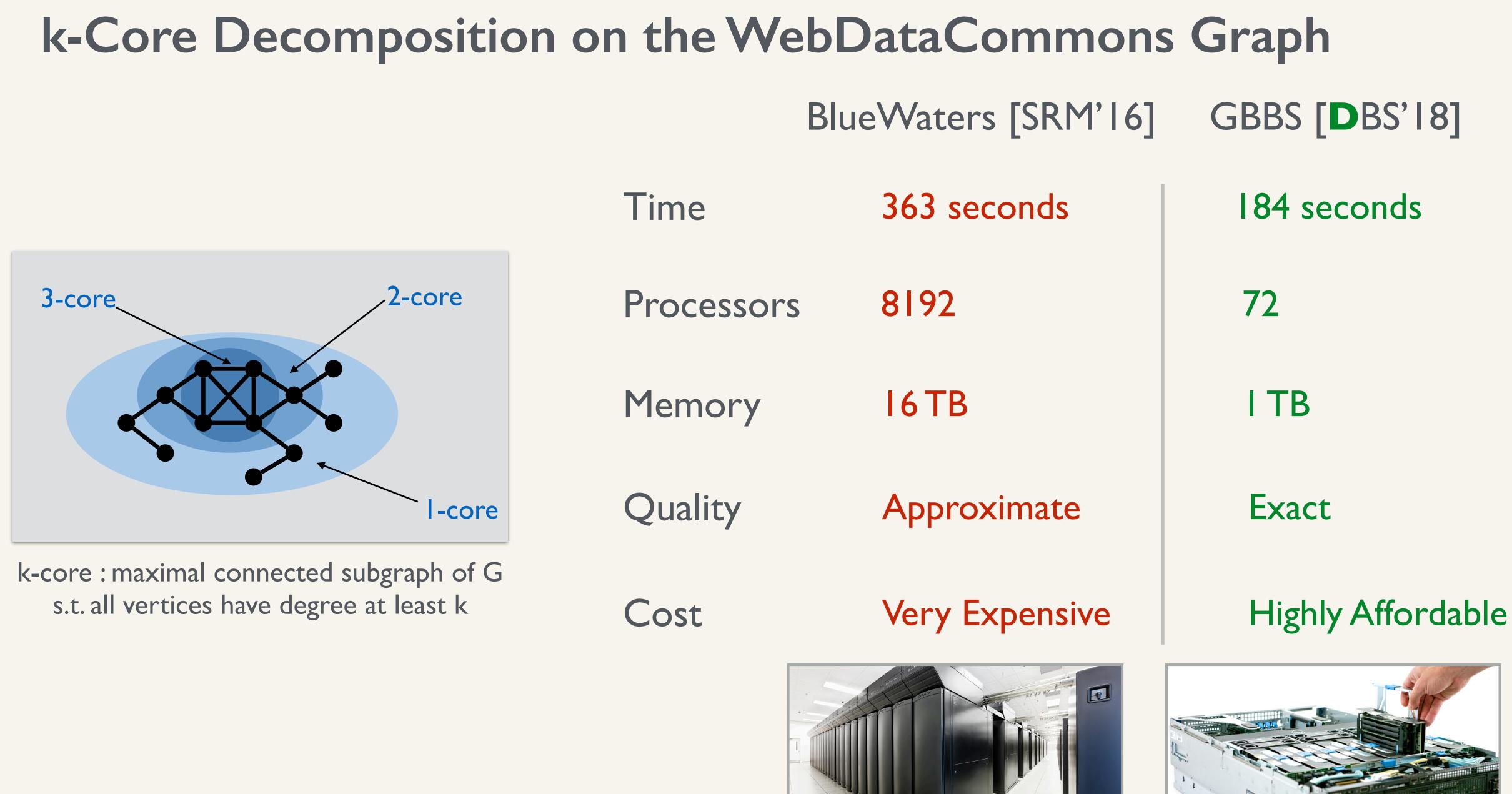
s.t. all vertices have degree at least k

#### BlueWaters [SRM'16]

- 363 seconds
- sors 8192
- ry I6TB
  - Approximate
  - Very Expensive



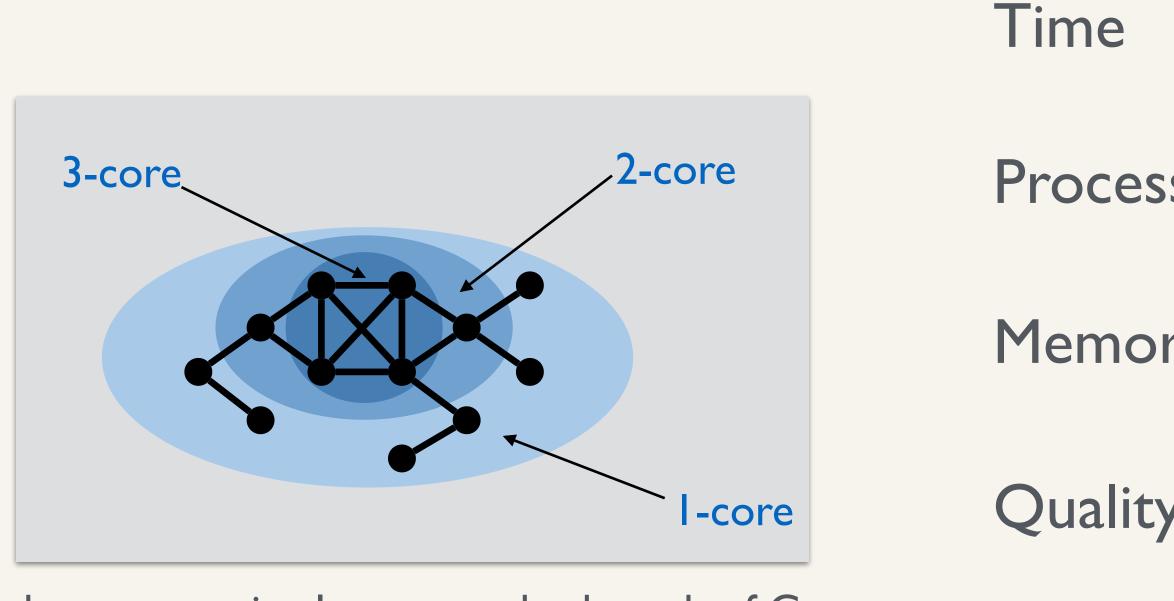








## k-Core Decomposition on the



k-core : maximal connected subgraph of G s.t. all vertices have degree at least k

Cost

I.95x faster than the approxima 56.8x fewer hyper-three

| WebDataCommons Graph                                                |                     |                 |  |  |  |
|---------------------------------------------------------------------|---------------------|-----------------|--|--|--|
|                                                                     | BlueWaters [SRM'16] | GBBS [DBS'18]   |  |  |  |
|                                                                     | 363 seconds         | 184 seconds     |  |  |  |
| ssors                                                               | 8192                | 72              |  |  |  |
| ory                                                                 | Ι6ΤΒ                | ΙΤΒ             |  |  |  |
| Y                                                                   | Approximate         | Exact           |  |  |  |
|                                                                     | Very Expensive      | Highly Affordab |  |  |  |
| ate distributed result by SRM'16, using reads and 16.3x less memory |                     |                 |  |  |  |
|                                                                     |                     |                 |  |  |  |



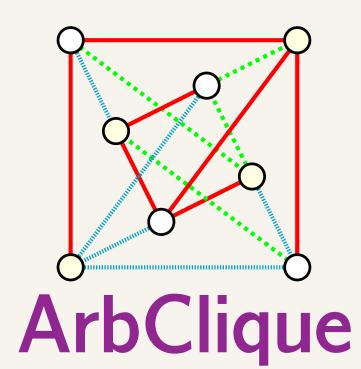


## **GBBS** as a Research Repository 5 Years On

Basis for many other parallel graph projects:

- \* Fast Parallel Graph Connectivity [DHS'21]
- \* Parallel k-clique enumeration [SDS'21]
- \* Graph Embedding [QDTPW'21]
- Structural Graph Clustering [TDS'21]
- \* Batch-Dynamic Graph Orientation [LSYDS'22]







#### SAGE **Semi-Asymmetric Graph Engine**





## **GBBS** as a Research Repository 5 Years On

Basis for many other parallel graph projects:

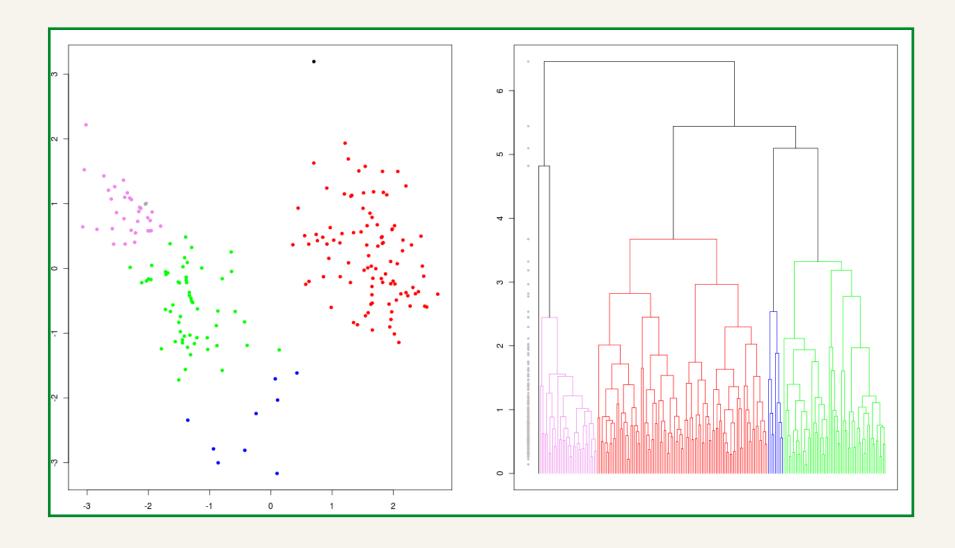
- \* Fast Parallel Graph Connectivity [DHS'21]
- \* Parallel k-clique enumeration [SDS'21]
- \* Graph Embedding [QDTPW'21]
- Structural Graph Clustering [TDS'21]
- \* Batch-Dynamic Graph Orientation [LSYDS'22]

#### Used at Google:

- \* Fast and scalable implementations of parallel graph clustering algorithms (e.g., Affinity Clustering)
- \* Being used to develop and evaluate parallel hierarchical agglomerative clustering (HAC) algorithms











Faster k-Means to Accelerate ANNS



## Clustering

- \* Given a set of points P with a notion of distance between the points, group the points into a number of clusters so that:
  - \* Members of the same cluster are close / similar to each other \* Members of different clusters are dissimilar

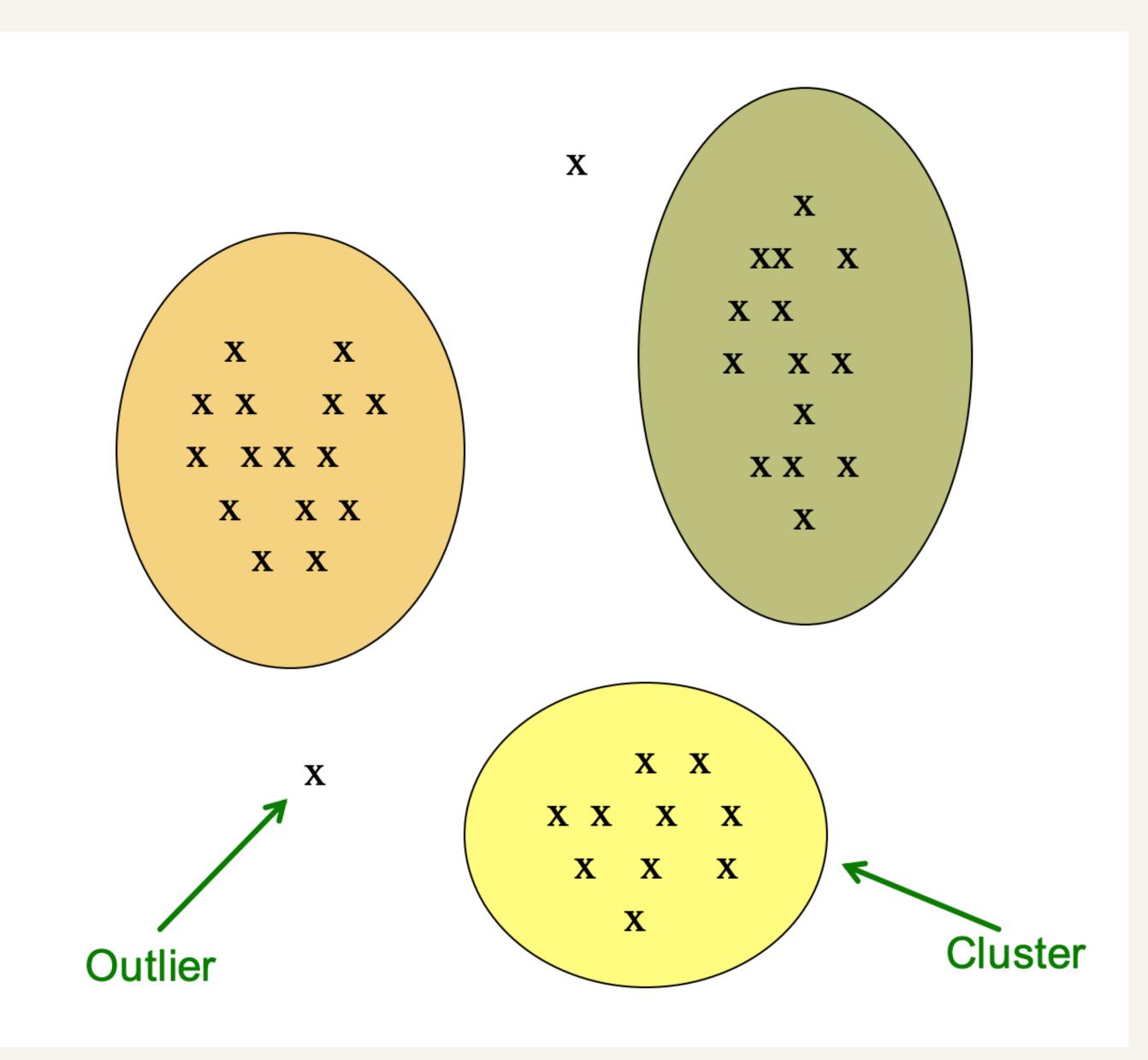
#### Usually:

- also possible (e.g., Jaccard, edit-distance, etc)
- \* Points are in a high-dimensional space, e.g.,  $P \in \mathbb{R}^d$ ,  $d \ge 100$ \* Distance is measured using Euclidean distance, but other measures



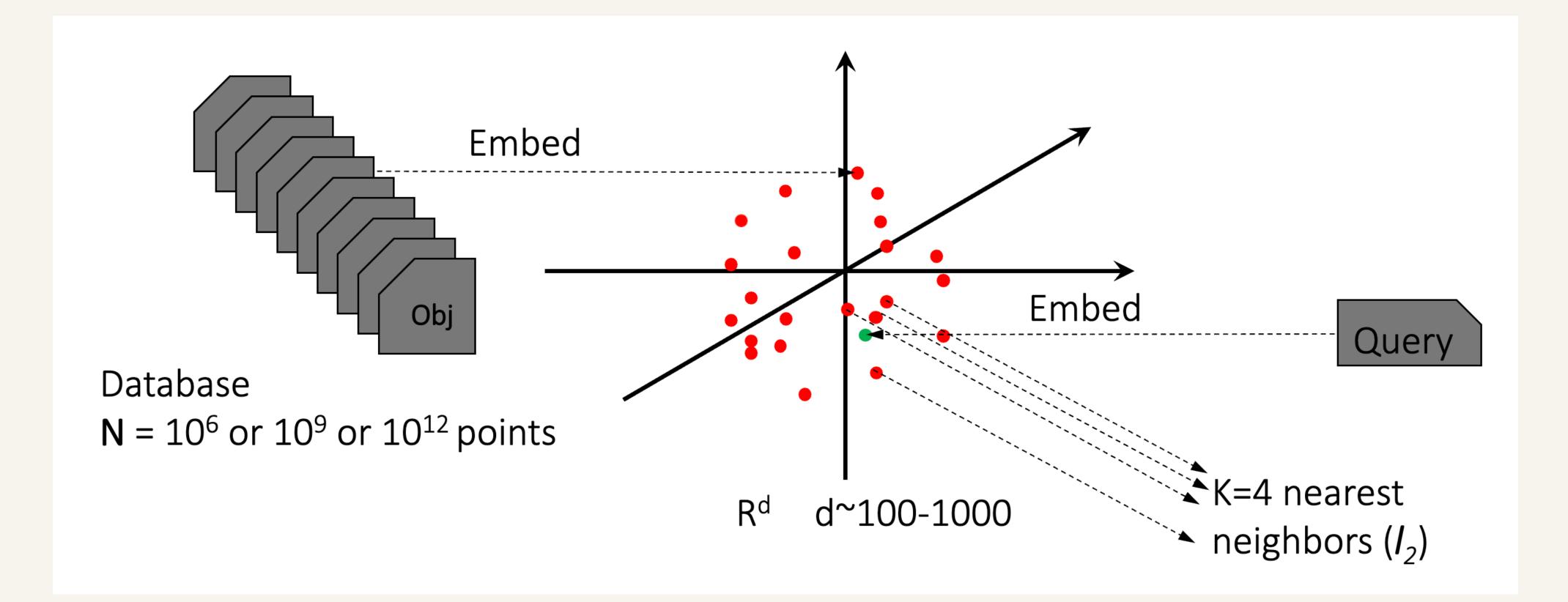








## **Clustering Problem: Building Bucketing-Based Indexes**



- \* Exact retrieval requires exhaustive scan in the worst case; settle for approximation instead.

\* Measure recall@k: the fraction of output candidates in true top k neighbors



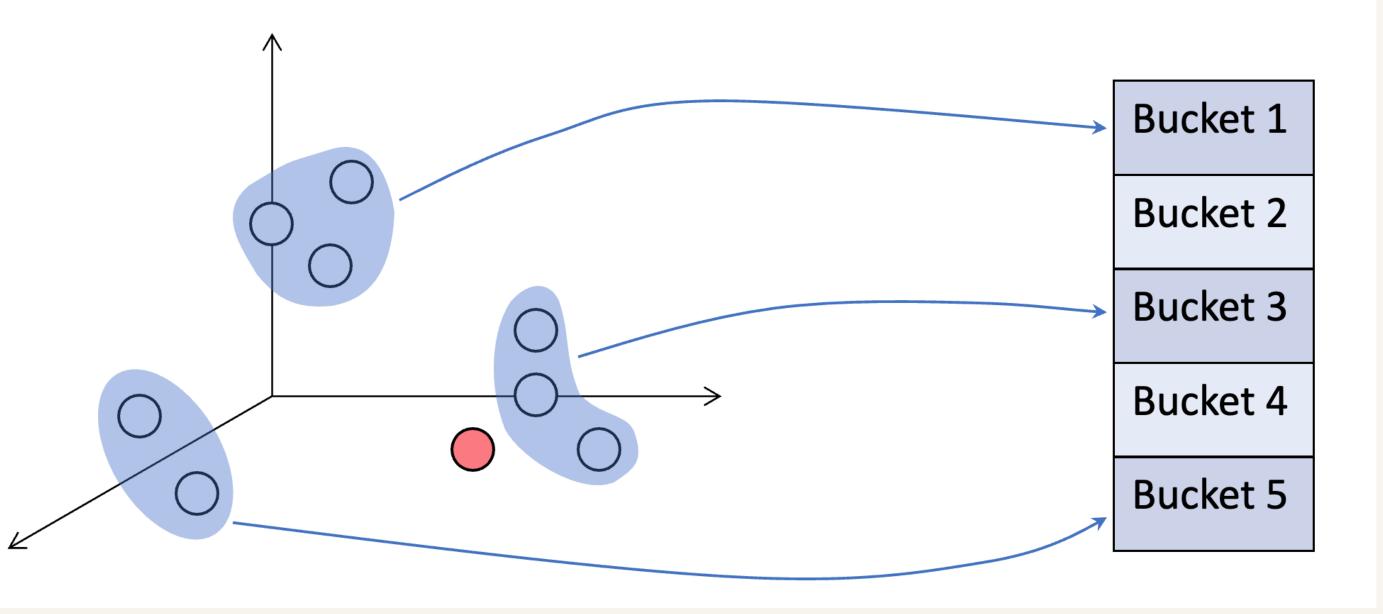
# **Clustering Problem: Building Bucketing-Based Indexes**

#### \* Build:

- Assign points to one (or more)
   buckets
- \* Nearby points likely to be in the same buckets

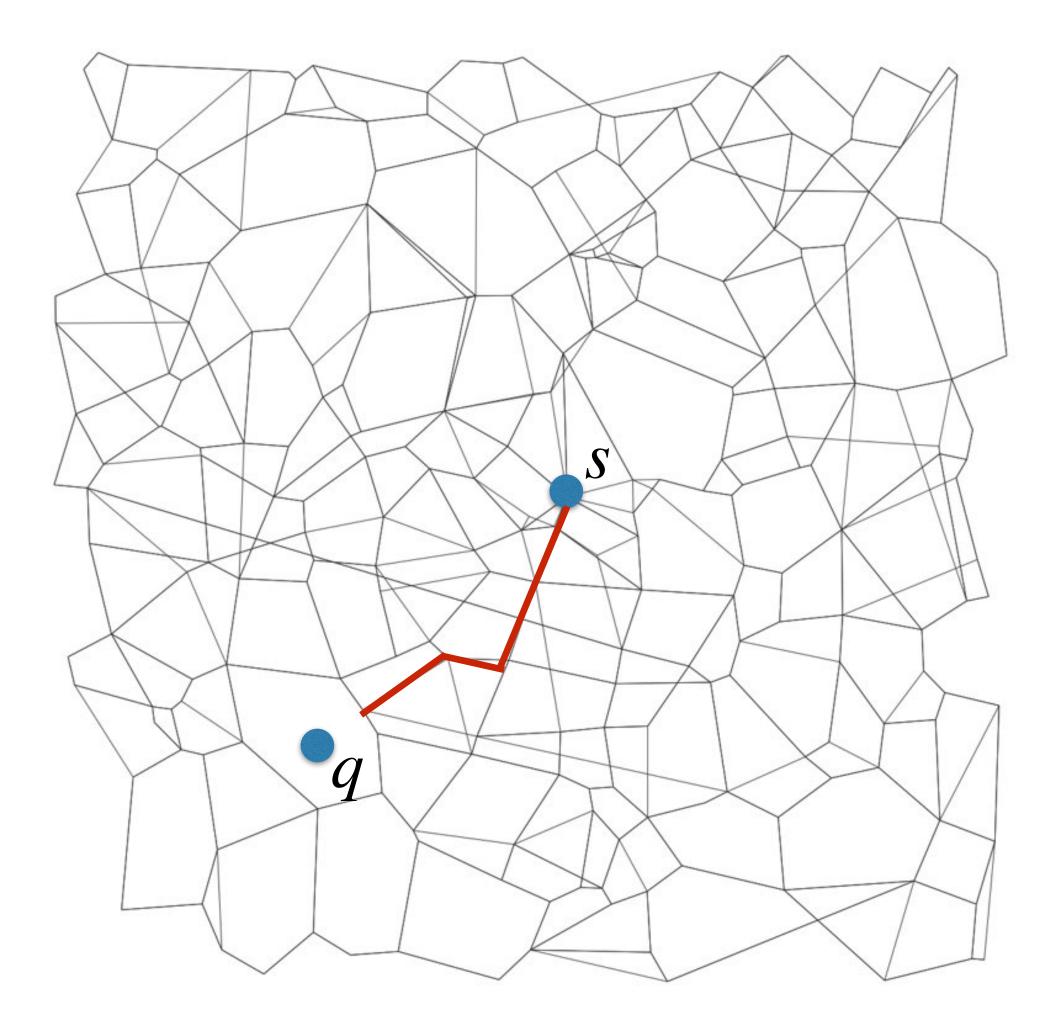
#### \* Query:

- Probe a subset of buckets for the queried point
- \* Compare with all points in these buckets and report top-k





## **Graph Indexes**



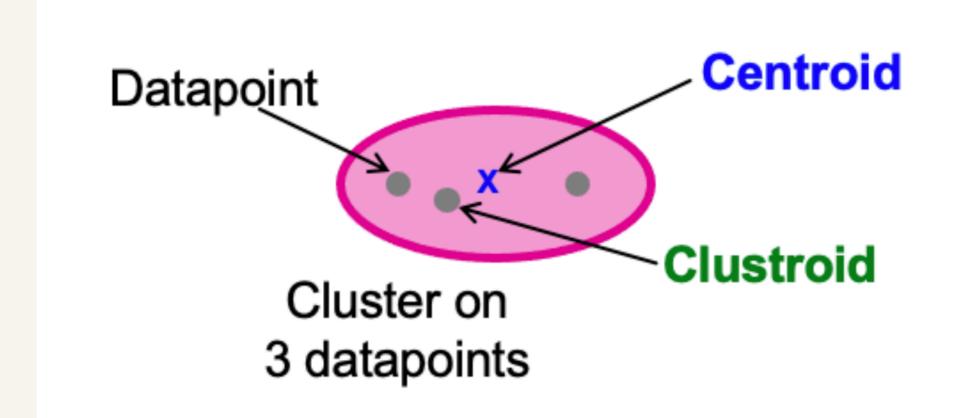
## \* Main ideas:

- Build graphs with polylog(n)
   degree
- \* Satisfy the "relative neighbor" property (RNGs):
- \* Points p, q connected by an edge if there does not exist a third point r that is closer to both p, q than they are to each other



## FAISS Index: k-Means Bucketing + Graph over Centroids

\* k-Means clustering partitions the data into k convex clusters



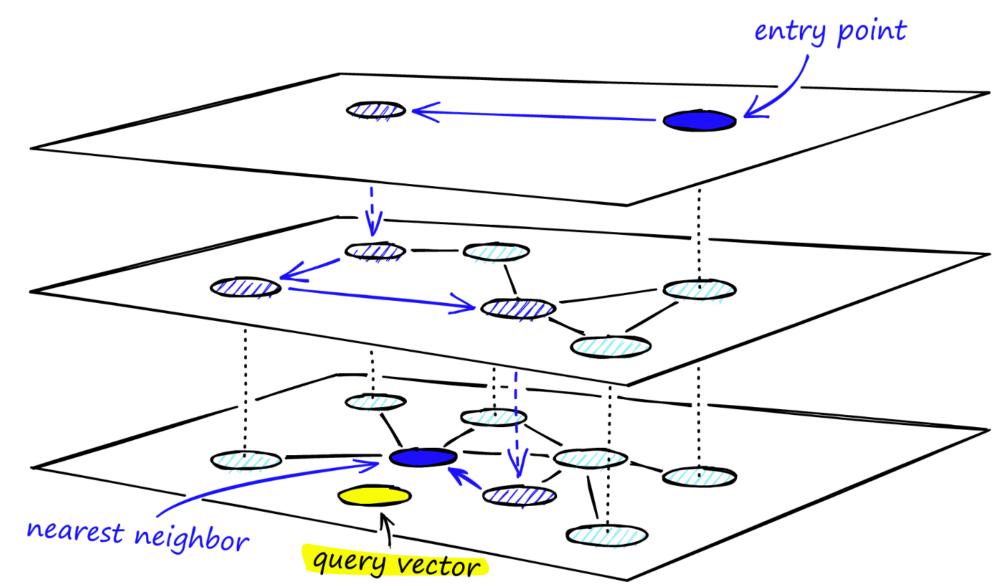
\* Idea: run k-means with reasonably large k (e.g., on an n = 1e9 point dataset, we might use k = 1e6)



## FAISS Index: k-Means Bucketing + Graph over Centroids

- \* Such a large value of k creates an interesting routing problem—given a query q, which buckets (clusters) should we probe?
- Idea: just build another ANN index over the centroids. In this case, a graph index (e.g., HNSW or DiskANN)

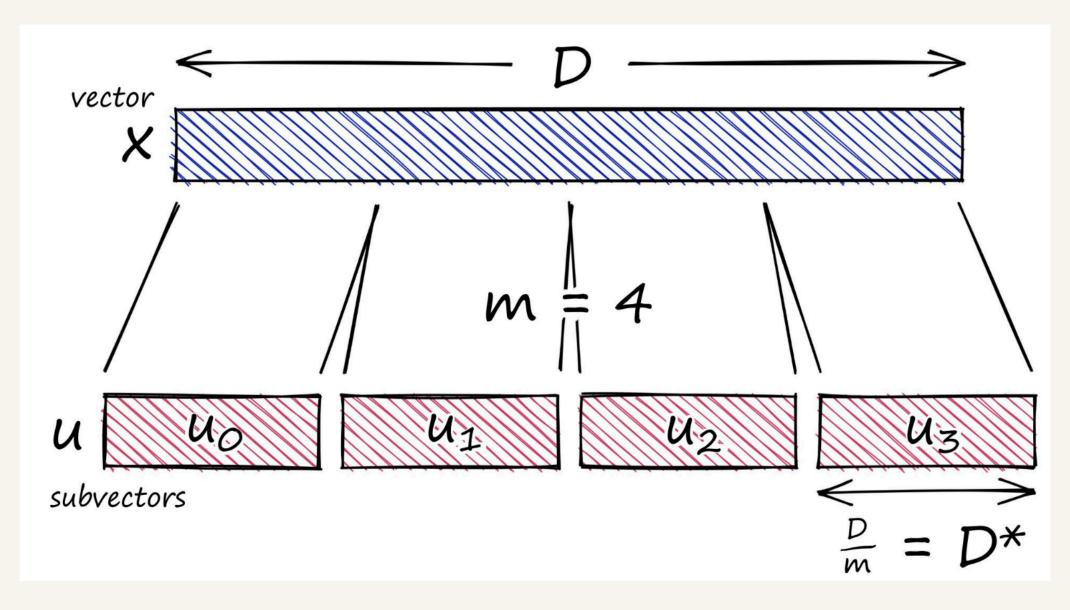
 In practice, we will figure out the k' closest centroids to the query and probe the clusters for these centroids





## k-Means for Product Quantization

- \* Vectors in modern applications are large
  - Recent OpenAl text embeddings have ~1600 dimensions. Used to be 8 times larger until recently
  - \* More dimensions useful in applications, but costly to store and search
- \* PQ: main idea
  - \*  $D \rightarrow D^*$  dimensions
  - Reduce range of each dimension
    i.e., use uint8 instead of float

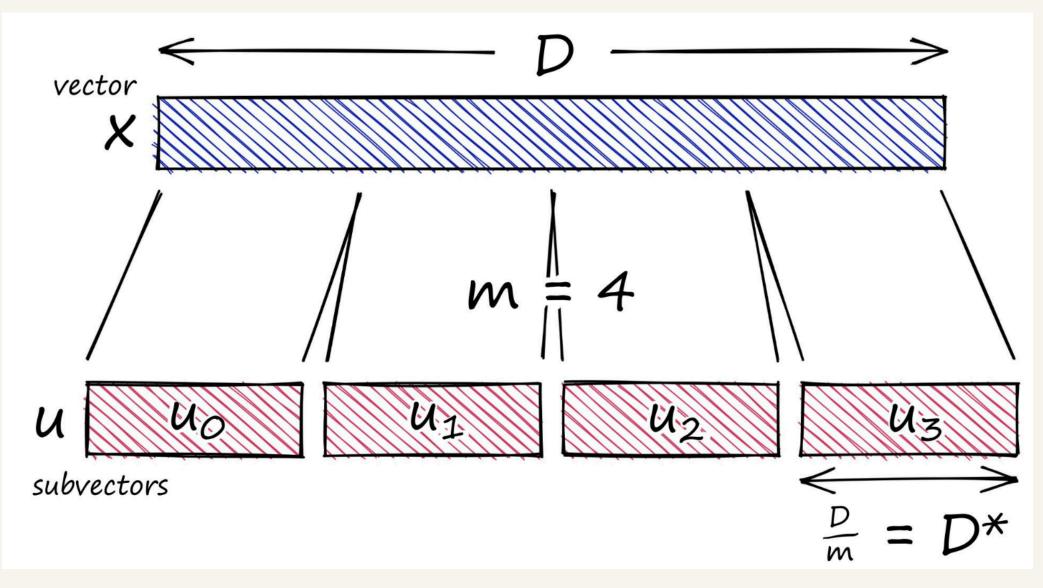


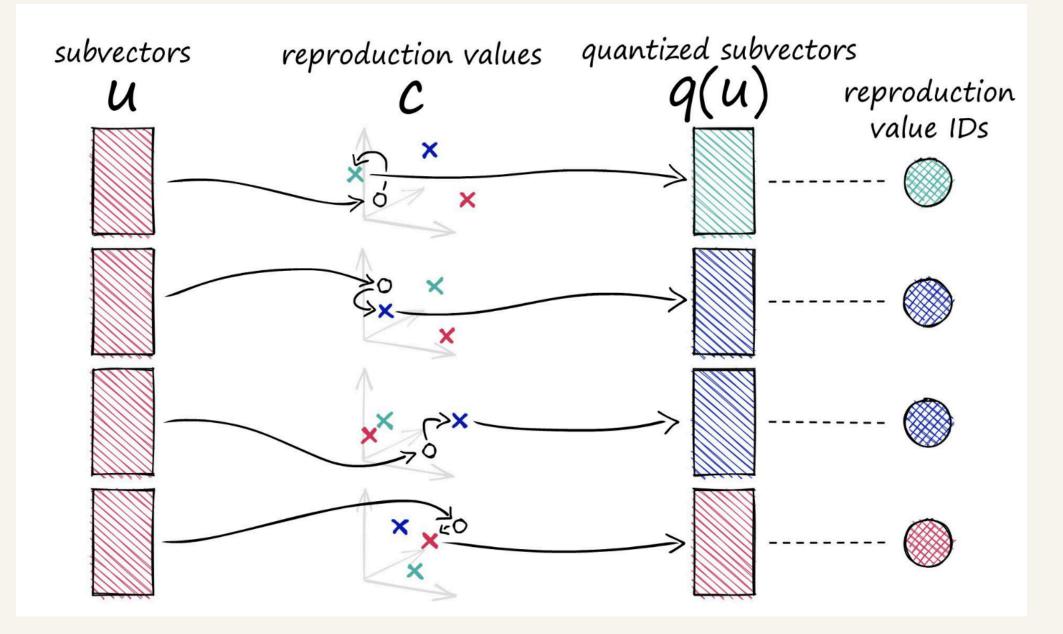


## k-Means for Product Quantization

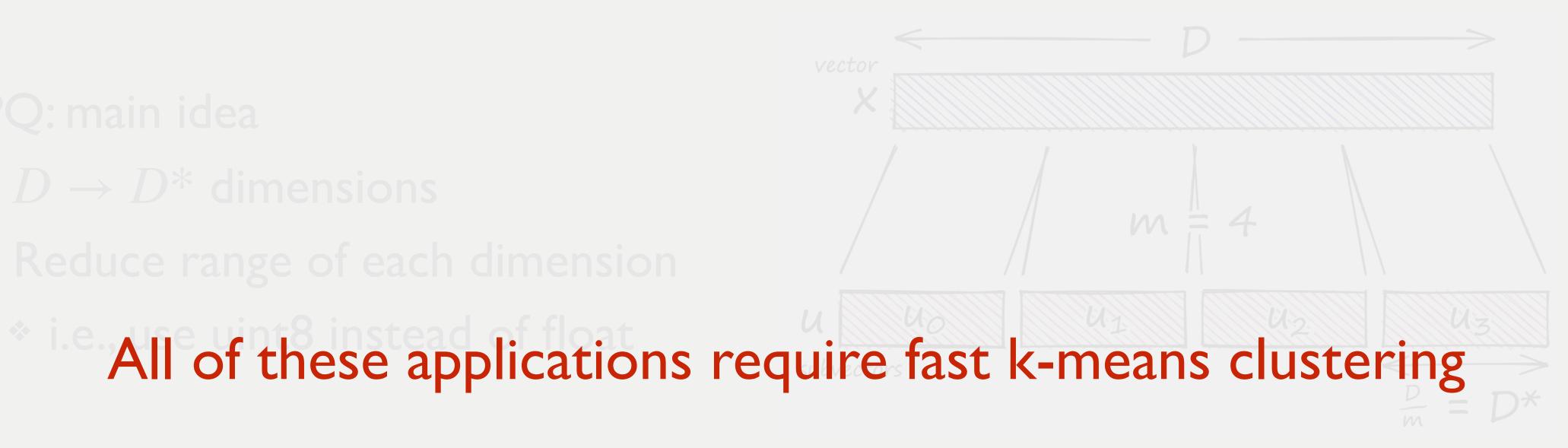
- \* PQ: main idea
  - \*  $D \rightarrow D^*$  dimensions
  - Reduce range of each dimension
    i.e., use uint8 instead of float

- \* Range reduction works by using the id of a centroid (say one of  $2^8 = 256$  centroids)
- \* Original point can be approximated by remembering the position of the centroid









## Can we build fast implementations with good accuracy (ideally with some theoretical guarantees) and good scalability?



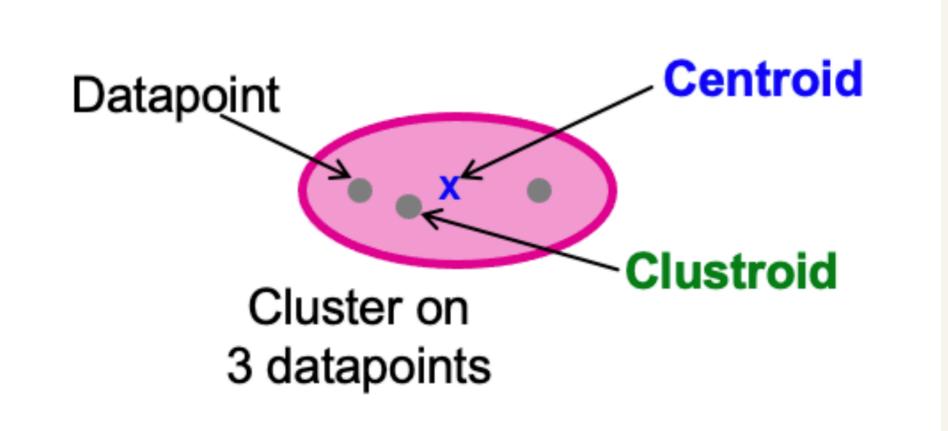
## Our plan: implement a variety of k-means baselines

\* k-means objective: partition input points into k clusters  $C_1, \ldots, C_k$  minimizing:

$$\sum_{i=1}^{k} \sum_{x \in C_i} \|x - \mu_i\|^2$$

$$\mu_i = \operatorname{mean}(C_i) = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

\* Related to the idea of minimizing the variance of a cluster (also called "Sur Squared Deviations")

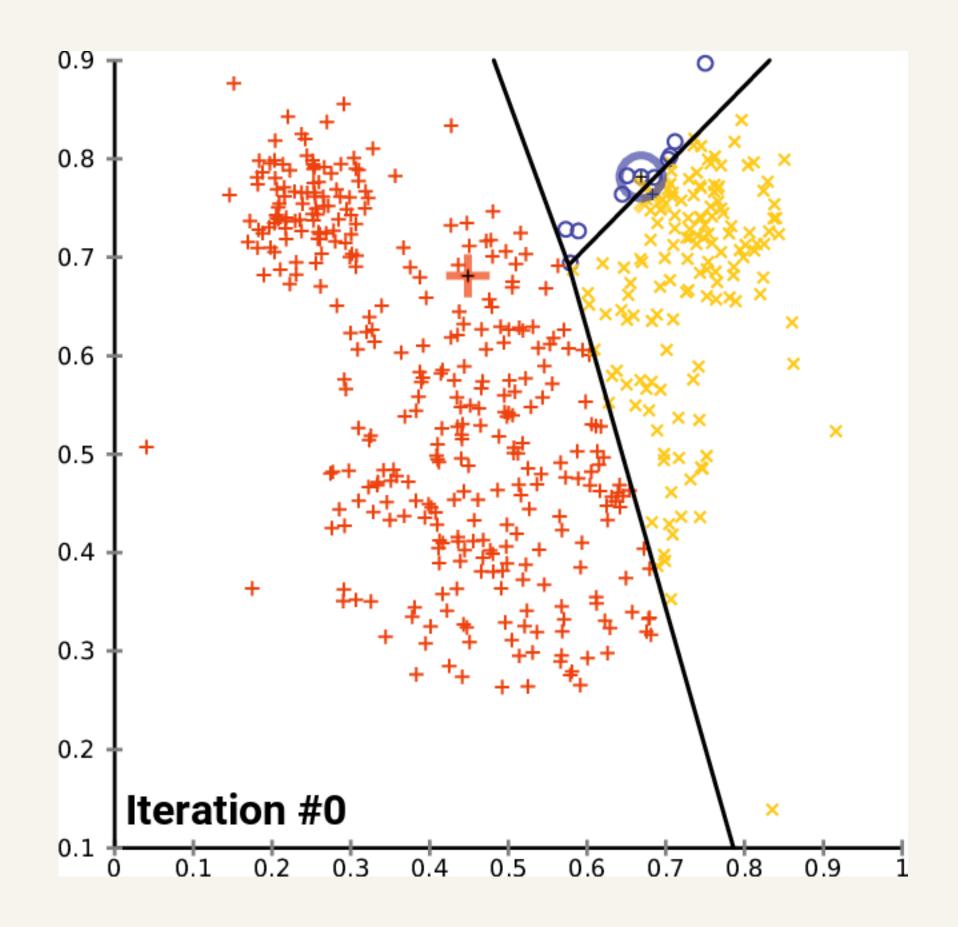




## Lloyd's Algorithm

- \* Lloyd's algorithm (baseline)
- \* Consists of two steps. Suppose some initial centers  $c_1, \ldots, c_k$  given:
- (I) Assignment:
  - \* assign each  $p \in P$  to the cluster corresponding to its nearest center
- (2) Update:
  - \* recompute  $c_i$  based on the set of points assigned to  $C_i$





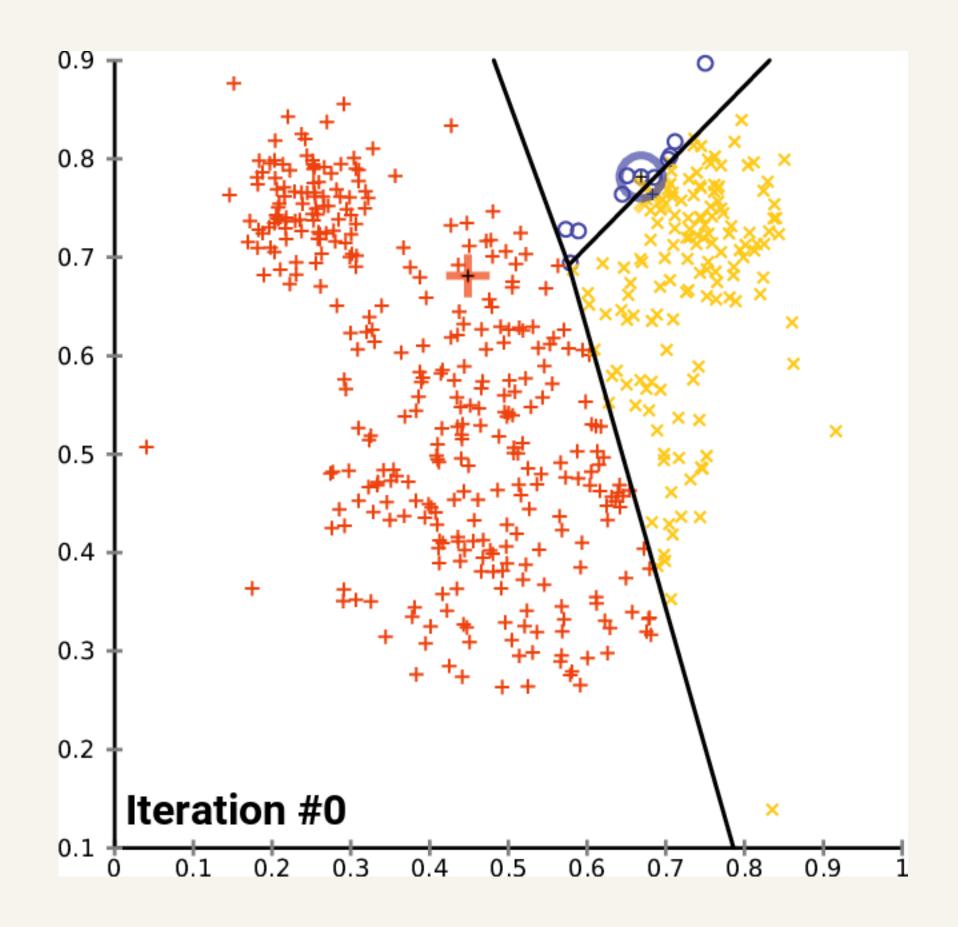




## Lloyd's Algorithm

- \* Lloyd's algorithm (baseline)
- \* Consists of two steps. Suppose some initial centers  $c_1, \ldots, c_k$  given:
- (I) Assignment:
  - \* assign each  $p \in P$  to the cluster corresponding to its nearest center
- (2) Update:
  - \* recompute  $c_i$  based on the set of points assigned to  $C_i$









# What is the cost of one Lloyd's iteration in terms of n, k, d?

## What potential for optimizations are there?



## **Better initialization: k-means++**

- \* Instead of picking k random centers initially:
  - \* Pick one center uniformly at random
  - \* For each point p not yet elected as a center, compute D(x), the distance between p and its nearest center
  - \* Sample an unchosen point to be chosen as the center where points are sampled with probability proportional to  $D(x)^2$
  - \* Amazingly, can show that the centers that result from this procedure are an  $O(\log n)$ approximation of OPT (in expectation)

k-means++: The Advantages of Careful Seeding

David Arthur \* Sergei Vassilvitskii<sup>†</sup>



# Scalable initialization: k-means

- \* A slightly more complex scheme, but admits more parallelism:
  - \* Sample O(k) points in each round
  - \* Repeat for approximately  $O(\log n)$  rounds
  - \* Yields  $O(k \log n)$  points that are then reclustered into k initial centers
- \* Theory: initial  $O(k \log n)$  centers give a constant factor approximation of OPT

## Scalable K-Means++

Bahman Bahmani\*<sup>†</sup> Stanford University Stanford, CA bahman@stanford.edu

Benjamin Moseley\*\* University of Illinois Urbana, IL bmosele2@illinois.edu

Andrea Vattani<sup>\*§</sup> University of California San Diego, CA

avattani@cs.ucsd.edu

Ravi Kumar Yahoo! Research Sunnyvale, CA ravikumar@yahooinc.com

Sergei Vassilvitskii Yahoo! Research New York, NY sergei@vahoo-inc.com

|                      | k = 20 | k = 50 | k = 100 |
|----------------------|--------|--------|---------|
| Random               | 176.4  | 166.8  | 60.4    |
| k-means++            | 38.3   | 42.2   | 36.6    |
| k-means              | 36.9   | 30.8   | 30.2    |
| $\ell = 0.5k, r = 5$ | 00.9   | 50.0   | 50.2    |
| k-means              | 23.3   | 28.1   | 29.7    |
| $\ell=2k,r=5$        | 20.0   | 20.1   | 20.1    |

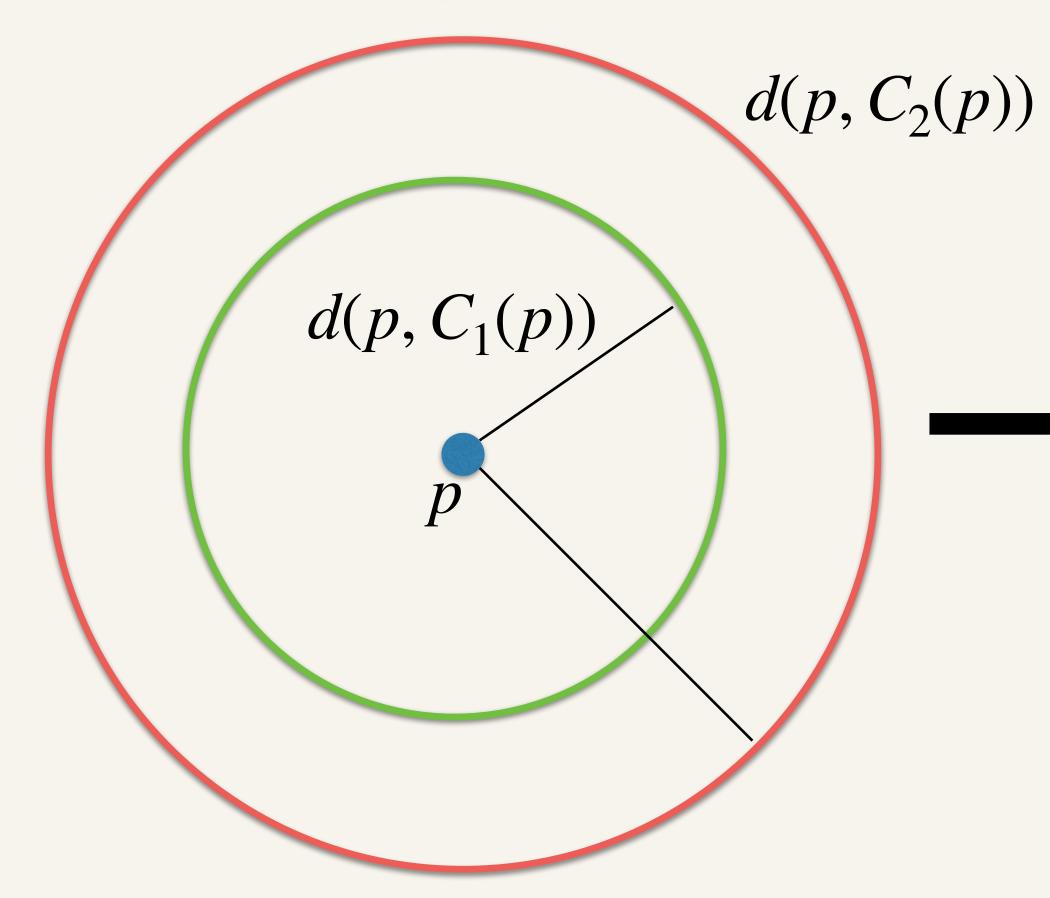
Table 6: Number of Lloyd's iterations till convergence (averaged over 10 runs) for SPAM.





## Avoiding distance comparisons

- \* Costly part of Lloyd iteration is comparing each point p with all k centers (costs O(nkd))
- \* Idea: use triangle inequality to avoid distance computations for points



### **Yinyang K-Means: A Drop-In Replacement of the Classic K-Means** with Consistent Speedup

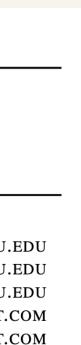
Yufei Ding\* Yue Zhao\* **Xipeng Shen\*** Madanlal Musuvathi<sup>\$</sup> Todd Mytkowicz<sup>\$</sup>

YDING8@NCSU.EDU YZHAO30@NCSU.EDU XSHEN5@NCSU.EDU MADANM@MICROSOFT.COM TODDM@MICROSOFT.COM

 $d(p, C_2(p)) - \delta_{\max}$ 

 $d(p, C_1(p)) + \delta(C_1(p))$ 

p





## **Project plan:**

- \* Build a highly optimized shared-memory library of k-means implementations
- \* Evaluate existing algorithms for large n, k, d:
  - \* n = 1B points
  - \* k = 1M centers
  - *\* d* ∈ [100,1600]

Evaluate performance on real-world embedding datasets from ANN search applications

(Hopefully) design new algorithms and heuristics to obtain scalability improvements at billion-scale!



