Parallelism Background and Fast Parallel Spatial Clustering Algorithms

Laxman Dhulipala University of Maryland, College Park cs.umd.edu/~laxman

Provably-Efficient and Scalable Systems

Parallel Algorithm Design and Analysis

New Models for Parallel Computation

Practice

Provably-Efficient and Scalable Systems Parallel Algorithm Design and Analysis

New Models for Parallel Computation

Large-Scale Graph Processing

WebDataCommons hyperlink graph

- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store

Large-Scale Graph Processing

WebDataCommons hyperlink graph

- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store
- Largest publicly available graph

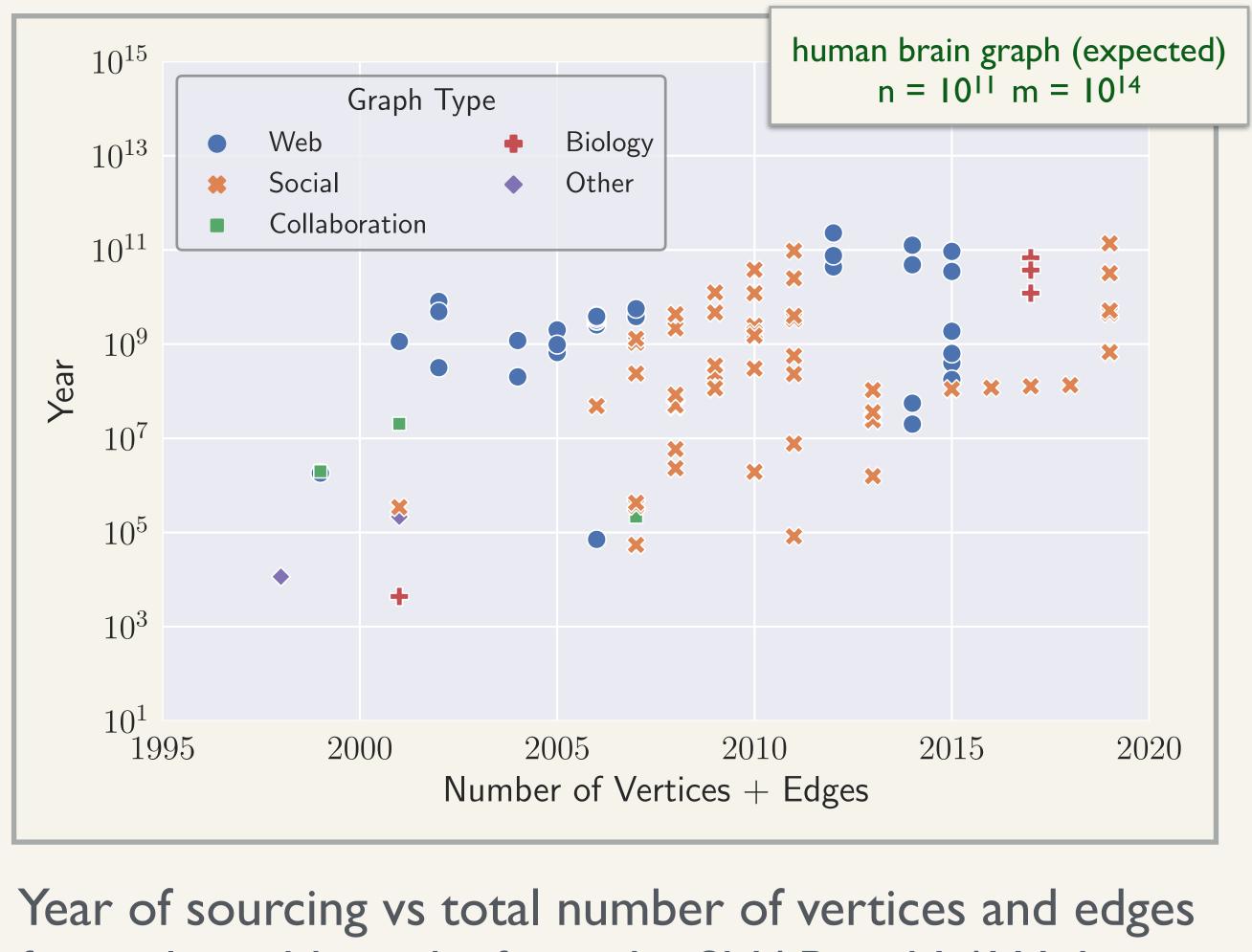
"...[the 2012 graph is the] largest hyperlink graph that is available to the public outside companies such as Google, Yahoo, and Microsoft."

Large-Scale Graph Processing

WebDataCommons hyperlink graph

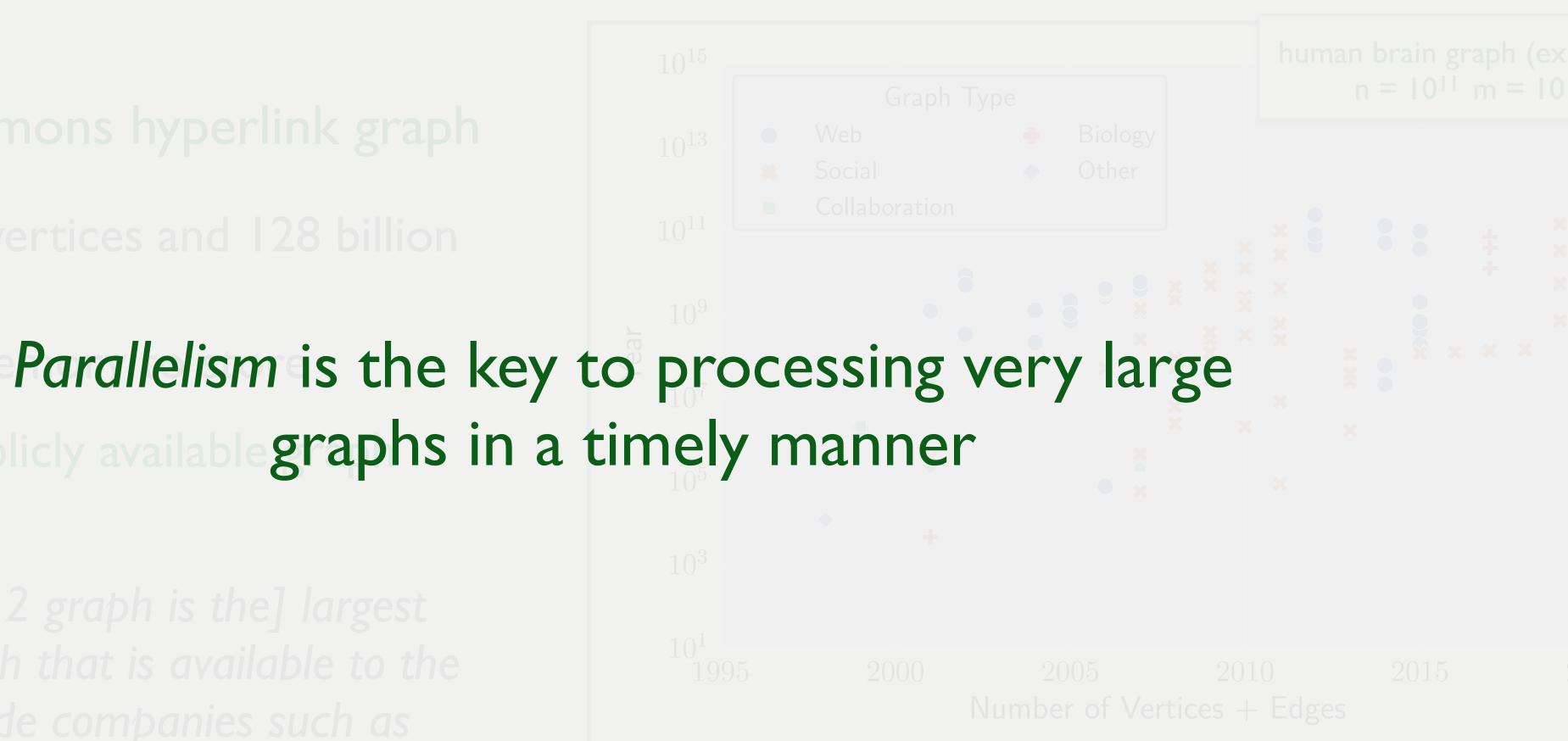
- 3.5 billion vertices and 128 billion edges
- ~ITB of memory to store
- Largest publicly available graph

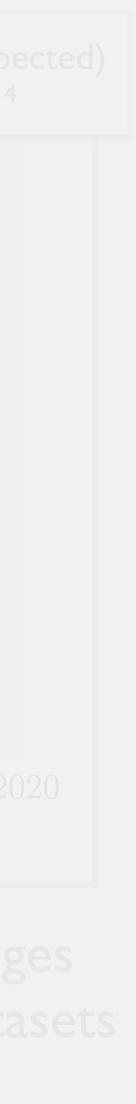
"...[the 2012 graph is the] largest hyperlink graph that is available to the public outside companies such as Google, Yahoo, and Microsoft."

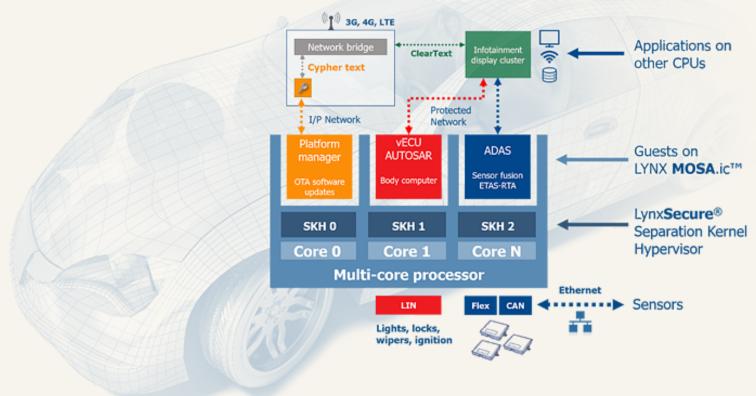


for real-world graphs from the SNAP and LAW datasets

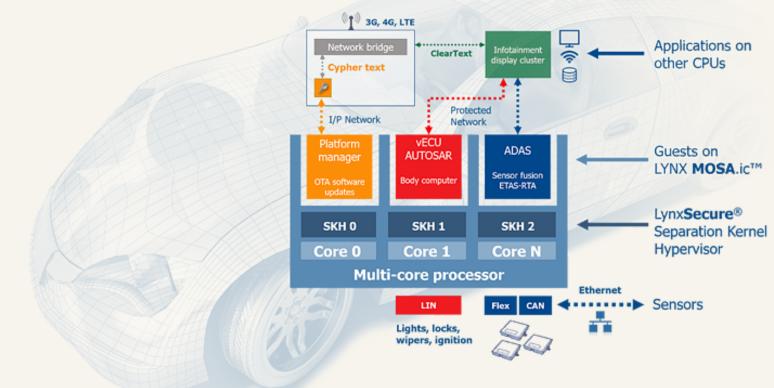
- Largest publicly available graphs in a timely manner







Parallel machines are everywhere!



Main focus of my work is shared-memory parallelism

Shared-Memory Machines

• Cost for a ITB memory machine with 72 processors is about \$20,000.

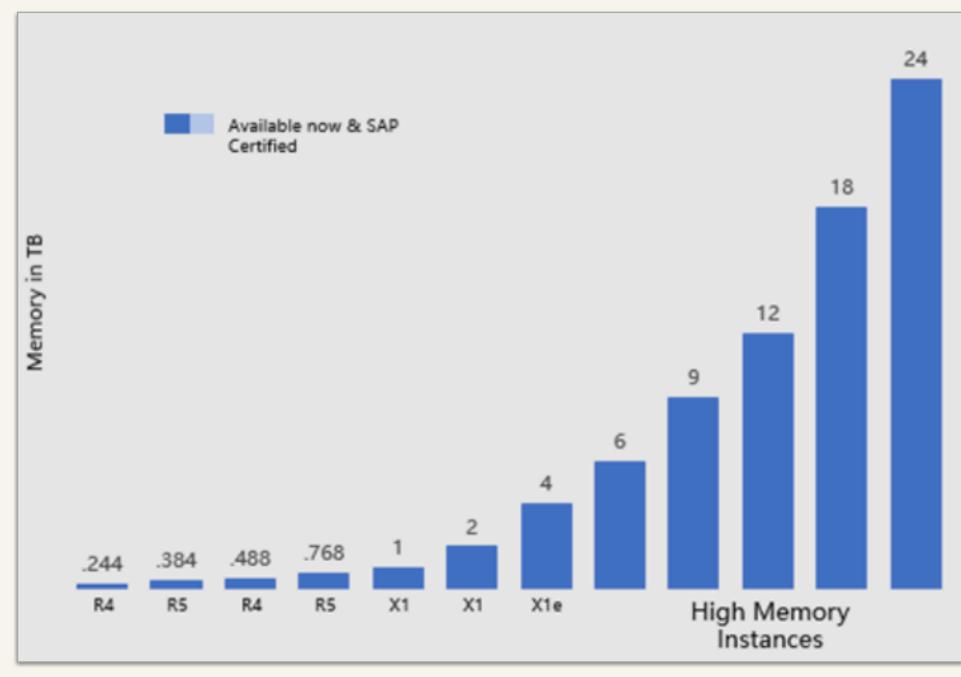
Shared-Memory Machines

• Cost for a ITB memory machine with 72 processors is about \$20,000.

6

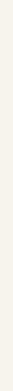
Shared-Memory Machines

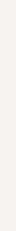
- Cost for a ITB memory machine with 72 processors is about \$20,000.
- Can rent a similar machine (96 processors and I.5TB memory) for \$11/hour on Google Cloud



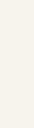












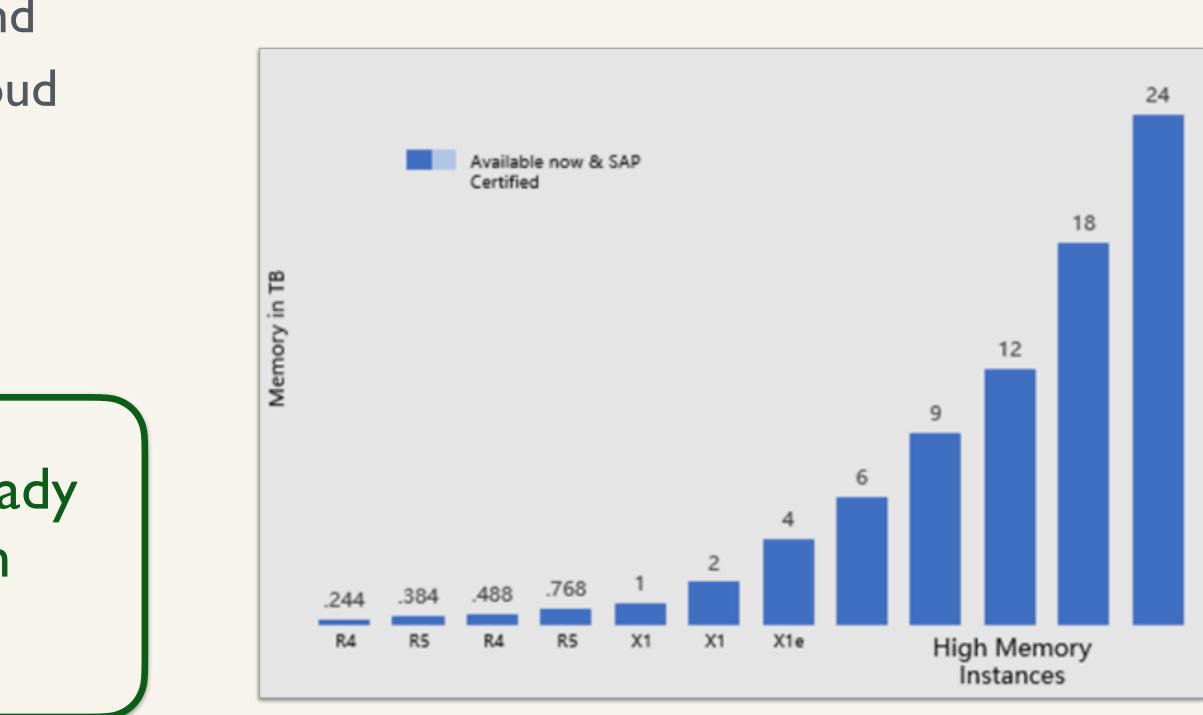
Shared-Memory Machines

- Cost for a ITB memory machine with 72 processors is about \$20,000.
- Can rent a similar machine (96 processors and I.5TB memory) for \$11/hour on Google Cloud

WebDataCommons Graph

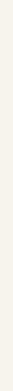
• 3.5 billion vertices and 128 billion edges

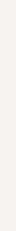
A single shared-memory machine can already store the largest publicly available graph datasets, with plenty of room to spare



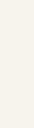


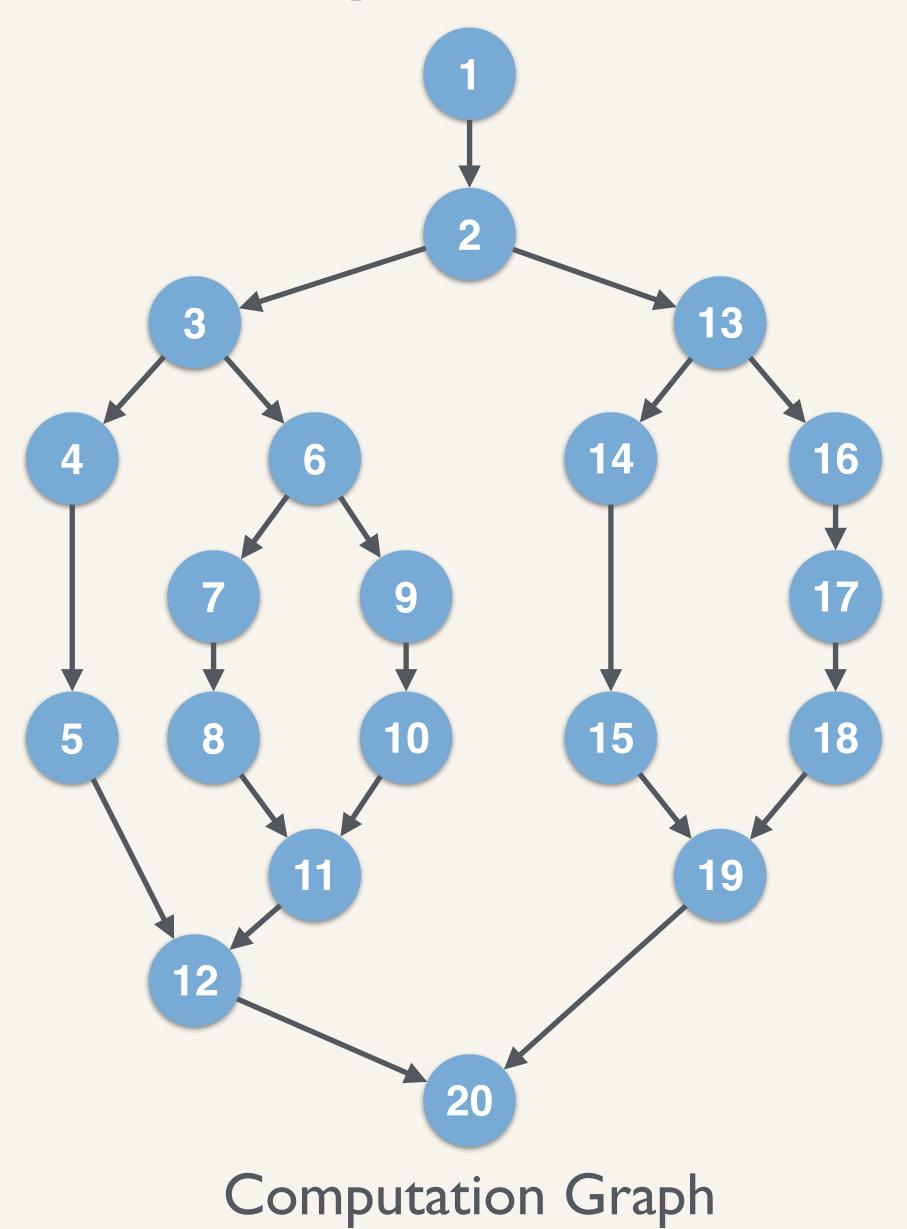


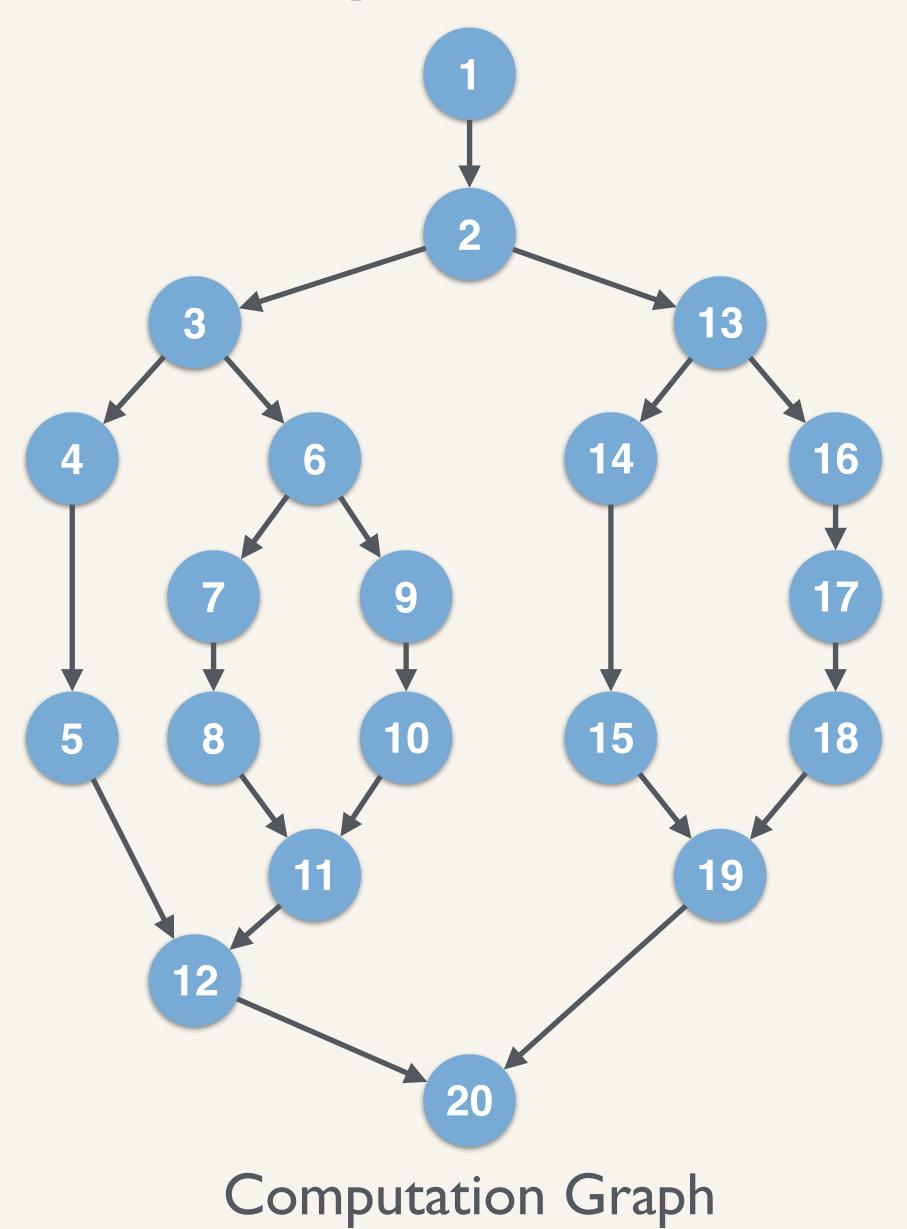




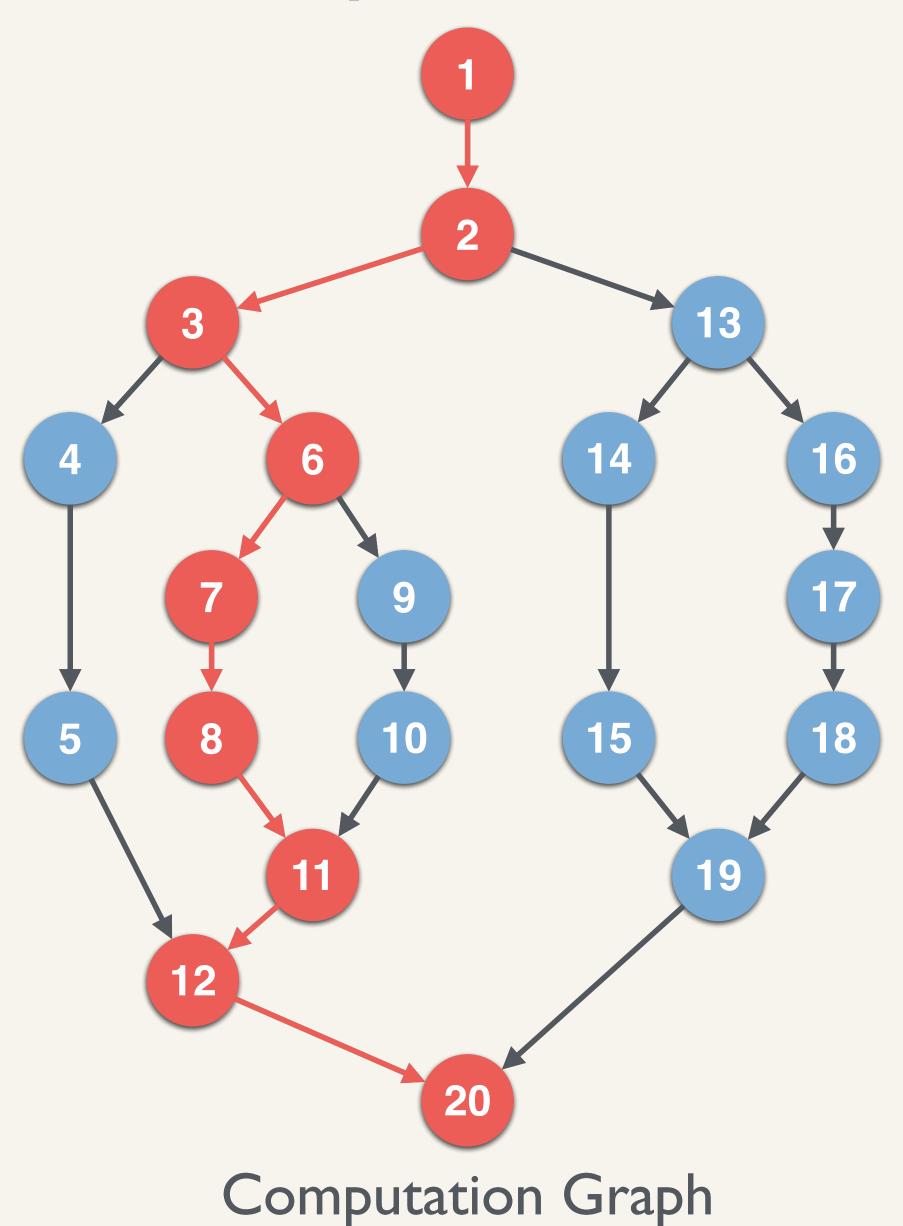






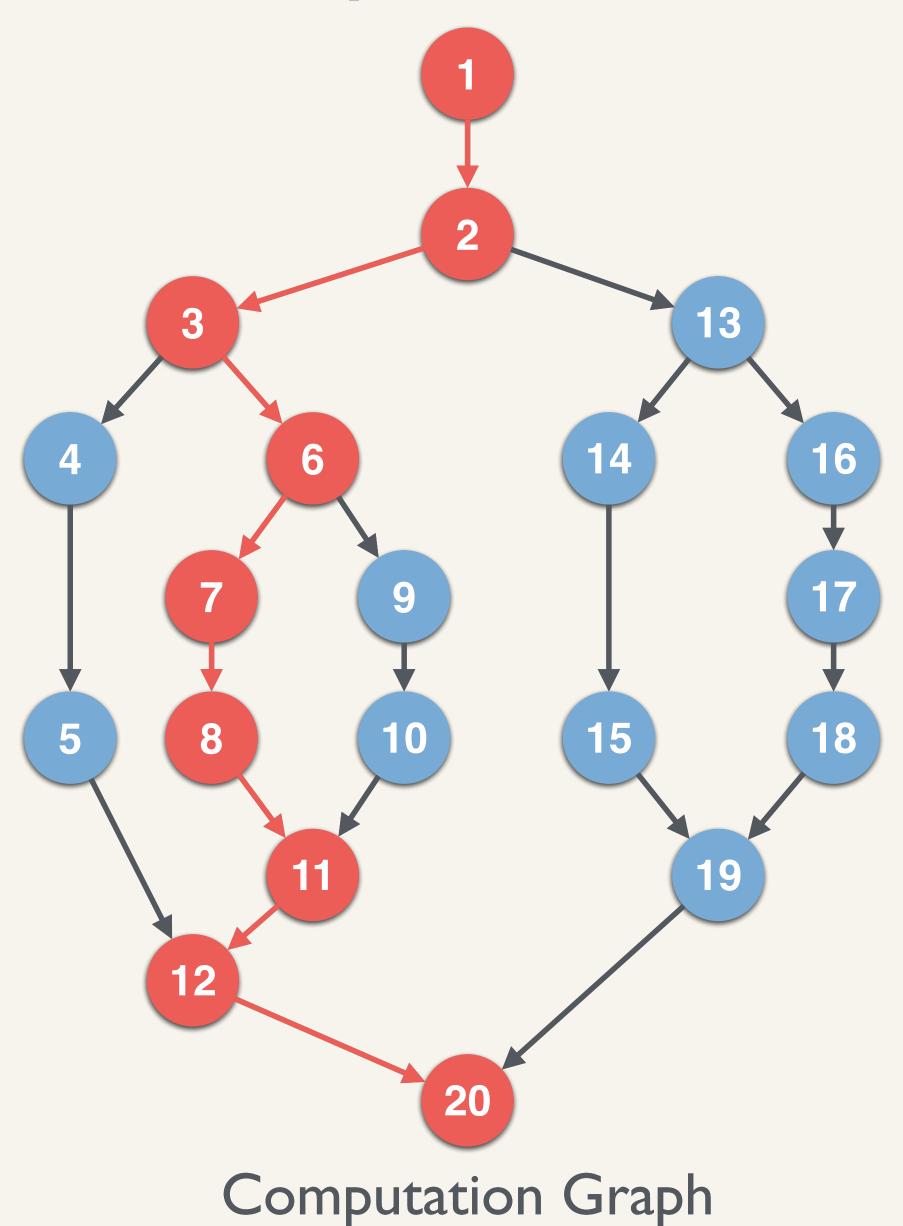


Work = total number of vertices in the computation graph



Work = total number of vertices in the computation graph

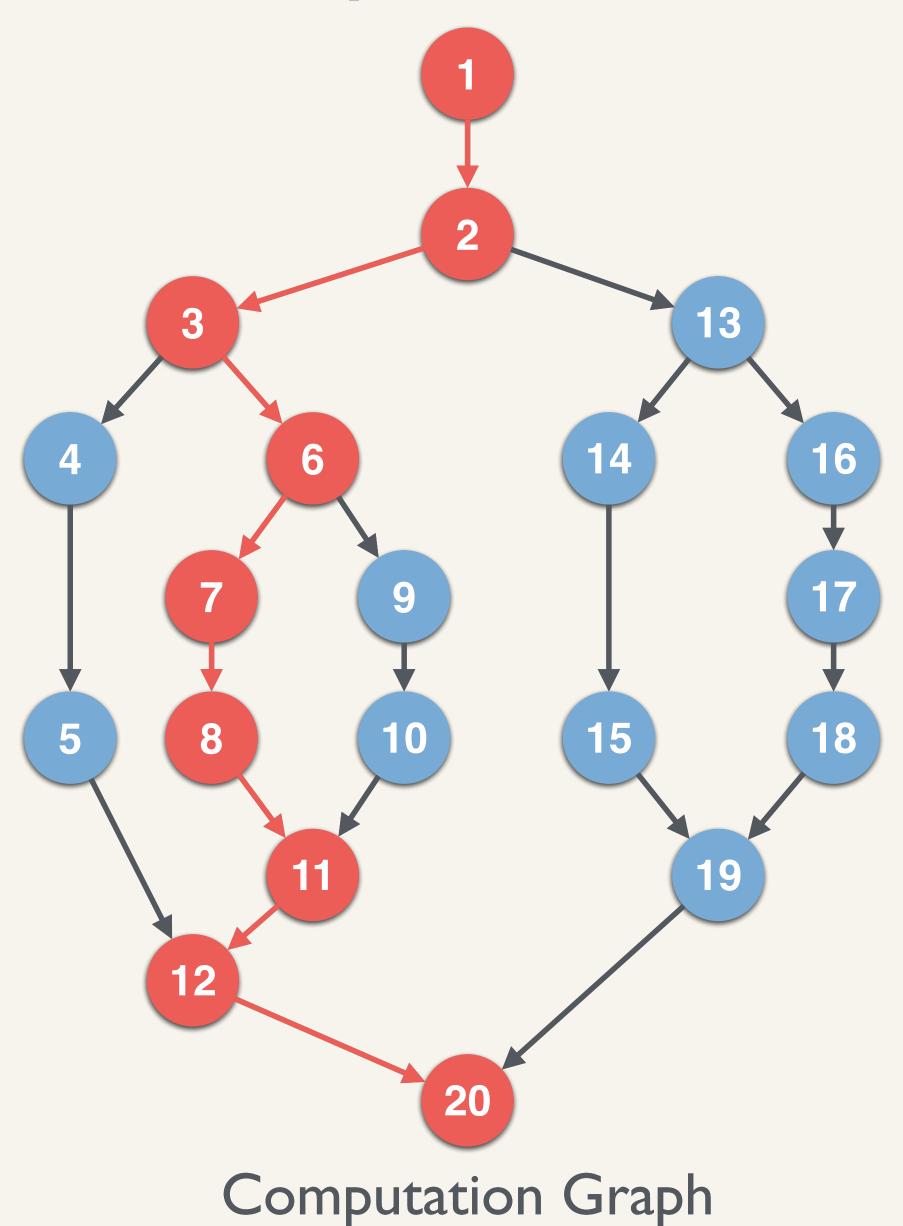
Depth = longest directed path in the graph (dependence length)



Work = total number of vertices in the computation graph

Depth = longest directed path in the graph (dependence length)

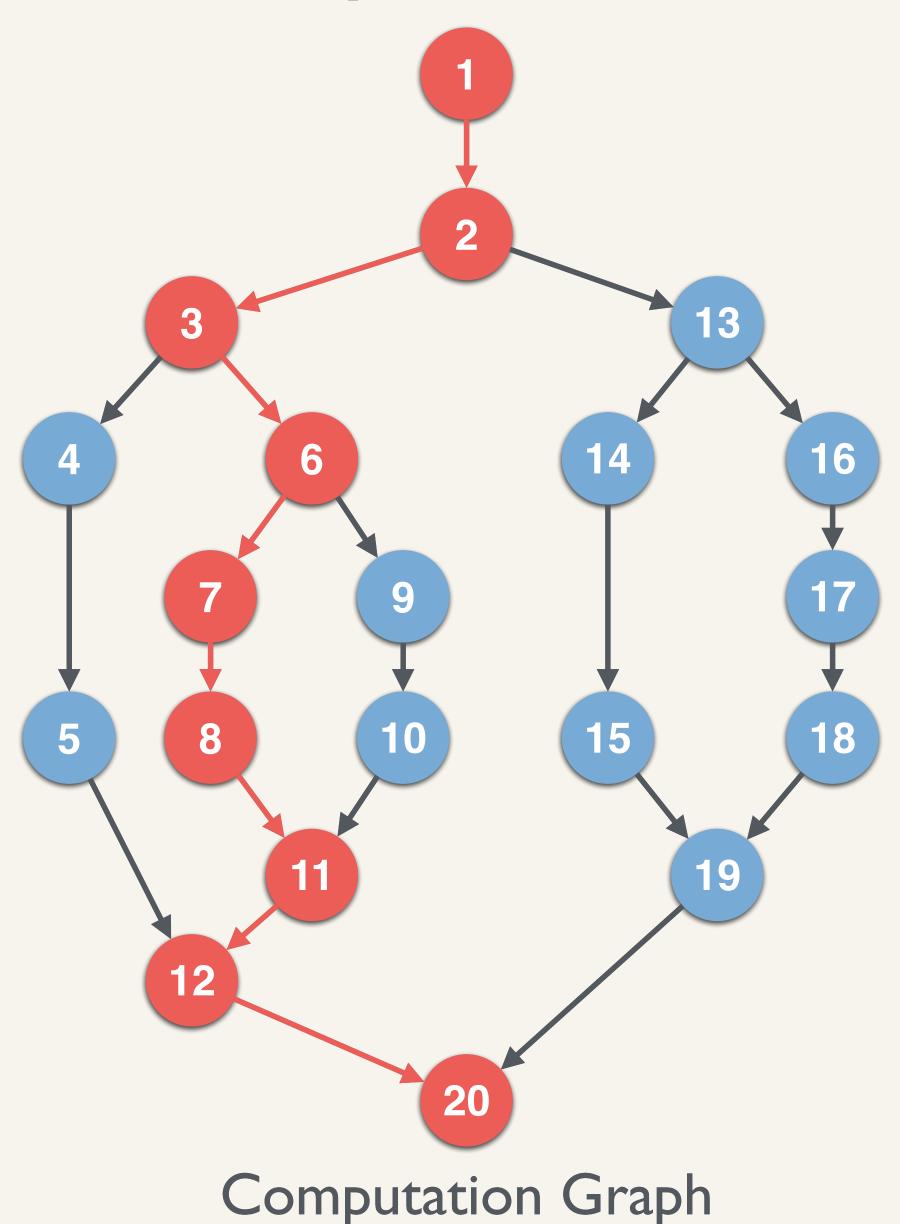
Running Time = Work/#Processors + O(Depth)



Work = total number of vertices in the computation graph

- **Depth** = longest directed path in the graph (dependence length)
- Running Time = Work/#Processors + O(Depth)

A work-efficient parallel algorithm has work that asymptotically matches that of the best sequential algorithm for the problem



Work = total number of vertices in the computation graph

- **Depth** = longest directed path in the graph (dependence length)
- Running Time = Work/#Processors + O(Depth)

A work-efficient parallel algorithm has work that asymptotically matches that of the best sequential algorithm for the problem

Goal: work-efficient and low (polylogarithmic) depth algorithms

A parallel algorithm is theoretically work and depth

Why do we care about theoretical bounds?

A parallel algorithm is theoretically-efficient if it has good bounds on its

work and depth

Why do we care about theoretical bounds?

Input-agnostic design

 Design codes without worrying too much about your datasets

A parallel algorithm is theoretically-efficient if it has good bounds on its

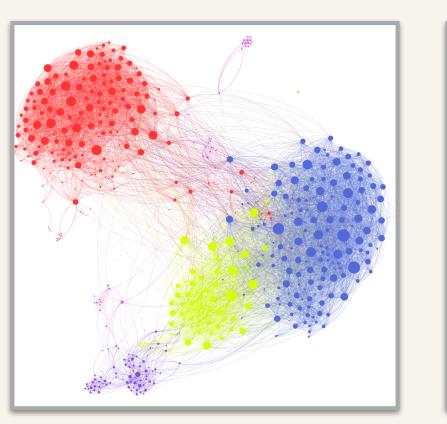
work and depth

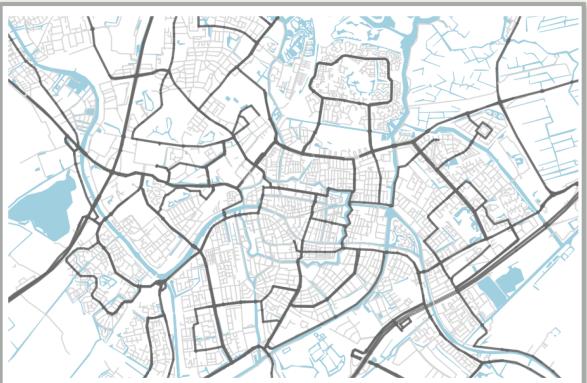
Input-agnostic design

• Design codes without worrying too much about your datasets

A parallel algorithm is theoretically-efficient if it has good bounds on its

Why do we care about theoretical bounds?





work and depth

Input-agnostic design

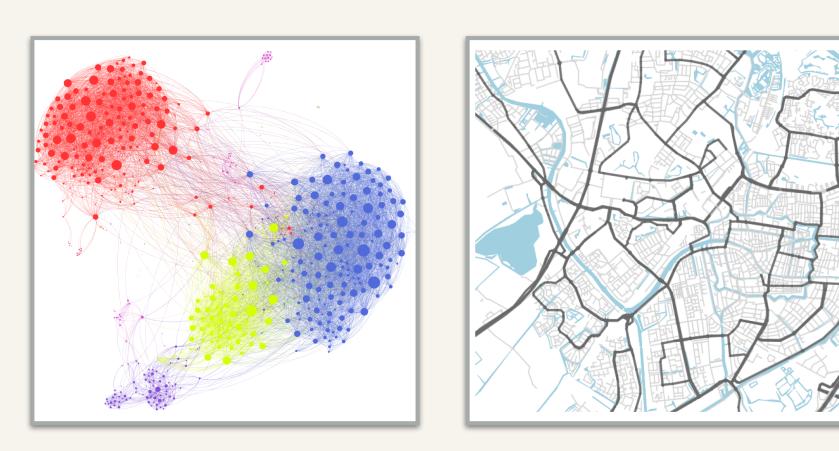
 Design codes without worrying too much about your datasets

Robustness to bad inputs

- Perform well even on new classes of graphs
- Understand how they will scale on larger graphs

A parallel algorithm is theoretically-efficient if it has good bounds on its

Why do we care about theoretical bounds?



work and depth

Input-agnostic design

 Design codes without worrying too much about your datasets

Robustness to bad inputs

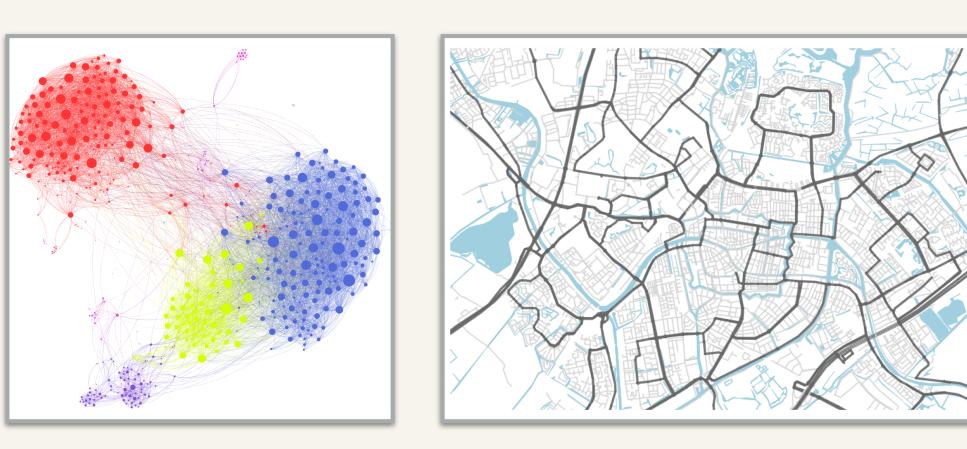
- Perform well even on new classes of graphs
- Understand how they will scale on larger graphs

Work-efficiency matters in practice

• Work-efficient algorithms can be much faster than work-inefficient algorithms

A parallel algorithm is theoretically-efficient if it has good bounds on its

Why do we care about theoretical bounds?



work and depth

Input-agnostic design

 Design codes without worrying too much about your datasets

Robustness to bad inputs

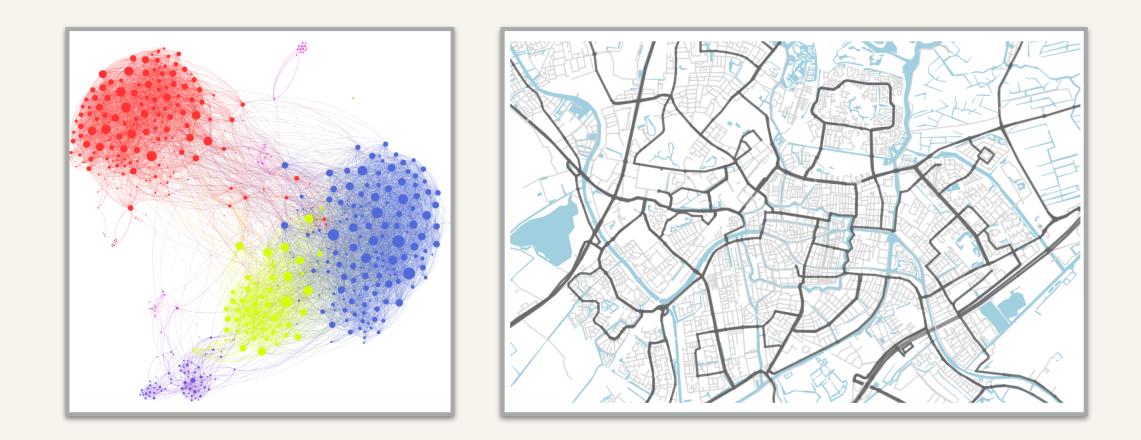
- Perform well even on new classes of graphs
- Understand how they will scale on larger graphs

Work-efficiency matters in practice

• Work-efficient algorithms can be much faster than work-inefficient algorithms

A parallel algorithm is theoretically-efficient if it has good bounds on its

Why do we care about theoretical bounds?



Up to 9x faster using a work-efficient kcore algorithm (described in this talk)

Graph Systems: examples

Pregel PowerGraph PowerLyra Parallel BGL GraphLab Green-Marl GraphMat Ringo **SNAP** Graphlt Ligra Julienne GBBS **STAPL**

GraphX (Spark) **ASPIRE** GoFFish Presto GraphChi Blogel GraM Giraph PAGE MOCgraph GrapH LightGraph Gluon Graphine

Sage Graphite GraFBoost X-Stream TurboGraph TurboGraph++ Ligra+ MMap PathGraph GridGraph NXgraph Chaos FlashGraph Graphene

GraphMat EmptyHeaded Congra CongraPlus Laika SociaLite Graphphi TuFast Maiter LCC-Graph TopoX **Gluon-Async** GraphA L-PowerGraph

.

Unfortunately existing graph systems typically study a very small GraphLab Can we solve a broad set of static graph problems on very large

- set of simple problems, such as BFS.

 - graphs?
 - GridGraph

[D, Blelloch, Shun, SPAA'18 Best Paper]

- * Introduce the Graph-Based Benchmark Suite (GBBS) for graph problems with over 20 important problems
- * GBBS algorithms achieve state-of-the-art results on the largest publicly available graphs

Connectivity Problems

Low-Diameter Decomposition Connectivity Spanning Forest Biconnectivity Minimum Spanning Forest Strongly Connected Components

Eigenvector Problems

PageRank Personalized PageRank Personalized SimRank

Subgraph Problems

k-Core Decomposition k-Truss Decomposition Apx. Densest Subgraph Triangle Counting **Higher-Clique Counting**

github.com/paralg/gbbs

Theoretically-Efficient Parallel Graph Algorithms can be Fast and Scalable

Covering Problems

- Maximal Ind. Set Maximal Matching Apx. Set Cover
- Graph Coloring

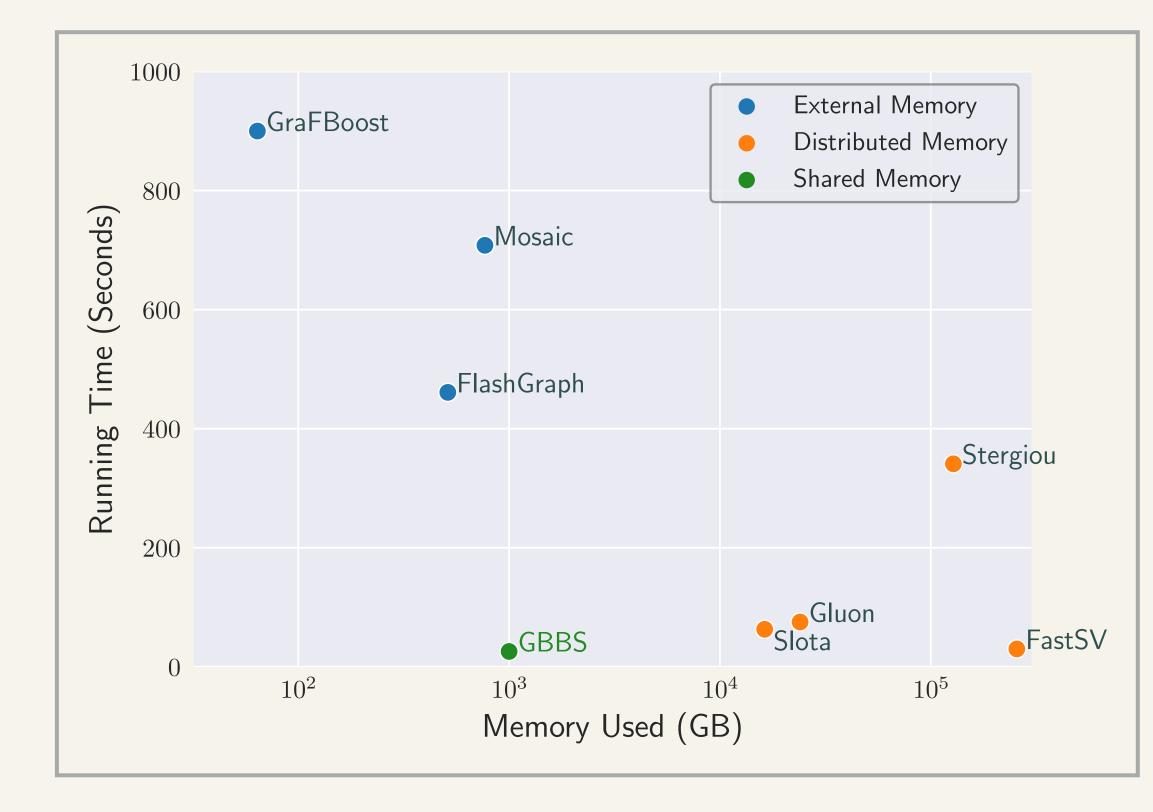
Shortest Path Problems

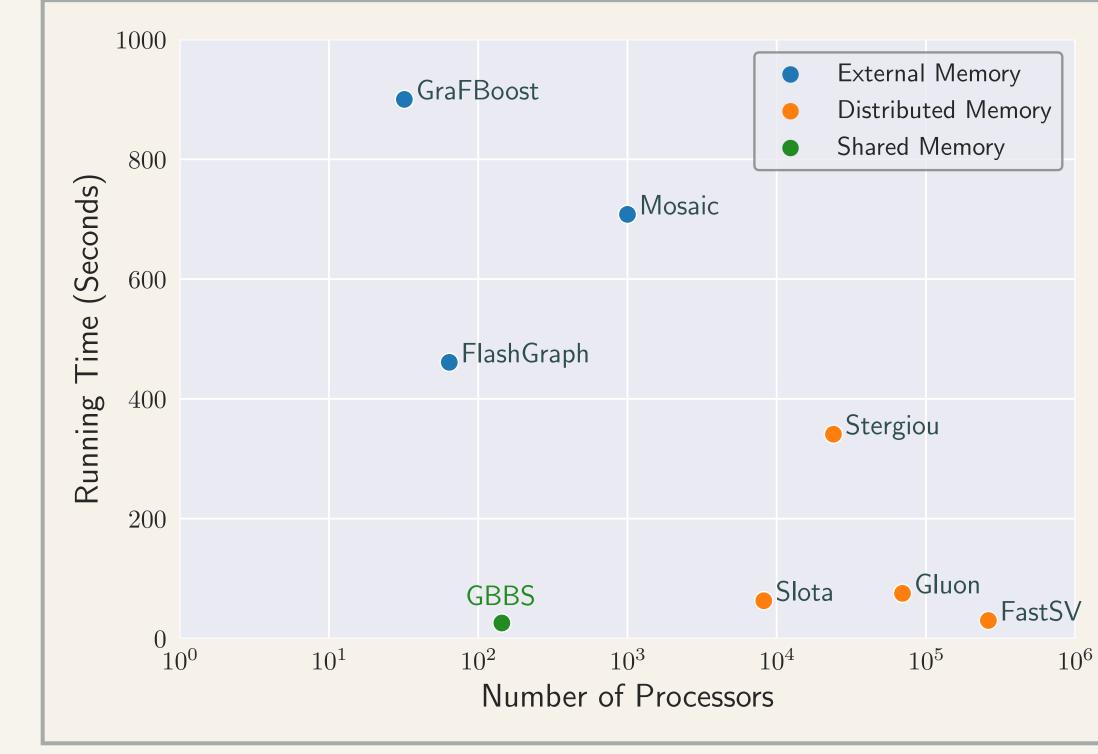
Breadth-First Search **Betweenness Centrality** Bellman-Ford **General Weight SSSP** Integral Weight SSSP SS Widest Path k-Spanner



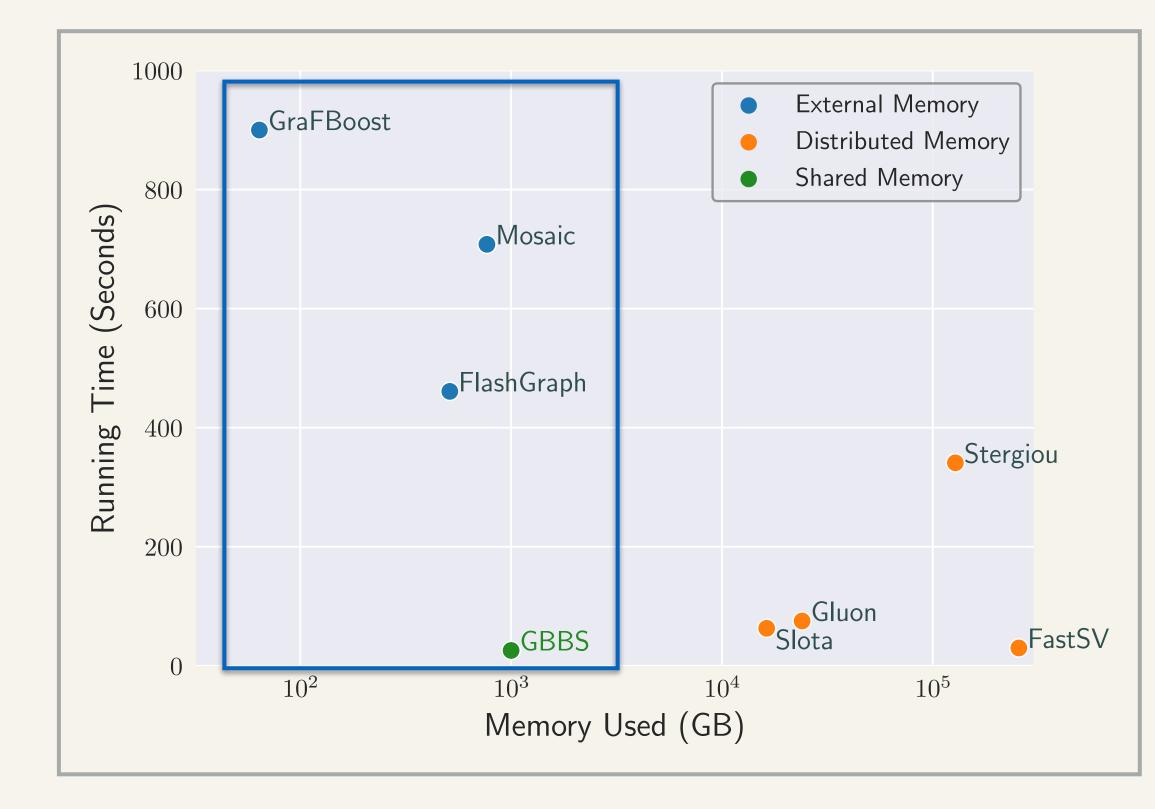
10

Benchmarking Connectivity on WebDataCommons Graph

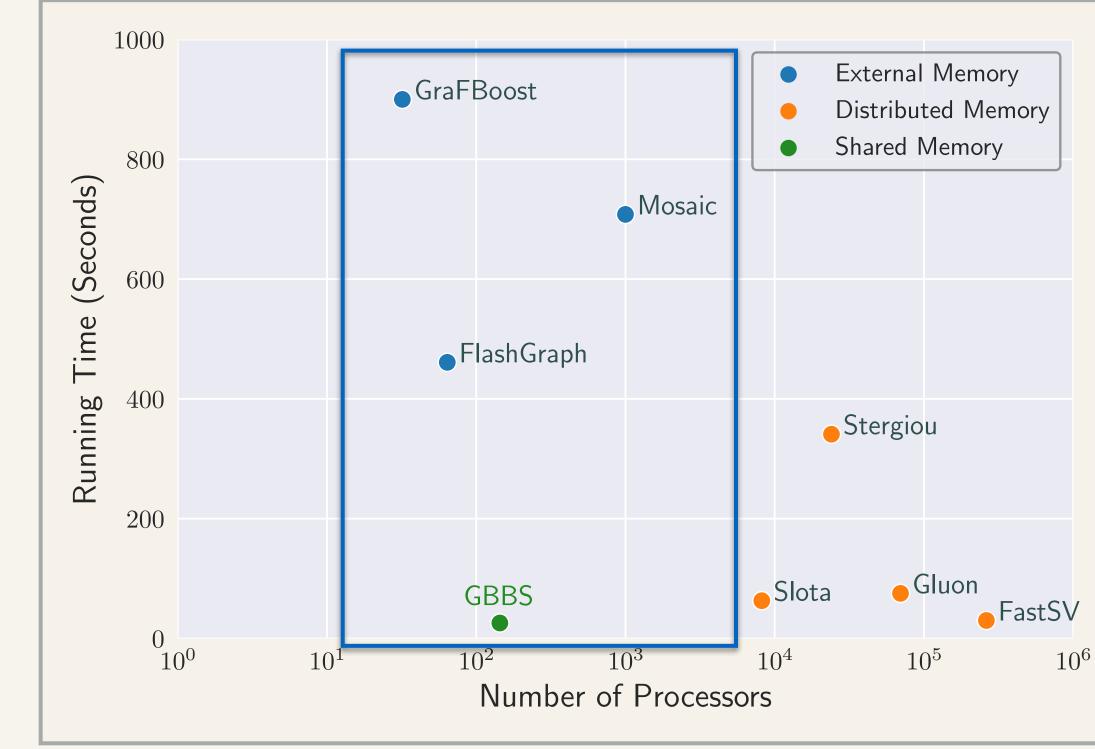




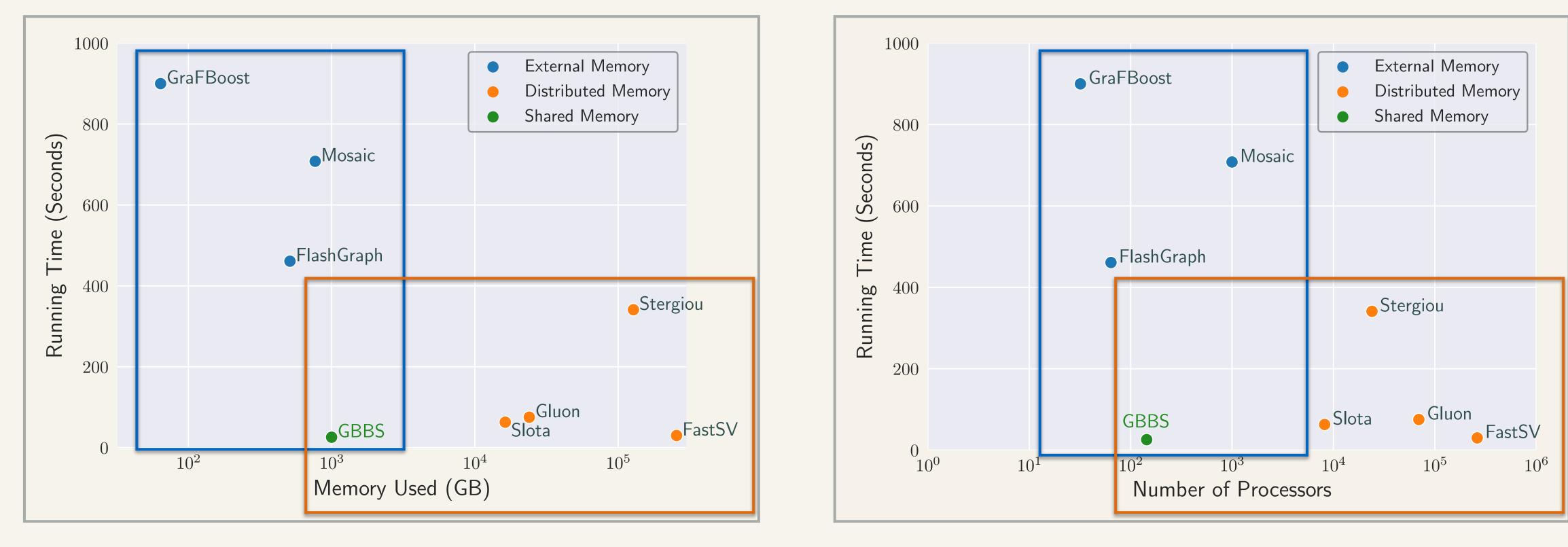
Benchmarking Connectivity on WebDataCommons Graph



Outperform external memory results by orders of magnitude using comparable hardware.



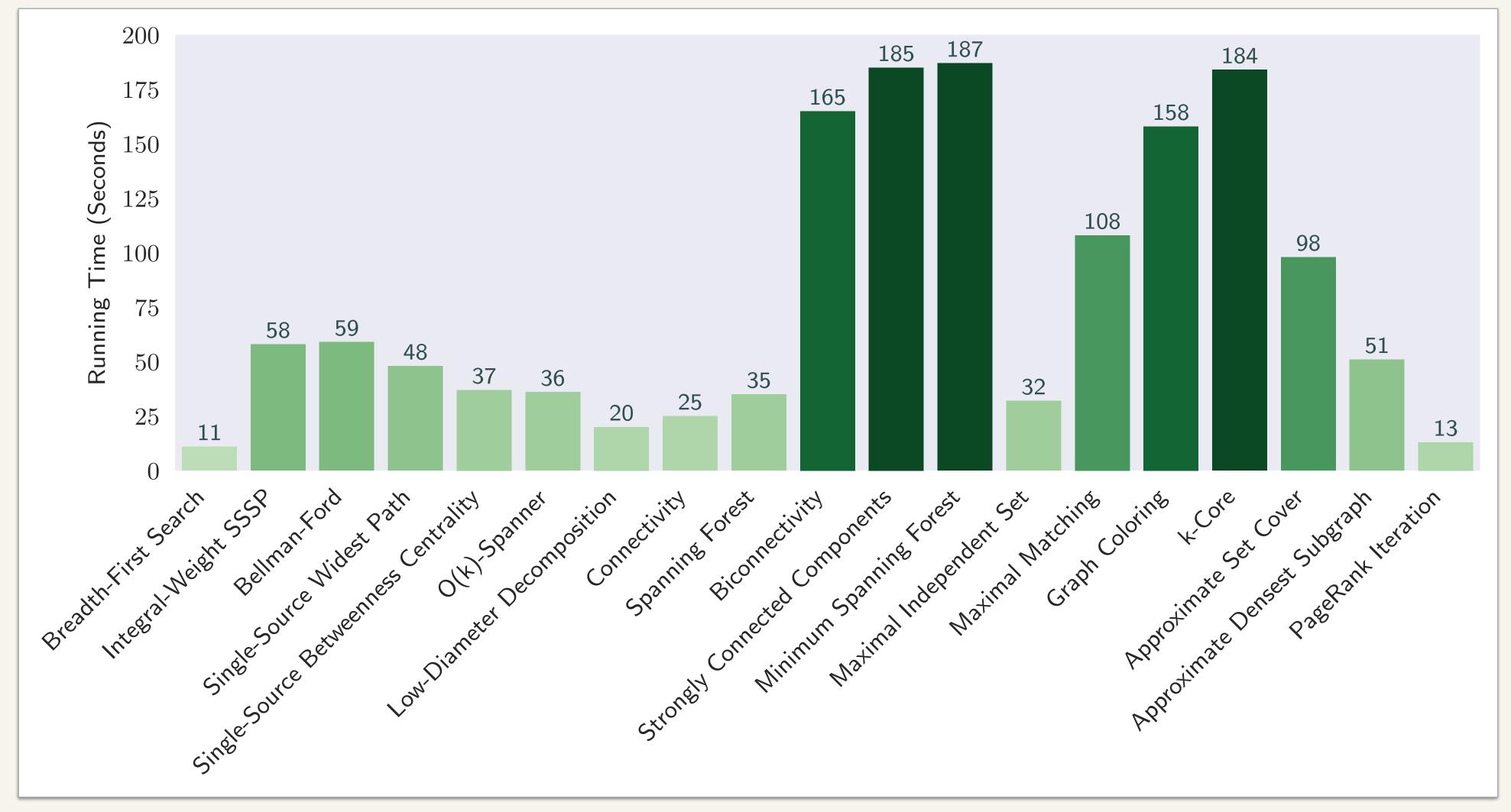
Benchmarking Connectivity on WebDataCommons Graph



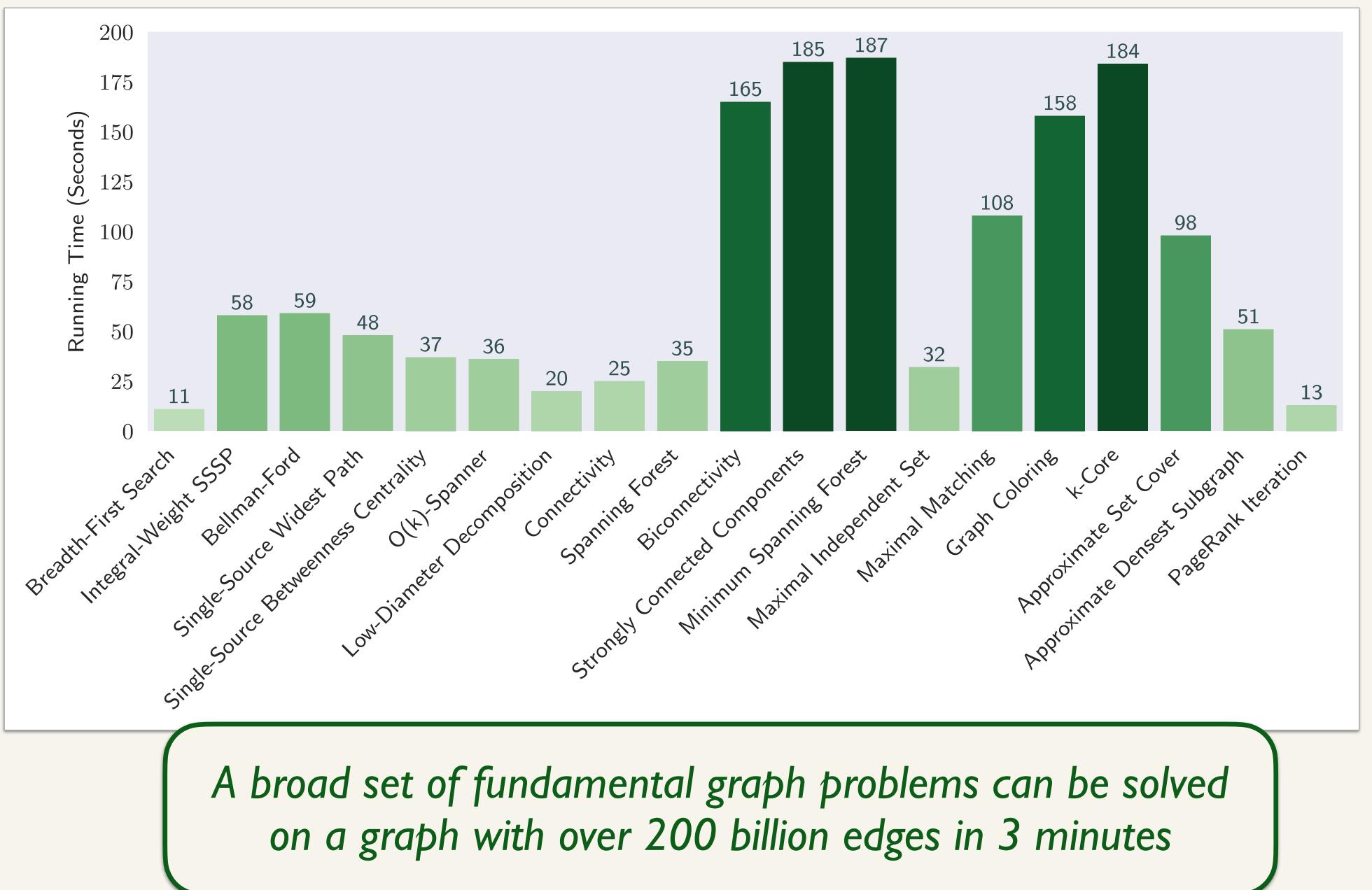
Outperform external memory results by orders of magnitude using comparable hardware.

Outperform distributed memory results using orders of magnitude less hardware.

GBBS can analyze O(100B) edge graphs in seconds to minutes



GBBS can analyze O(100B) edge graphs in seconds to minutes



Work and Depth of GBBS Results

Problem

Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

[†]: in expectation *: whp

Work	Depth
O(m)	$\tilde{O}(\operatorname{diam}(G))$
$O(m)^{\dagger}$	$\tilde{O}(\operatorname{diam}(G))^*$
$O(\operatorname{diam}(G) \cdot m)$	$\tilde{O}(\operatorname{diam}(G))$
$O(\operatorname{diam}(G) \cdot m)$	$\tilde{O}(\operatorname{diam}(G))$
O(m)	$\tilde{O}(\operatorname{diam}(G))$
<i>O</i> (<i>m</i>)	$\tilde{O}(k \log n)^*$
<i>O</i> (<i>m</i>)	$O(\log^2 n)^*$
$O(m)^{\dagger}$	$O(\log^3 n)^*$
$O(m)^{\dagger}$	$O(\log^3 n)^*$
$O(m)^{\dagger}$	$O(\max(CC, BFS))$
$O(m \log n)^{\dagger}$	$\tilde{O}(\operatorname{diam}(G))^*$
$O(m \log n)$	$O(\log^2 n)$
$O(m)^{\dagger}$	$O(\log^2 n)^*$
$O(m)^{\dagger}$	$O(\log^2 n)^*$
<i>O</i> (<i>m</i>)	$O(\log n + L \log \Delta)$
$O(m)^{\dagger}$	$O(\rho \log n)^*$
$O(m)^{\dagger}$	$O(\log^3 n)^*$
$O(m^{3/2})$	$O(\log n)$
<i>O</i> (<i>m</i>)	$O(\log^2 n)$
O(n+m)	$O(\log n)$

Work and Depth of GBBS Resu

Problem

Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Main Challenge: How do we build simple and provably-efficient implementations of these algorithms that work on the largest real-world graphs?

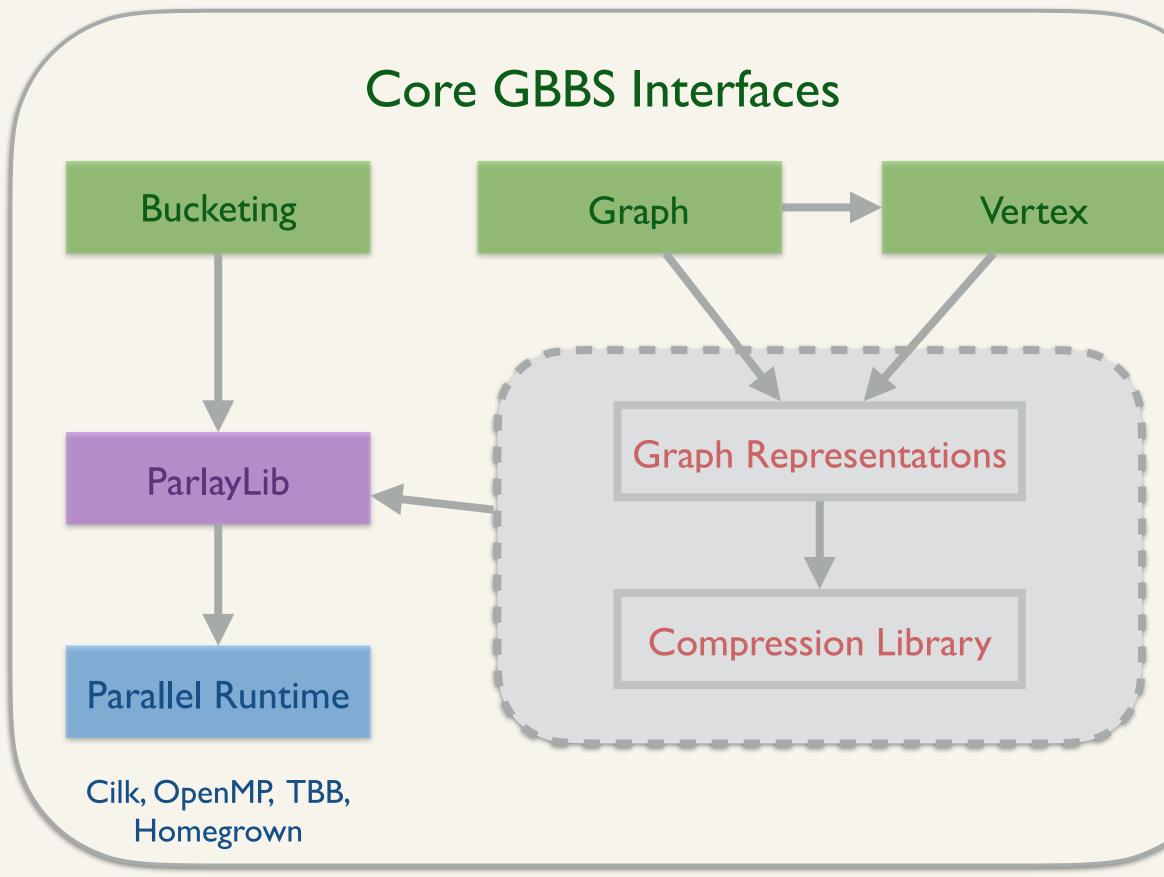
PageRank Iteration

Work	Depth
O(m)	$\tilde{O}(\operatorname{diam}(G))$
$O(m)^{\dagger}$	$\tilde{O}(\operatorname{diam}(G))^*$
$O(\operatorname{diam}(G) \cdot m)$	$\tilde{O}(\operatorname{diam}(G))$
$O(\operatorname{diam}(G) \cdot m)$	$\tilde{O}(\operatorname{diam}(G))$
O(m)	$\tilde{O}(\operatorname{diam}(G))$
<i>O</i> (<i>m</i>)	$\tilde{O}(k \log n)^*$
<i>O</i> (<i>m</i>)	$O(\log^2 n)^*$
$O(m)^{\dagger}$	$O(\log^3 n)^*$
$O(m)^{\dagger}$	$O(\log^3 n)^*$
$O(m)^{\dagger}$	O(max(CC, BFS))
$O(m \log n)^{\dagger}$	$\tilde{O}(\operatorname{diam}(G))^*$
$O(m \log n)$	$O(\log^2 n)$
$O(m)^{\dagger}$	$O(\log^2 n)^*$
$O(m)^{\dagger}$	$O(\log^2 n)^*$

	0(105 11)	
O(n+m)	$O(\log n)$	

GBBS Library

* High-level graph processing interface in the lineage of *Ligra* [SB'12]



GBBS Library

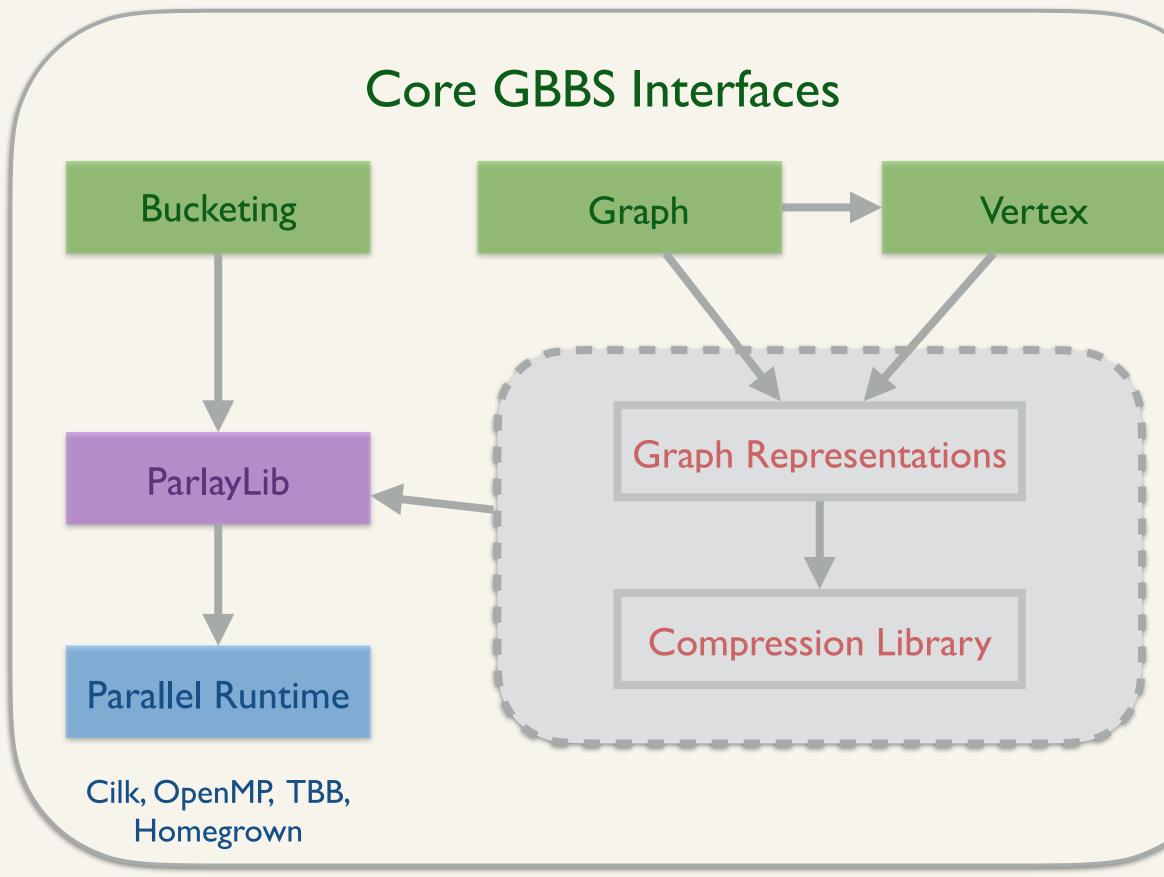
- * High-level graph processing interface in the lineage of *Ligra* [SB'12]
- * Provides many useful primitives

Vertex Operations

- Map
- Reduce
- Filter
- Pack
- Intersect

Graph Operations

- Filter
- Pack
- Contract



GBBS Library

- * High-level graph processing interface in the lineage of *Ligra* [SB'12]
- * Provides many useful primitives

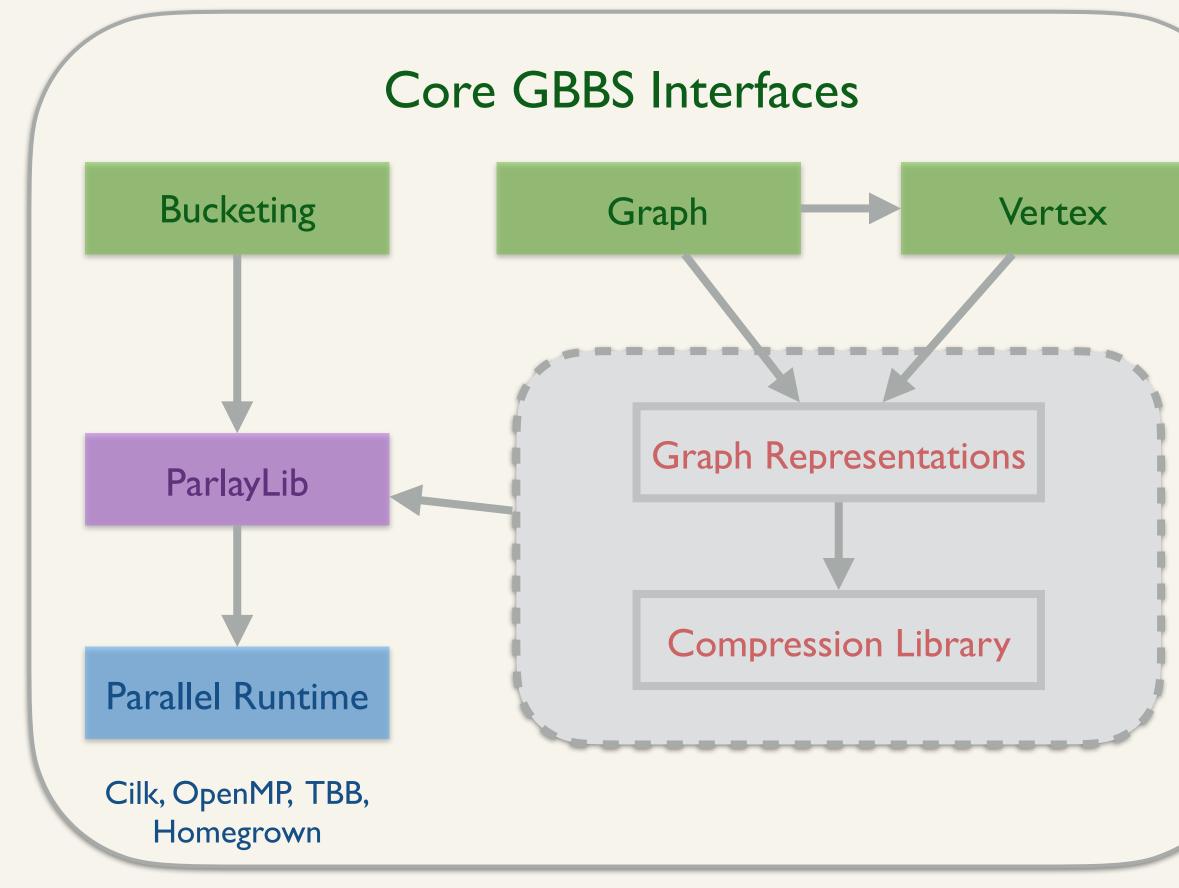
Vertex Operations

- Map
- Reduce
- Filter
- Pack
- Intersect

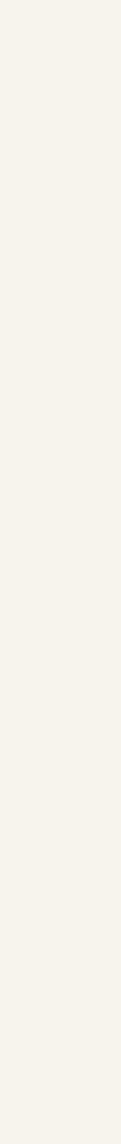
Graph Operations

- Filter
- Pack
- Contract

* Compressed graph representations

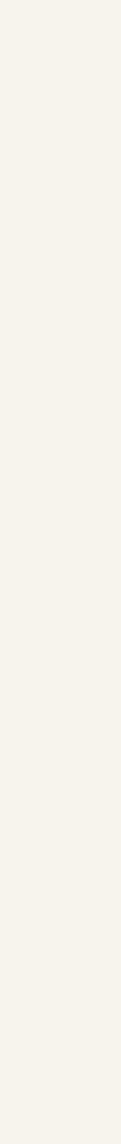


Graph	V	<i>E</i>	Size (CSR)	Compressed	Bytes
WDC Hyperlink	3.5B	I 28B	1080GB	446GB	1.7
WDC Hyperlink (Sym)	3.5B	225B	928 GB	351GB	1.



degree at least k within the subgraph

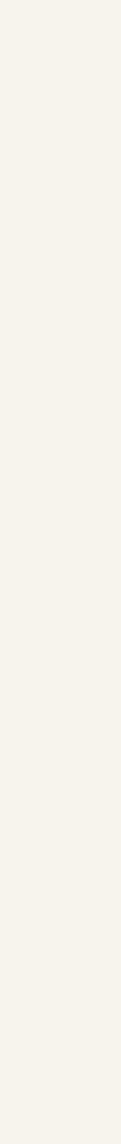
k-core : maximal connected subgraph of G where all vertices have



degree at least k within the subgraph

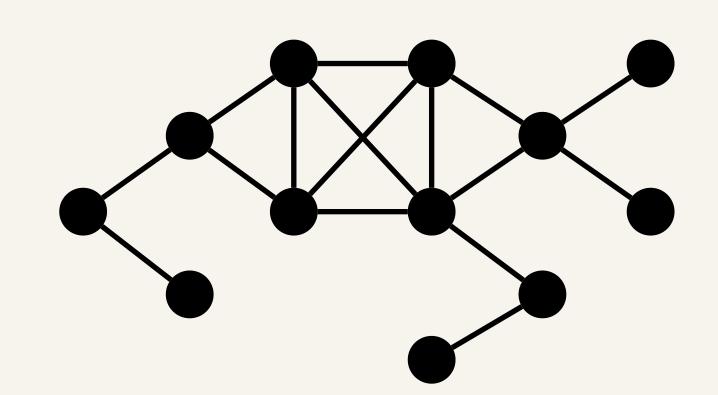
coreness : largest k-core that a given vertex participates in

k-core : maximal connected subgraph of G where all vertices have

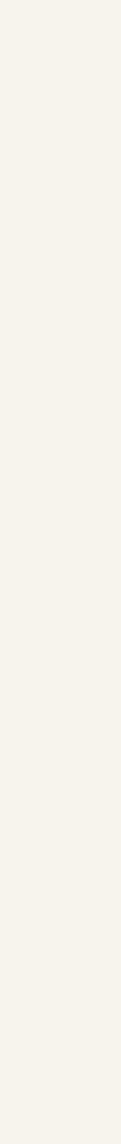


degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

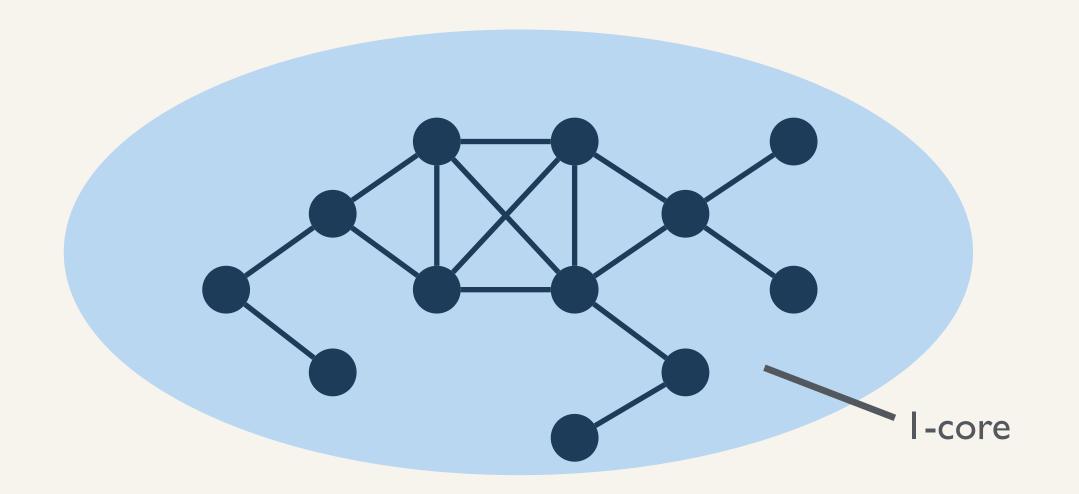


k-core : maximal connected subgraph of G where all vertices have

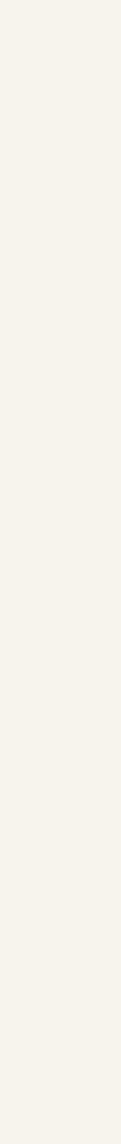


degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

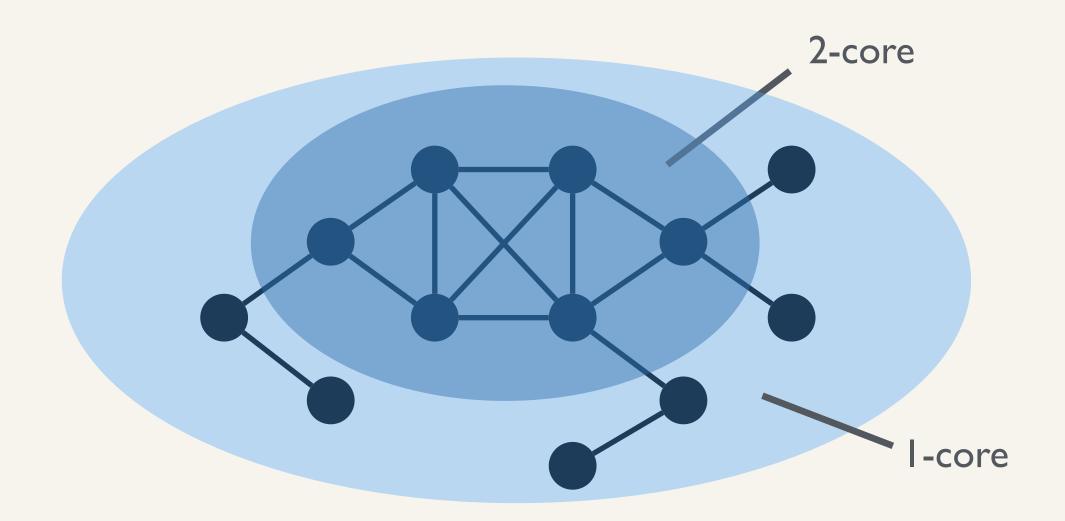


k-core : maximal connected subgraph of G where all vertices have

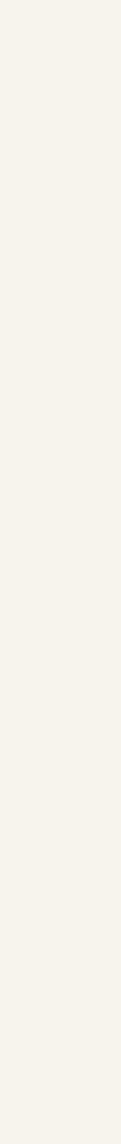


degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

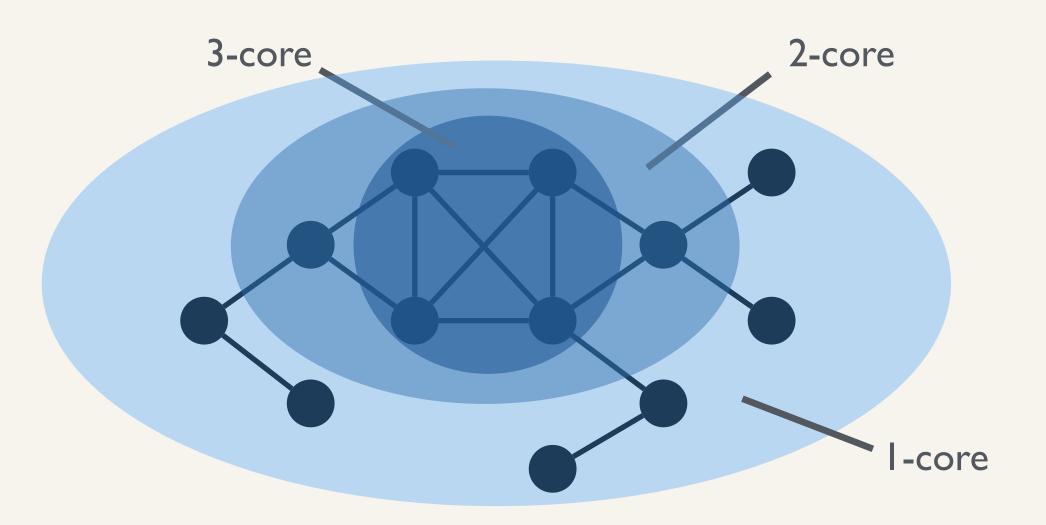


k-core : maximal connected subgraph of G where all vertices have

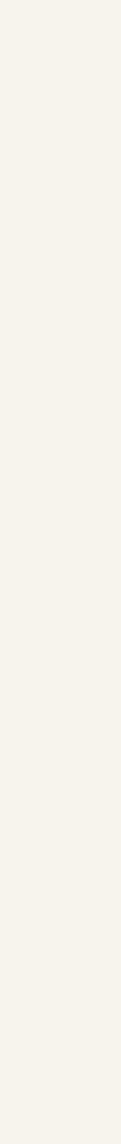


degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

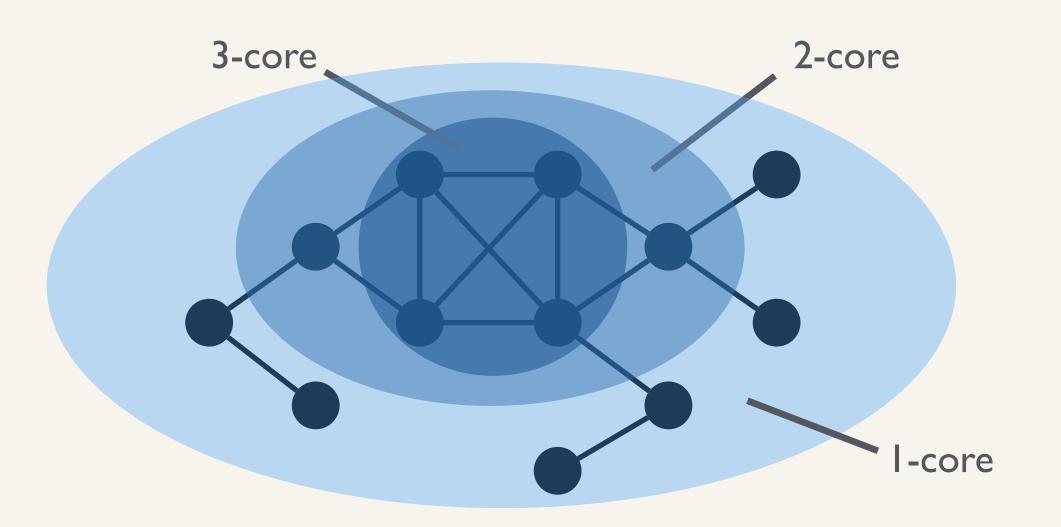


k-core : maximal connected subgraph of G where all vertices have



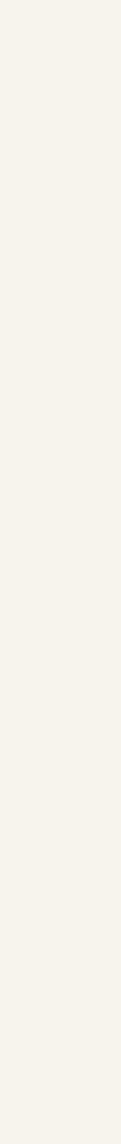
degree at least k within the subgraph

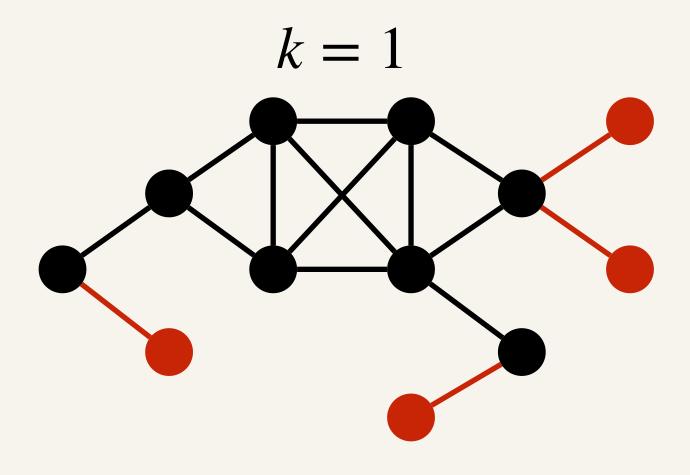
coreness : largest k-core that a given vertex participates in

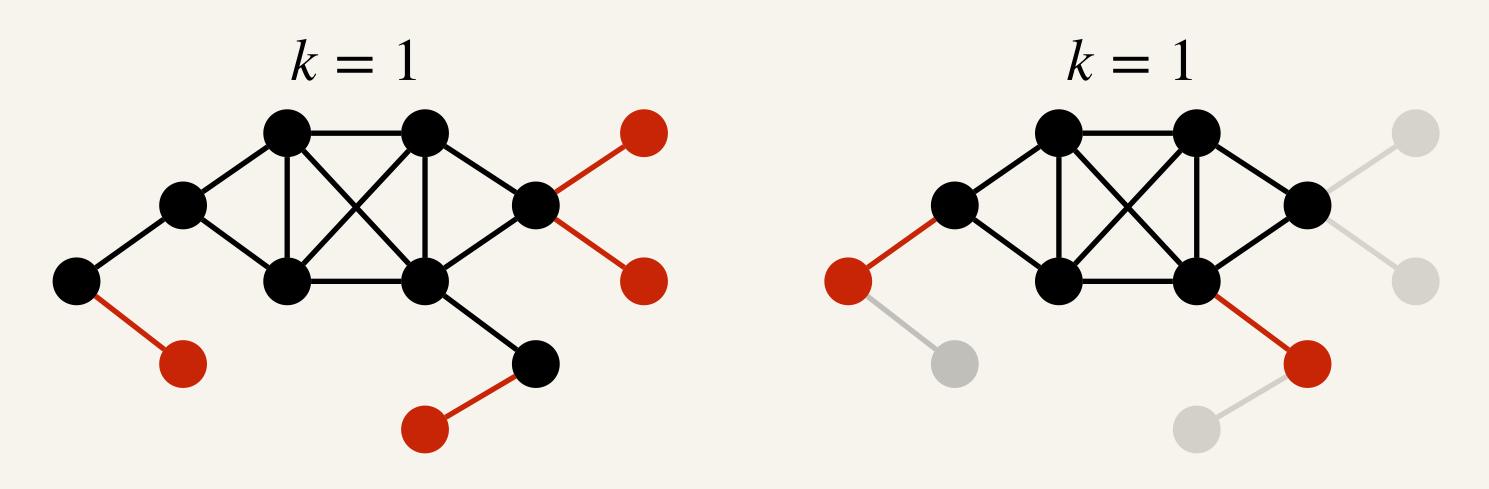


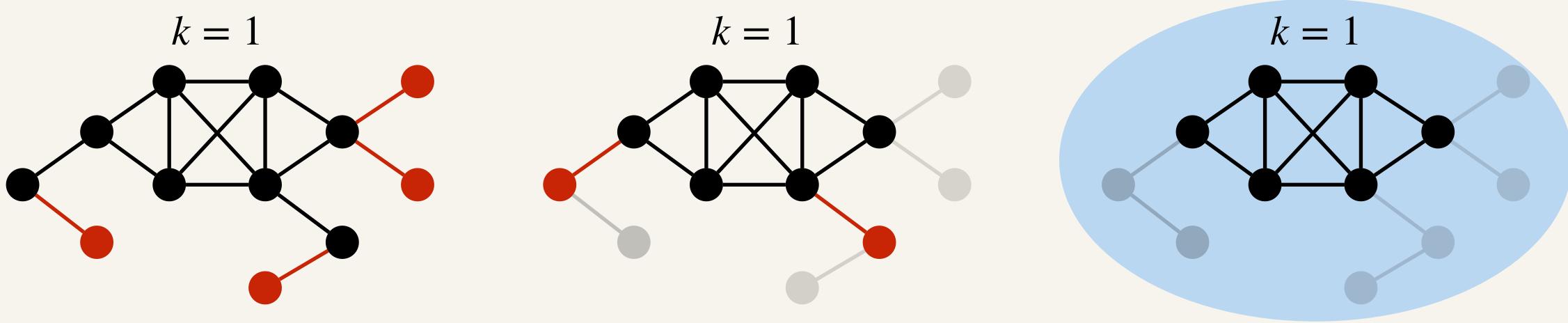
Widely used in network analysis tasks such as unsupervised clustering of social and biological networks

k-core : maximal connected subgraph of G where all vertices have

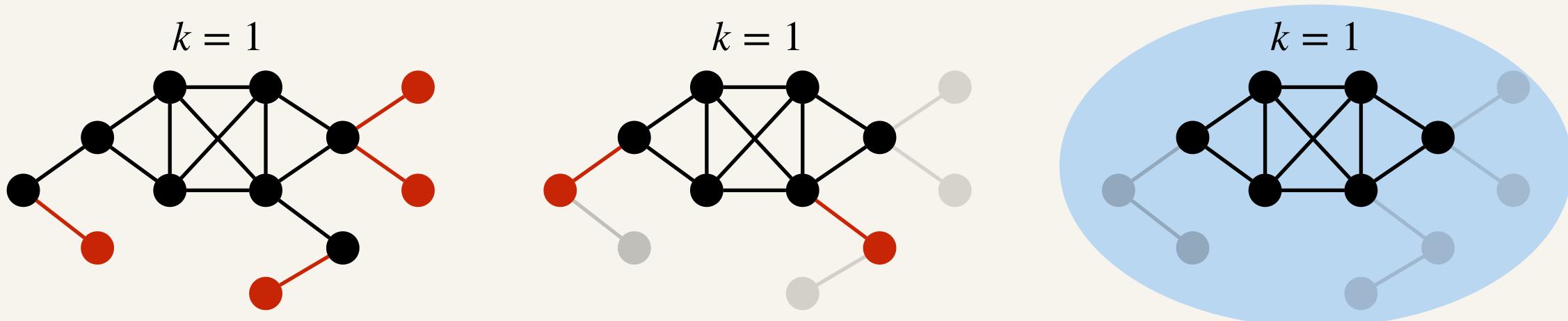






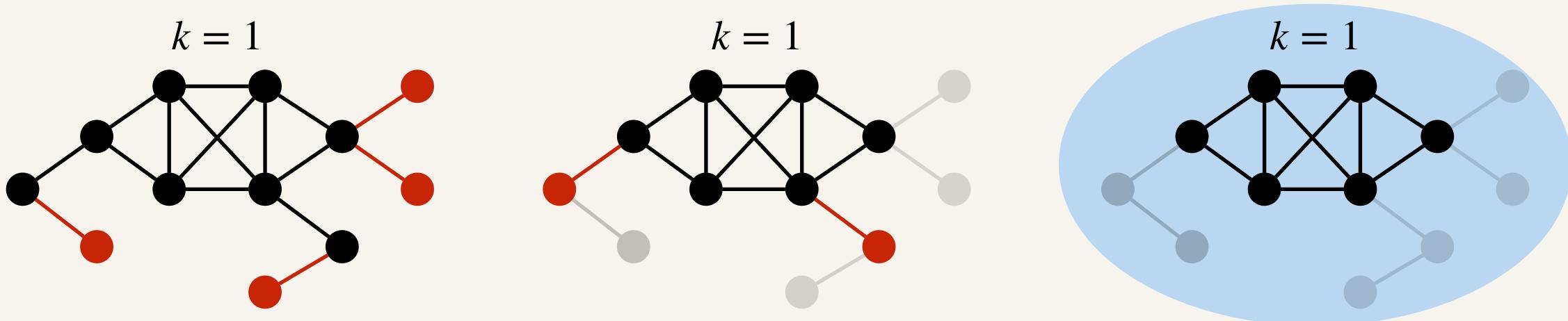






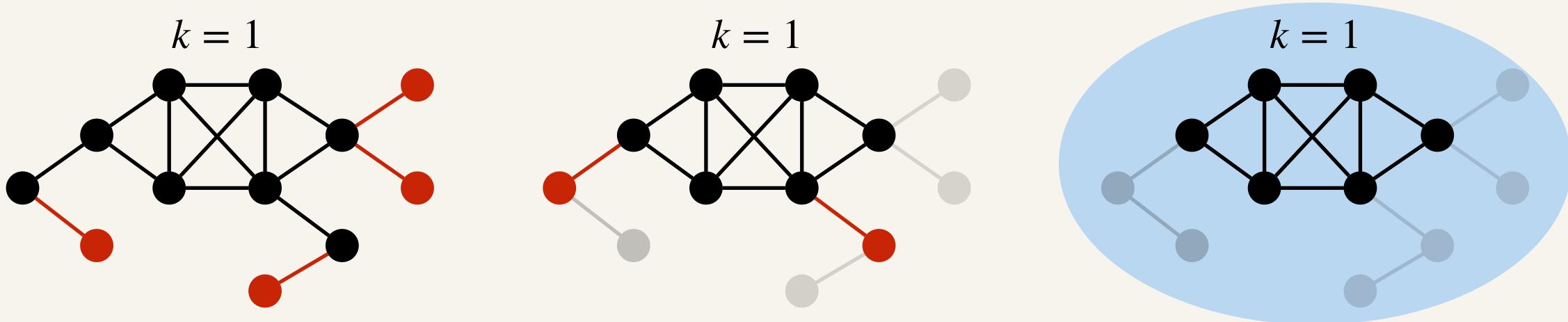
 Current degree of remaining vertices decreases as vertices are peeled from the graph





- Current degree of remaining vertices decreases as vertices are peeled from the graph
- Once a vertex's current degree is less than or equal to the current core number, it gets peeled





- Current degree of remaining vertices decreases as vertices are *peeled* from the graph
- Once a vertex's current degree is less than or equal to the current core number, it gets peeled

All vertices "below threshold" can be peeled in parallel Our contribution is to give a general interface for bucketing



A Work-Efficient k-core Decomposition Algorithm

GBBS Algorithm

- * Actual code in GBBS is under 50 lines of C++
- * Parallel cost:

O(m+n) expected work

 $O(\rho \log n)$ depth whp

where ρ is the number of peeling rounds

Algo	rithm 1 k-core (Coreness)
1: C	$oreness[0, \ldots, n) \coloneqq 0$
2: p 1	rocedure $CORENESS(G(V, E))$
3:	$VERTEXMAP(V, fn v \rightarrow Coreness[v] \coloneqq d(v_i)) \qquad \qquad \triangleright \text{ initialized to initial degrees}$
4:	B := MAKEBUCKETS(V , Coreness, INCREASING) ▷ buckets processed in increasing order
5:	Finished := 0
6:	while (Finished $< V $) do
7:	$(k, ids) \coloneqq B.NEXTBUCKET() $ \triangleright current core number, and vertices peeled this step
8:	Finished := Finished + ids
9:	$condFn \coloneqq \mathbf{fn} \ v \rightarrow \mathbf{return} \ true$
10:	$applyFn := \mathbf{fn} (v, edgesRemoved) \rightarrow$
11:	$inducedD \coloneqq D[v]$
12:	if $(inducedD > k)$ then
13:	newD := max(inducedD - edgesRemoved, k)
14:	Coreness[v] := newD
15:	bkt := B.GETBUCKET(inducedD, newD)
16:	if $(bkt \neq \text{NULLBKT})$ then
17:	return Some(bkt)
18:	return None
19:	Moved := NGHCOUNT(G, ids, condFn, applyFn) > Moved is an bktdest vertexSubset
20:	B.UPDATEBUCKETS(Moved) > update the buckets of vertices in Moved
21:	return Coreness

A Work-Efficient k-core Decomposition Algorithm

GBBS Algorithm

- * Actual code in GBBS is under 50 lines of C++
- * Parallel cost:

O(m+n) expected work

 $O(\rho \log n)$ depth whp

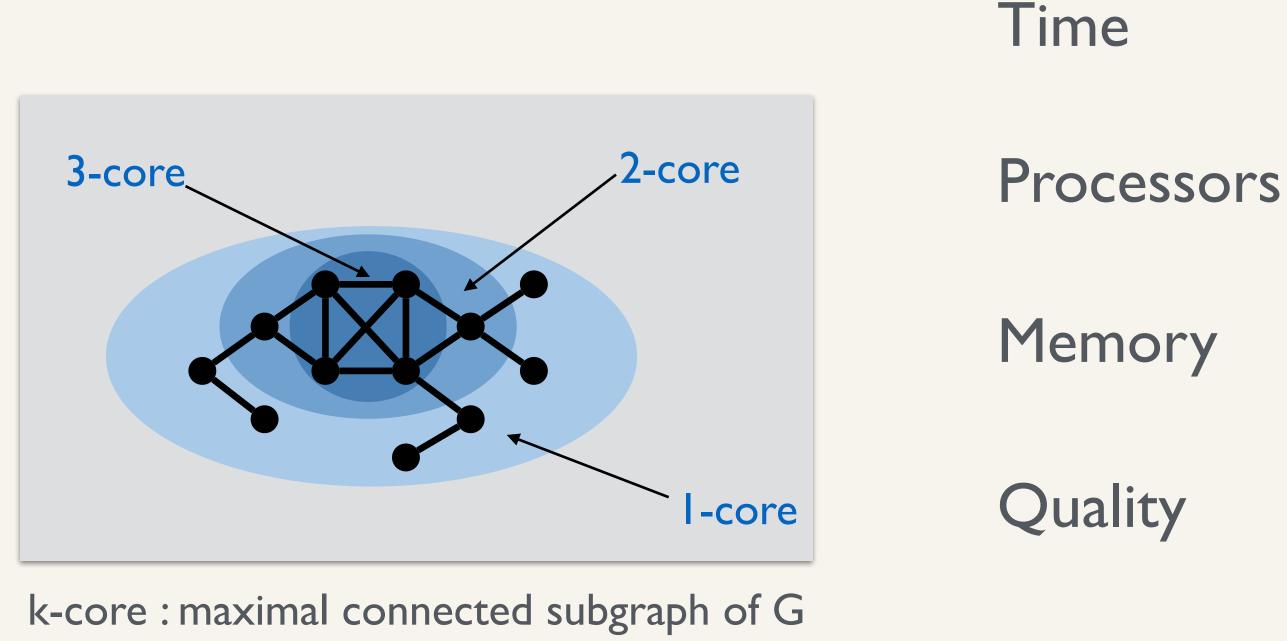
where ρ is the number of peeling rounds

Our algorithm is the first work-efficient algorithm for k-core decomposition with non-trivial parallelism

Algorithm 1 k-core (Coreness)
1: $Coreness[0,, n) := 0$
2: procedure $CORENESS(G(V, E))$
3: VERTEXMAP $(V, \mathbf{fn} v \to Coreness[v] \coloneqq d(v_i))$ > initialized to initial degrees
4: B := MAKEBUCKETS(V , Coreness, INCREASING) ▷ buckets processed in increasing order
5: Finished $:= 0$
6: while (Finished $\langle V \rangle$ do
7: (k, ids) := B.NEXTBUCKET() ▷ current core number, and vertices peeled this step
8: Finished := Finished + $ ids $
9: $condFn := \mathbf{fn} \ v \to \mathbf{return}$ true
10: $applyFn := \mathbf{fn} (v, edgesRemoved) \rightarrow$
11: $inducedD \coloneqq D[v]$
12: if $(inducedD > k)$ then
13: $newD := max(inducedD - edgesRemoved, k)$
14: $Coreness[v] := newD$
15: $bkt := B.GETBUCKET(inducedD, newD)$
16: if $(bkt \neq \text{NULLBKT})$ then
17: return Some(bkt)
18: return None
19: Moved := NGHCOUNT(G, ids, condFn, applyFn) ▷ Moved is an bktdest vertexSubset
20: B.UPDATEBUCKETS(Moved) ▷ update the buckets of vertices in Moved
21: return Coreness

k-Core Decomposition on the WebDataCommons Graph

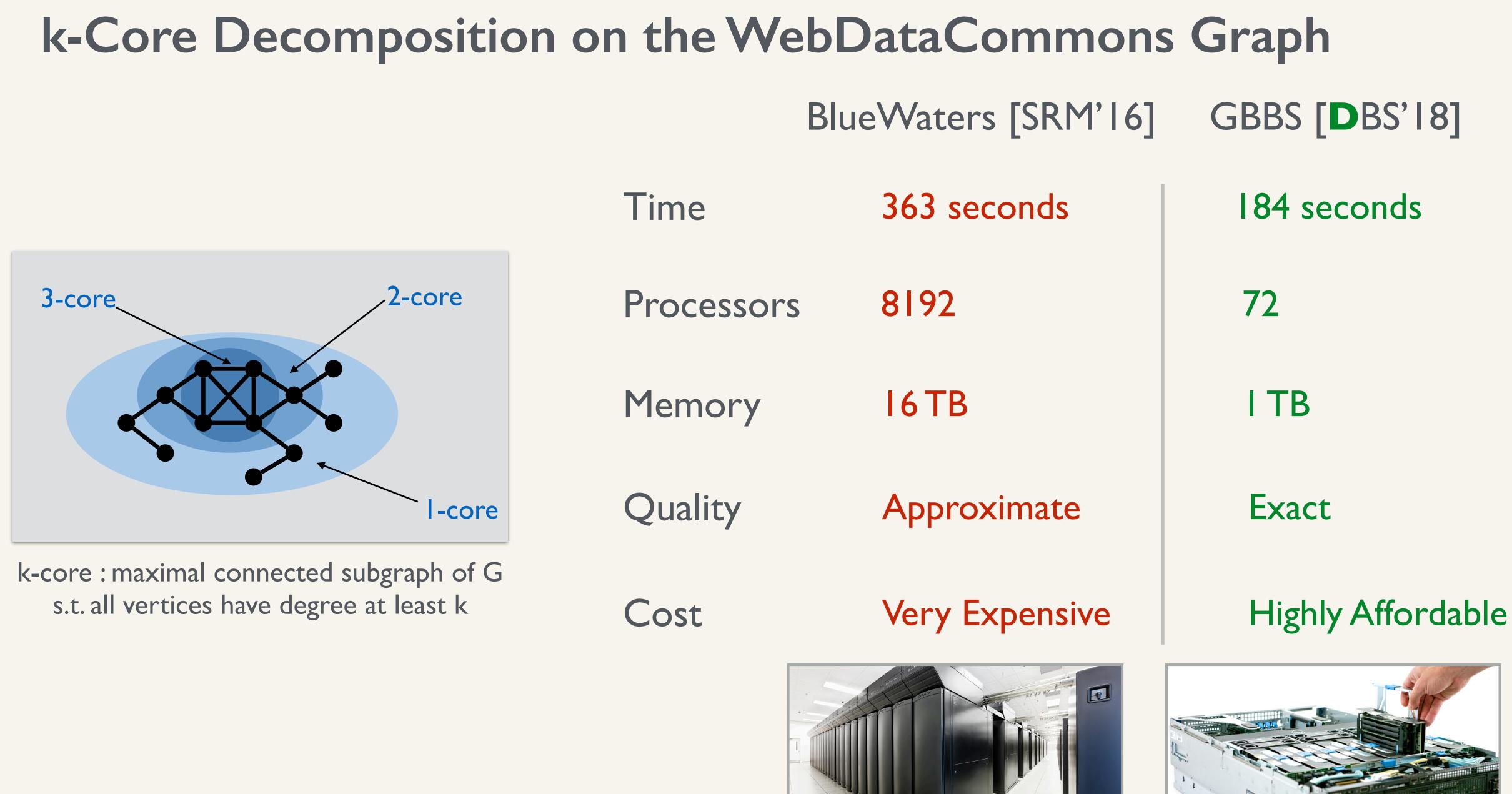
Cost



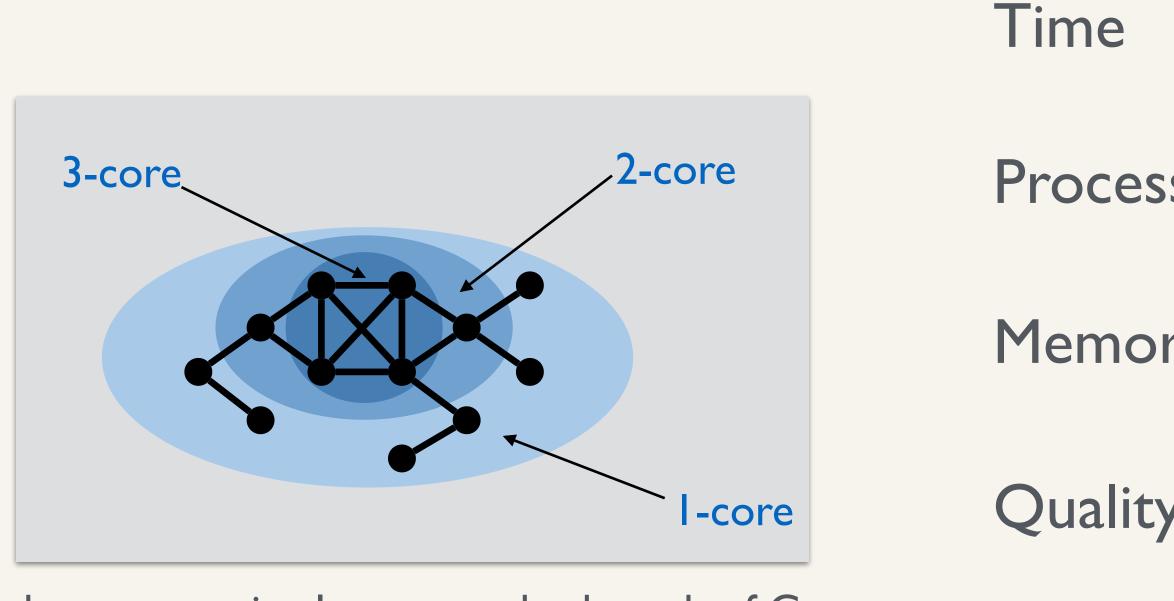
s.t. all vertices have degree at least k

BlueWaters [SRM'16]

- 363 seconds
- sors 8192
- ry I6TB
 - Approximate
 - Very Expensive



k-Core Decomposition on the



k-core : maximal connected subgraph of G s.t. all vertices have degree at least k

Cost

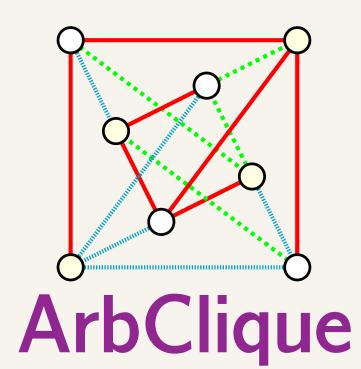
I.95x faster than the approxima 56.8x fewer hyper-three

WebDataCommons Graph					
	BlueWaters [SRM'16]	GBBS [DBS'18]			
	363 seconds	184 seconds			
ssors	8192	72			
ory	Ι6ΤΒ	ΙΤΒ			
Y	Approximate	Exact			
	Very Expensive	Highly Affordab			
ate distributed result by SRM'16, using reads and 16.3x less memory					

GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:

- * Fast Parallel Graph Connectivity [DHS'21]
- * Parallel k-clique enumeration [SDS'21]
- * Graph Embedding [QDTPW'21]
- Structural Graph Clustering [TDS'21]
- * Batch-Dynamic Graph Orientation [LSYDS'22]



SAGE **Semi-Asymmetric Graph Engine**

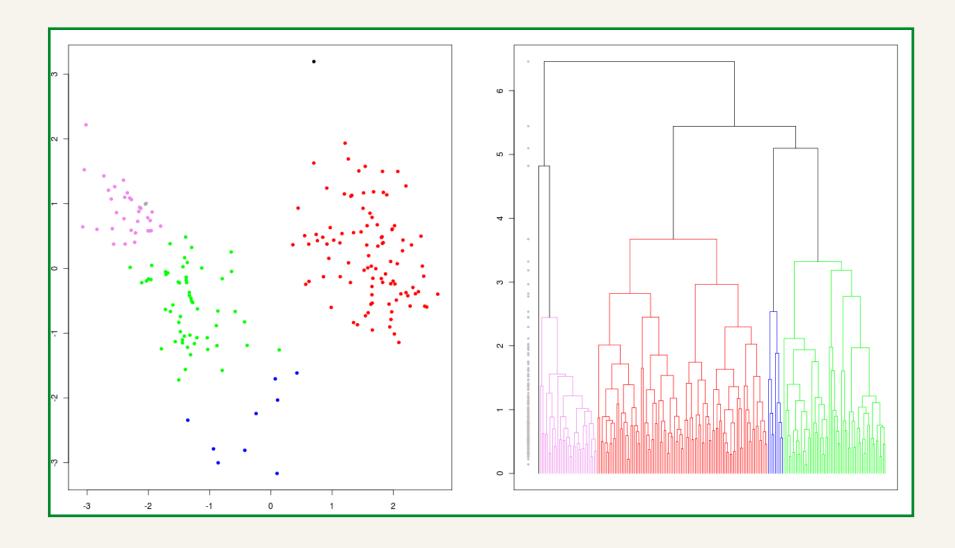
GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:

- * Fast Parallel Graph Connectivity [DHS'21]
- * Parallel k-clique enumeration [SDS'21]
- * Graph Embedding [QDTPW'21]
- Structural Graph Clustering [TDS'21]
- * Batch-Dynamic Graph Orientation [LSYDS'22]

Used at Google:

- * Fast and scalable implementations of parallel graph clustering algorithms (e.g., Affinity Clustering)
- * Being used to develop and evaluate parallel hierarchical agglomerative clustering (HAC) algorithms



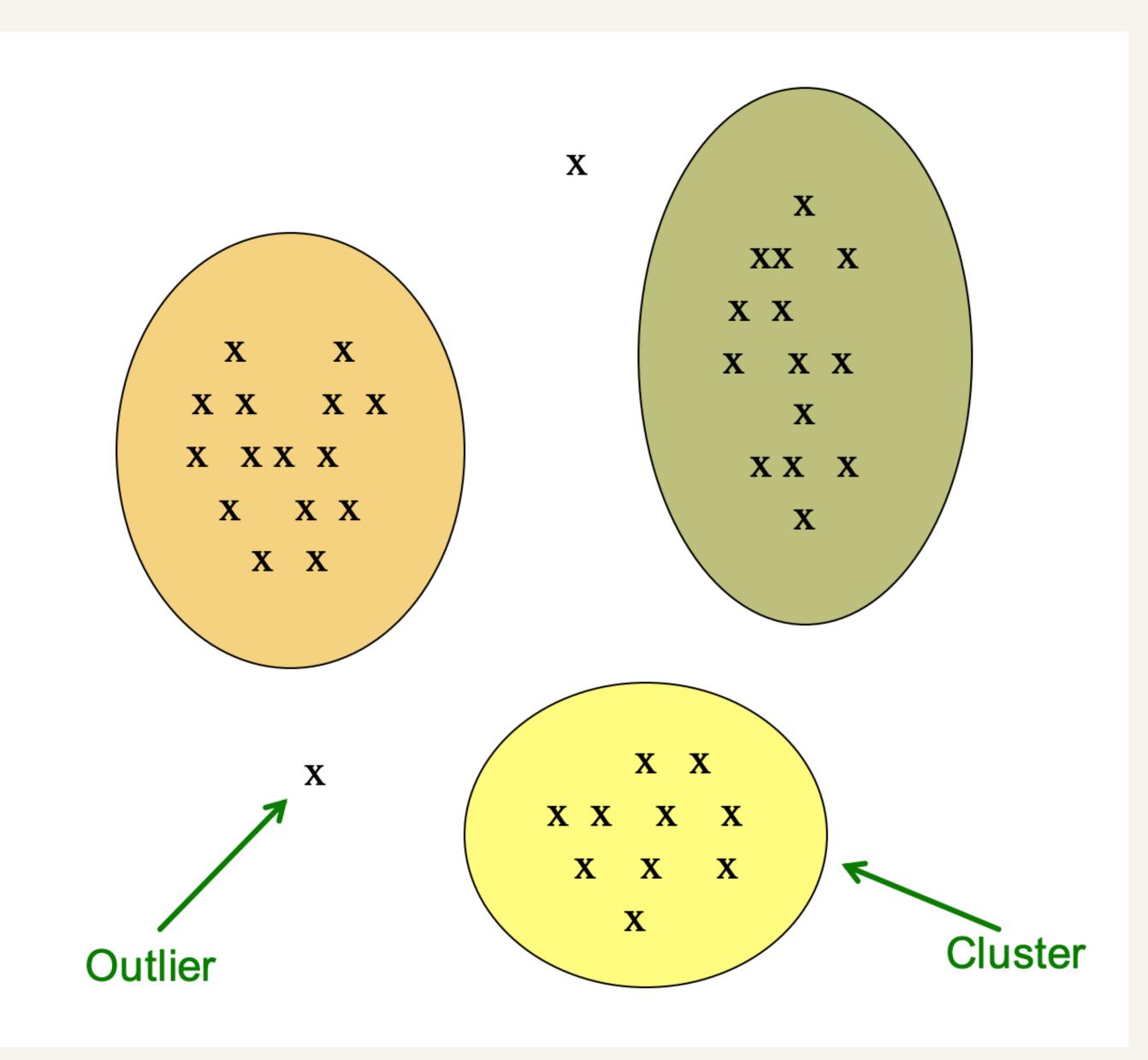
Faster k-Means to Accelerate ANNS

Clustering

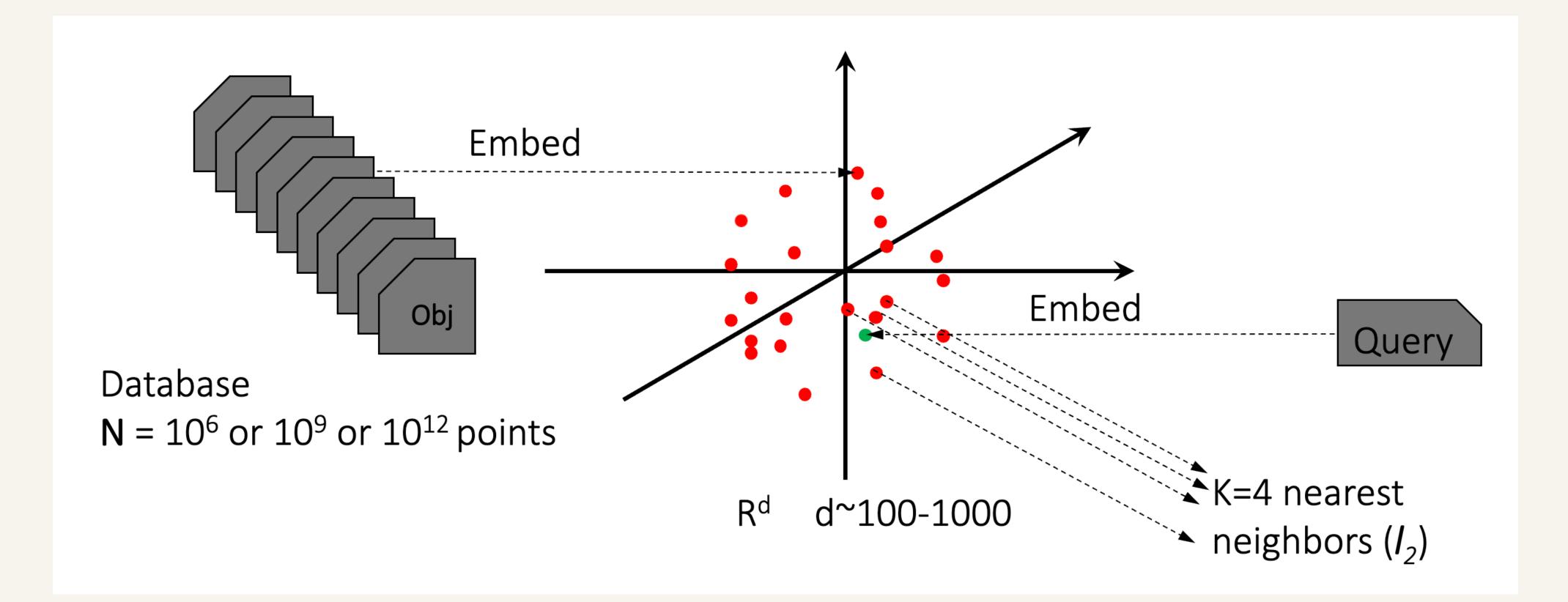
- * Given a set of points P with a notion of distance between the points, group the points into a number of clusters so that:
 - * Members of the same cluster are close / similar to each other * Members of different clusters are dissimilar

Usually:

- also possible (e.g., Jaccard, edit-distance, etc)
- * Points are in a high-dimensional space, e.g., $P \in \mathbb{R}^d$, $d \ge 100$ * Distance is measured using Euclidean distance, but other measures



Clustering Problem: Building Bucketing-Based Indexes



- * Exact retrieval requires exhaustive scan in the worst case; settle for approximation instead.

* Measure recall@k: the fraction of output candidates in true top k neighbors

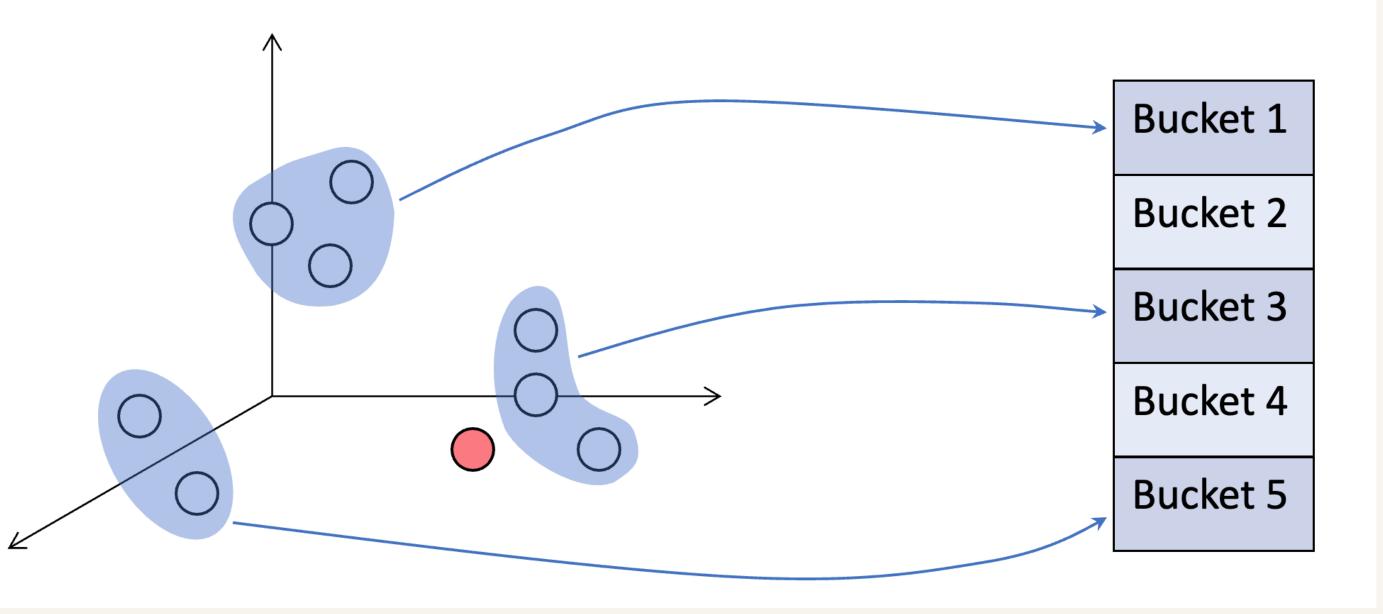
Clustering Problem: Building Bucketing-Based Indexes

* Build:

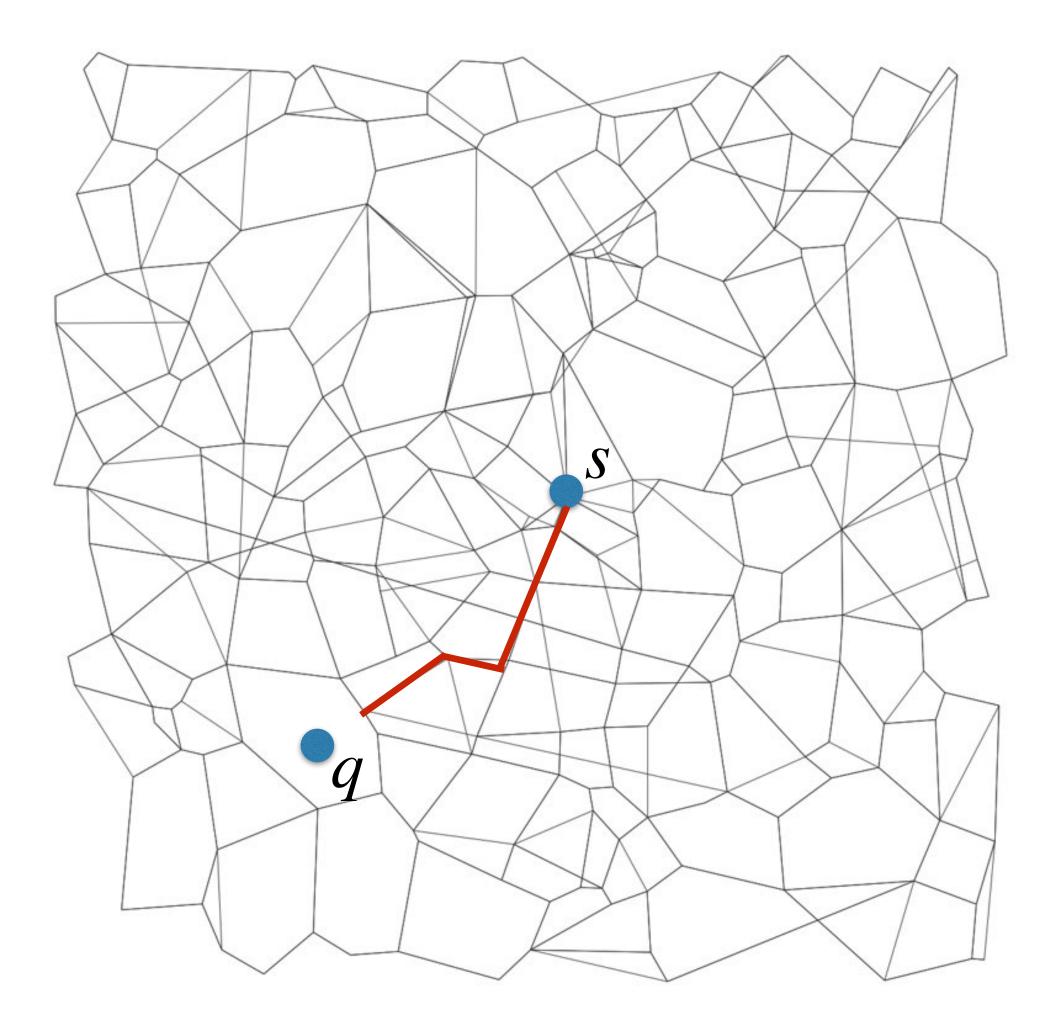
- Assign points to one (or more)
 buckets
- * Nearby points likely to be in the same buckets

* Query:

- Probe a subset of buckets for the queried point
- * Compare with all points in these buckets and report top-k



Graph Indexes

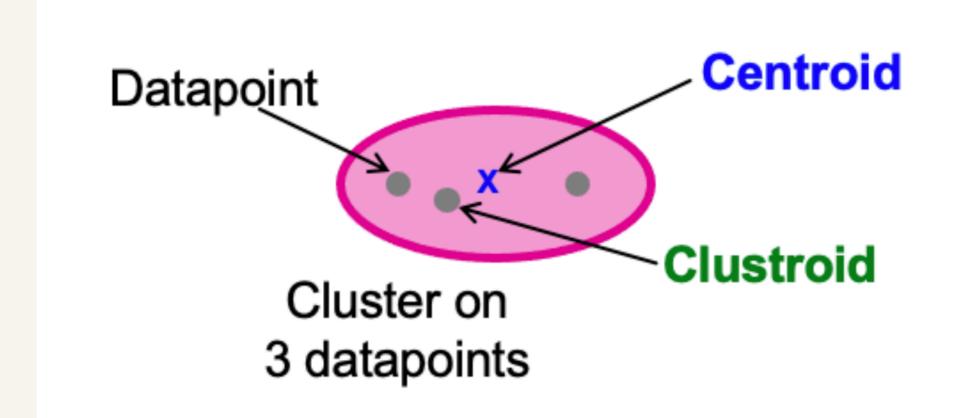


* Main ideas:

- Build graphs with polylog(n)
 degree
- * Satisfy the "relative neighbor" property (RNGs):
- * Points p, q connected by an edge if there does not exist a third point r that is closer to both p, q than they are to each other

FAISS Index: k-Means Bucketing + Graph over Centroids

* k-Means clustering partitions the data into k convex clusters

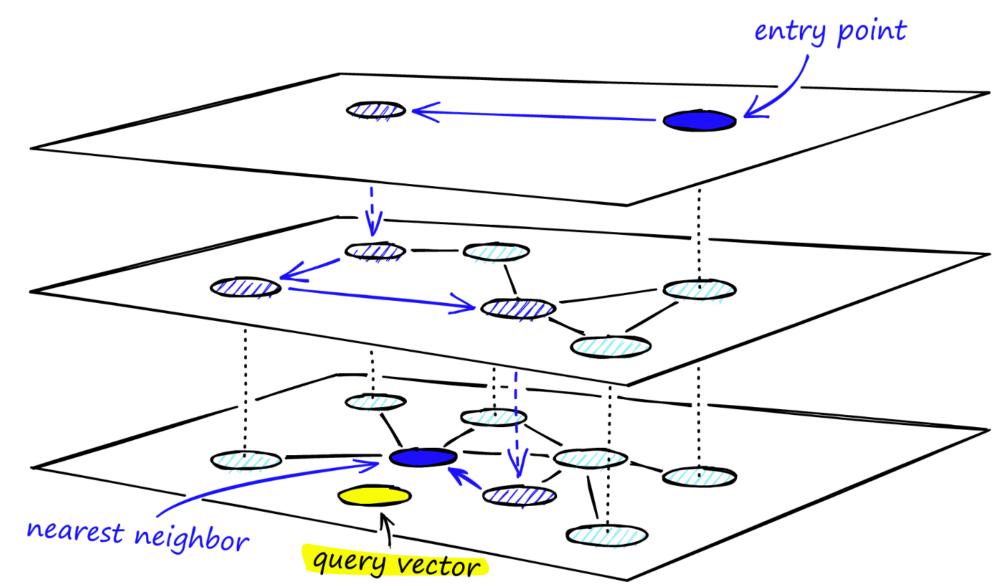


* Idea: run k-means with reasonably large k (e.g., on an n = 1e9 point dataset, we might use k = 1e6)

FAISS Index: k-Means Bucketing + Graph over Centroids

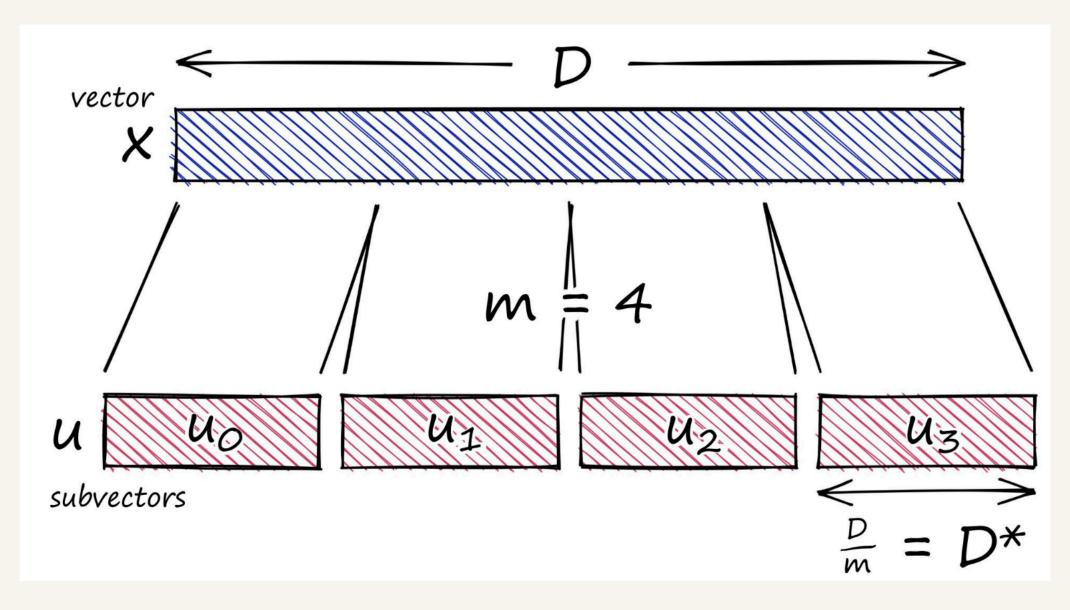
- * Such a large value of k creates an interesting routing problem—given a query q, which buckets (clusters) should we probe?
- Idea: just build another ANN index over the centroids. In this case, a graph index (e.g., HNSW or DiskANN)

 In practice, we will figure out the k' closest centroids to the query and probe the clusters for these centroids



k-Means for Product Quantization

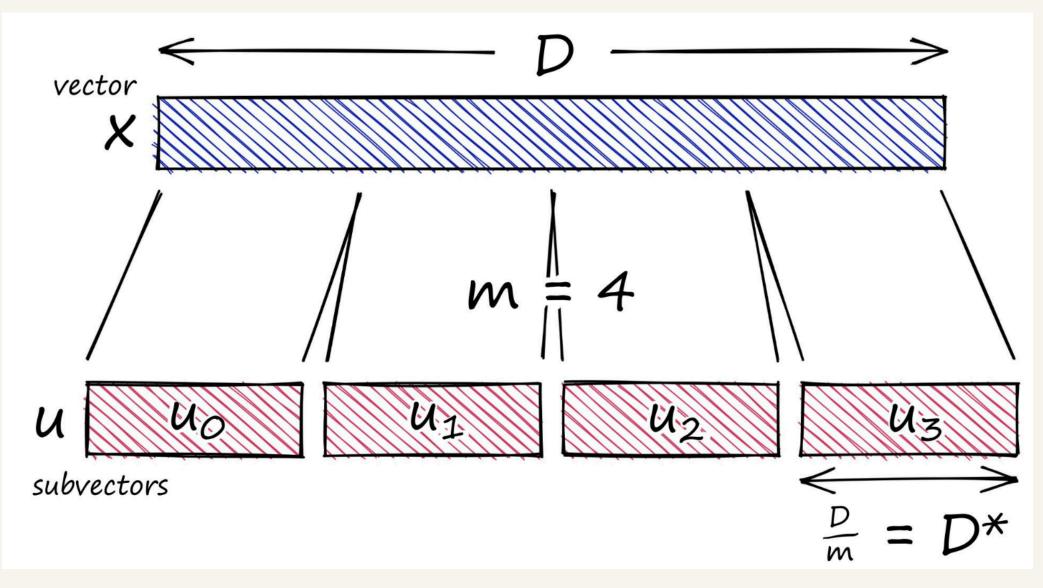
- * Vectors in modern applications are large
 - Recent OpenAl text embeddings have ~1600 dimensions. Used to be 8 times larger until recently
 - * More dimensions useful in applications, but costly to store and search
- * PQ: main idea
 - * $D \rightarrow D^*$ dimensions
 - Reduce range of each dimension
 i.e., use uint8 instead of float

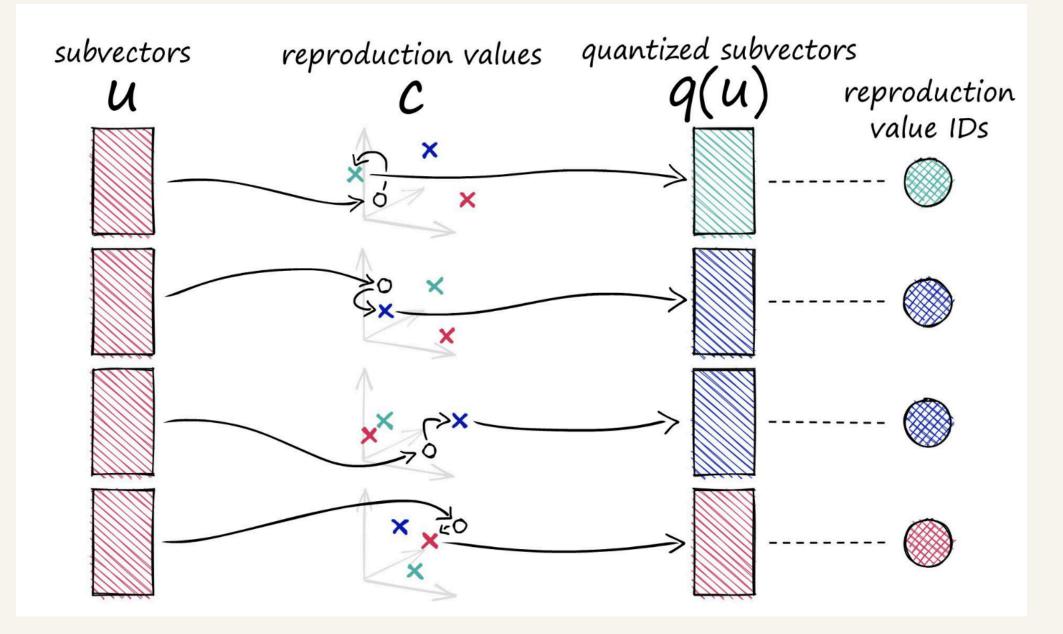


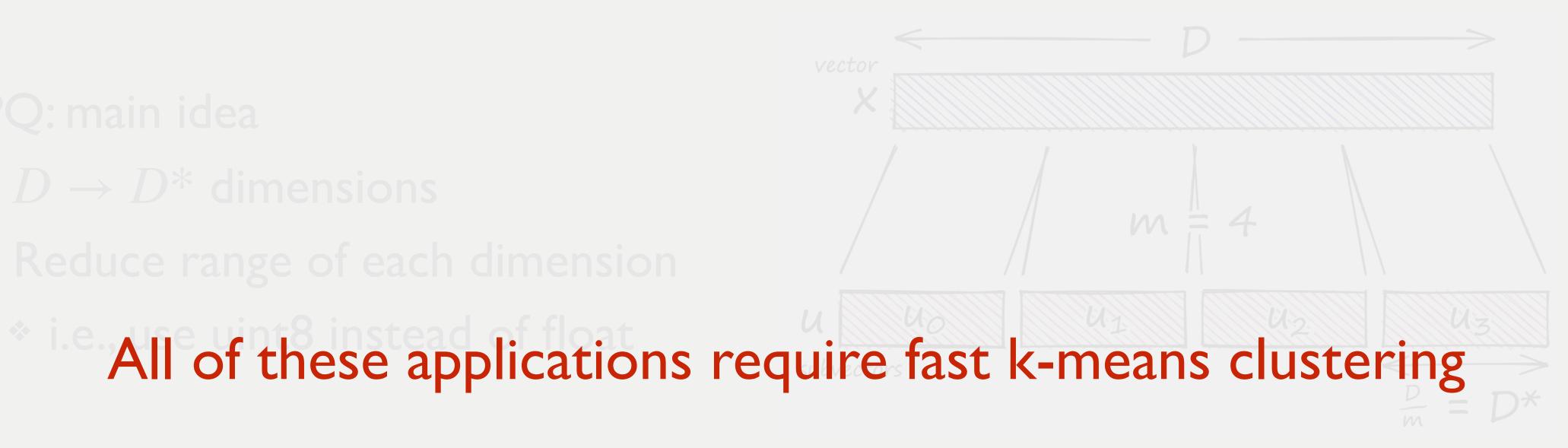
k-Means for Product Quantization

- * PQ: main idea
 - * $D \rightarrow D^*$ dimensions
 - Reduce range of each dimension
 i.e., use uint8 instead of float

- * Range reduction works by using the id of a centroid (say one of $2^8 = 256$ centroids)
- * Original point can be approximated by remembering the position of the centroid







Can we build fast implementations with good accuracy (ideally with some theoretical guarantees) and good scalability?

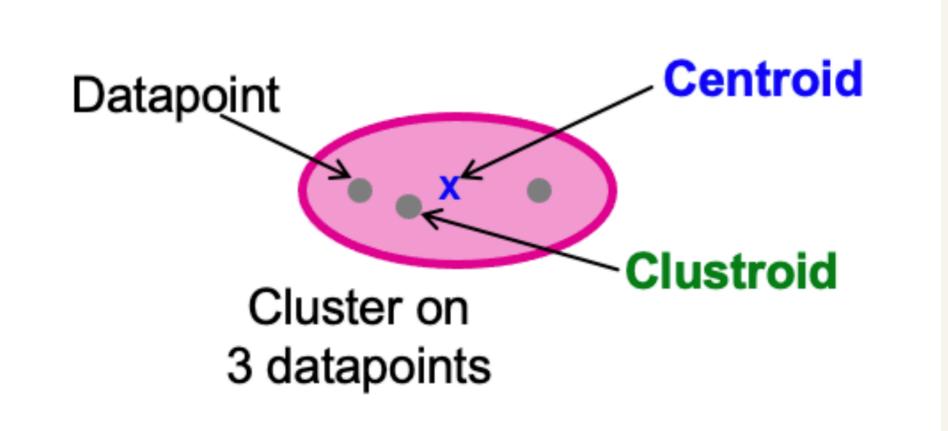
Our plan: implement a variety of k-means baselines

* k-means objective: partition input points into k clusters C_1, \ldots, C_k minimizing:

$$\sum_{i=1}^{k} \sum_{x \in C_i} \|x - \mu_i\|^2$$

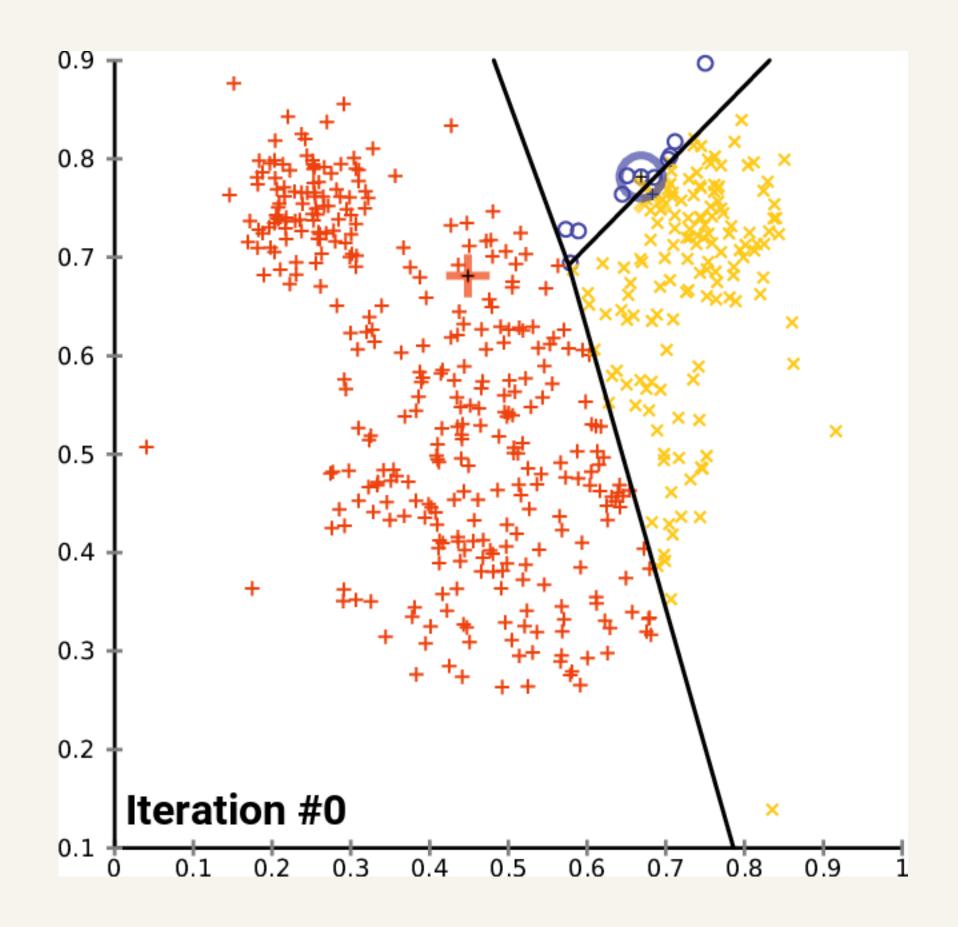
$$\mu_i = \operatorname{mean}(C_i) = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

* Related to the idea of minimizing the variance of a cluster (also called "Sur Squared Deviations")



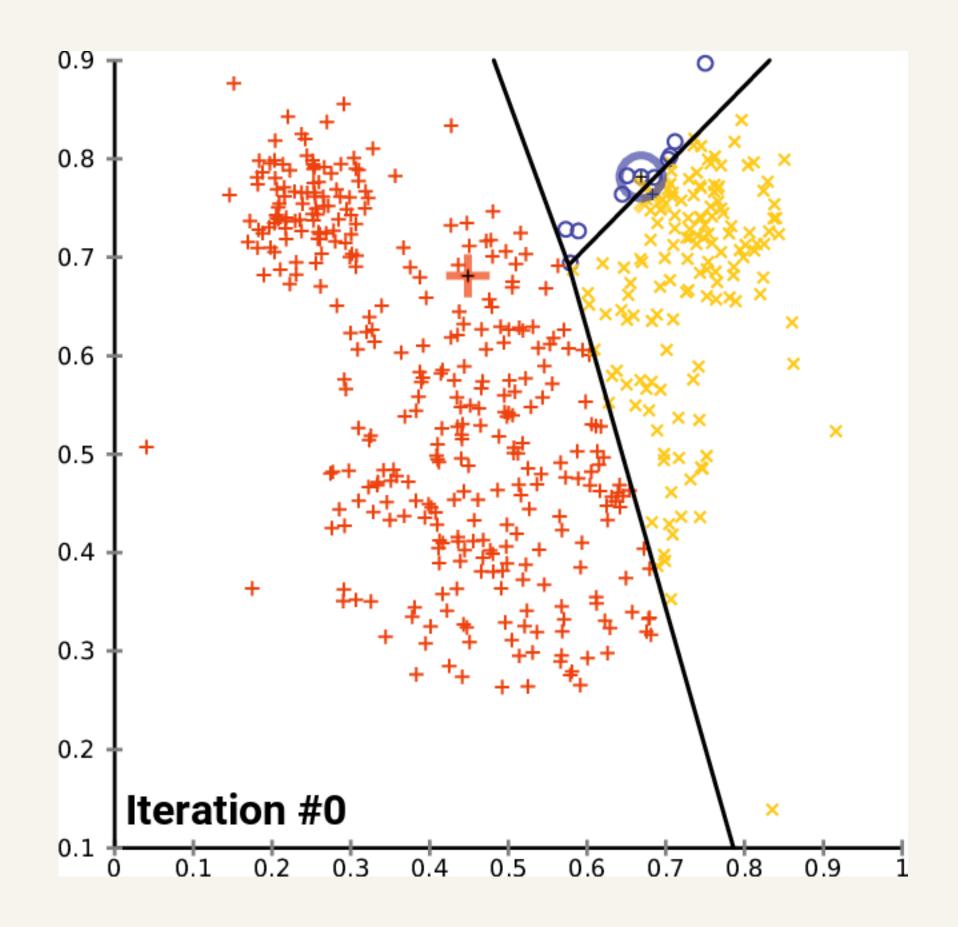
Lloyd's Algorithm

- * Lloyd's algorithm (baseline)
- * Consists of two steps. Suppose some initial centers c_1, \ldots, c_k given:
- (I) Assignment:
 - * assign each $p \in P$ to the cluster corresponding to its nearest center
- (2) Update:
 - * recompute c_i based on the set of points assigned to C_i



Lloyd's Algorithm

- * Lloyd's algorithm (baseline)
- * Consists of two steps. Suppose some initial centers c_1, \ldots, c_k given:
- (I) Assignment:
 - * assign each $p \in P$ to the cluster corresponding to its nearest center
- (2) Update:
 - * recompute c_i based on the set of points assigned to C_i



What is the cost of one Lloyd's iteration in terms of n, k, d?

What potential for optimizations are there?

Better initialization: k-means++

- * Instead of picking k random centers initially:
 - * Pick one center uniformly at random
 - * For each point p not yet elected as a center, compute D(x), the distance between p and its nearest center
 - * Sample an unchosen point to be chosen as the center where points are sampled with probability proportional to $D(x)^2$
 - * Amazingly, can show that the centers that result from this procedure are an $O(\log n)$ approximation of OPT (in expectation)

k-means++: The Advantages of Careful Seeding

David Arthur * Sergei Vassilvitskii[†]

Scalable initialization: k-means

- * A slightly more complex scheme, but admits more parallelism:
 - * Sample O(k) points in each round
 - * Repeat for approximately $O(\log n)$ rounds
 - * Yields $O(k \log n)$ points that are then reclustered into k initial centers
- * Theory: initial $O(k \log n)$ centers give a constant factor approximation of OPT

Scalable K-Means++

Bahman Bahmani*[†] Stanford University Stanford, CA bahman@stanford.edu

Benjamin Moseley** University of Illinois Urbana, IL bmosele2@illinois.edu

Andrea Vattani^{*§} University of California San Diego, CA

avattani@cs.ucsd.edu

Ravi Kumar Yahoo! Research Sunnyvale, CA ravikumar@yahooinc.com

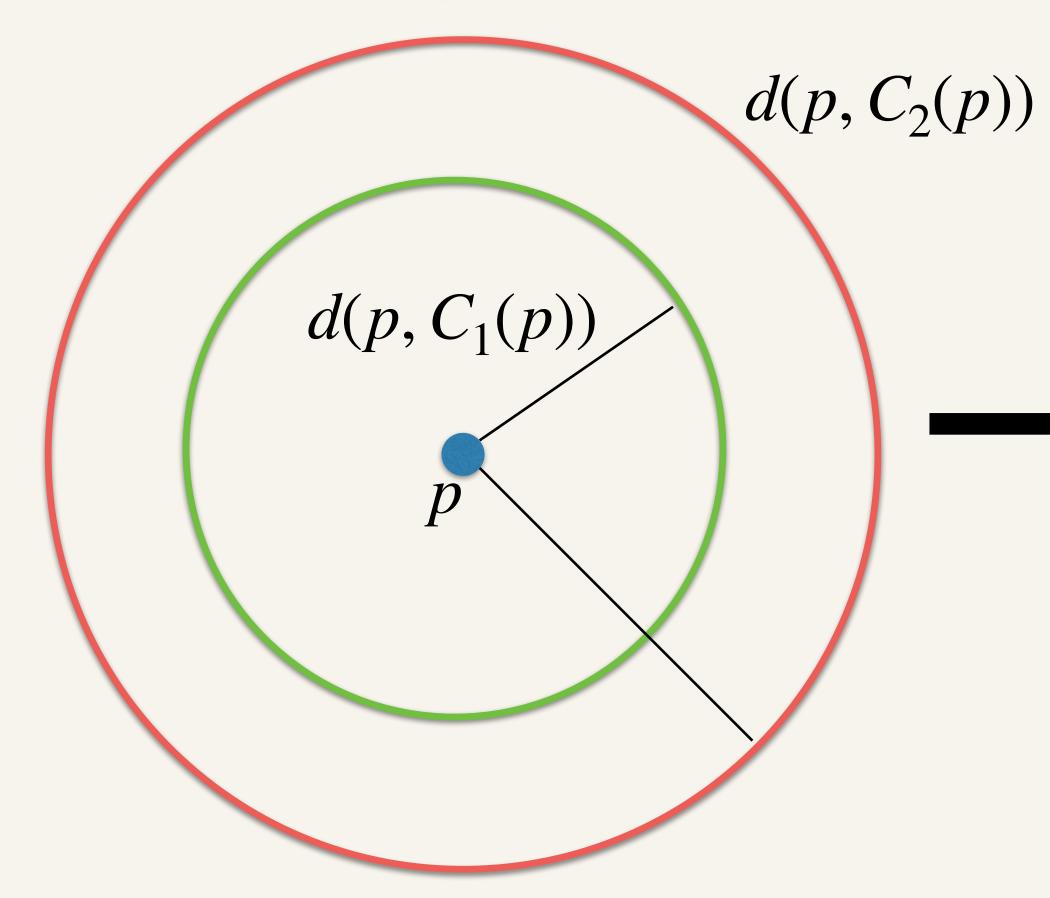
Sergei Vassilvitskii Yahoo! Research New York, NY sergei@vahoo-inc.com

	k = 20	k = 50	k = 100
Random	176.4	166.8	60.4
k-means++	38.3	42.2	36.6
k-means	36.9	30.8	30.2
$\ell = 0.5k, r = 5$	00.9	50.0	50.2
k-means	23.3	28.1	29.7
$\ell=2k,r=5$	20.0	20.1	20.1

Table 6: Number of Lloyd's iterations till convergence (averaged over 10 runs) for SPAM.

Avoiding distance comparisons

- * Costly part of Lloyd iteration is comparing each point p with all k centers (costs O(nkd))
- * Idea: use triangle inequality to avoid distance computations for points



Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup

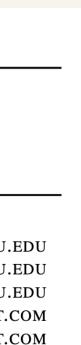
Yufei Ding* Yue Zhao* **Xipeng Shen*** Madanlal Musuvathi^{\$} Todd Mytkowicz^{\$}

YDING8@NCSU.EDU YZHAO30@NCSU.EDU XSHEN5@NCSU.EDU MADANM@MICROSOFT.COM TODDM@MICROSOFT.COM

 $d(p, C_2(p)) - \delta_{\max}$

 $d(p, C_1(p)) + \delta(C_1(p))$

p



Project plan:

- * Build a highly optimized shared-memory library of k-means implementations
- * Evaluate existing algorithms for large n, k, d:
 - * n = 1B points
 - * k = 1M centers
 - ** d* ∈ [100,1600]

Evaluate performance on real-world embedding datasets from ANN search applications

(Hopefully) design new algorithms and heuristics to obtain scalability improvements at billion-scale!

