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Large-Scale Graph Processing
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public outside companies such as Number of Vertices + Edges

Google,Yahoo, and Microsoft.” , ,
Year of sourcing vs total number of vertices and edges

for real-world graphs from the SNAP and LAWYV datasets

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/ 4




Parallelism is the key to processing very large
graphs in a timely manner
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Main focus of my work is shared-memory parallelism
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Shared-Memory Machines

* Cost for a | TB memory machine with 72

processors is about $20,000.
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Shared-Memory Parallelism

Shared-Memory Machines
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processors is about $20,000.

» Can rent a similar machine (96 processors and

|.5TB memory) for $| |/hour on Google Cloud 24
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WebDataCommons Graph .
- 3.5 billion vertices and |28 billion edges i
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A single shared-memory machine can already -

store the largest publicly available graph o . l
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datasets, with plenty of room to spare
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Work-Depth Model

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = Work/#Processors + O(Depth)

A work-efficient parallel algorithm has work
that asymptotically matches that of the best
sequential algorithm for the problem

Goal: work-efficient and low

(polylogarithmic) depth algorithms

Computation Graph
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Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds!?

Input-agnostic design

* Design codes without worrying too much about

your datasets

Robustness to bad inputs

* Perform well even on new classes of graphs
* Understand how they will scale on larger graphs

Work-efficiency matters in practice Up to 9x faster using a work-efficient k-

* Work-efficient algorithms can be much faster core algorithm (described in this talk)
than work-inefficient algorithms




Graph Systems: examples

Pregel
PowerGraph

PowerlLyra
Parallel BGL

Graphlab
Green-Marl
GraphMat
Ringo
SNAP
Graphlt
Ligra
Julienne
GBBS
STAPL

GraphX (Spark)
ASPIRE

GoFFish
Presto
GraphChi
Blogel
GraM
Giraph
PAGE
MOCgraph
GrapH
LightGraph
Gluon
Graphine

Sage
Graphite
GraFBoost
X-Stream
TurboGraph
TurboGraph++
Ligra+
MMap
PathGraph
GridGraph
NXgraph
Chaos

FlashGraph
Graphene

GraphMat
EmptyHeaded

Congra
CongraPlus
Laika
Socialite
Graphphi
TuFast
Maiter
LCC-Graph
TopoX
Gluon-Async

GraphA
L-PowerGraph



Unfortunately existing graph systems typically study a very small
set of simple problems, such as BFS.

Can we solve a broad set of static graph problems on very large
graphs?



Theoretically-Efficient Parallel Graph Algorithms can be Fast and Scalable
[D, Blelloch, Shun, SPAA’| 8 Best Paper]

+ Introduce the Graph-Based Benchmark Suite (GBBS) for
graph problems with over 20 important problems

+ GBBS algorithms achieve state-of-the-art results on the
largest publicly available graphs

Connectivity Problems Subgraph Problems Covering Problems Shortest Path Problems
Low-Dial.’n.eter Decomposition k-Core Decomposition Maximal Ind. Set Breadth-First Search
Conngctlwty k-Truss Decomposition Maximal Matching Betweenness Centrality
SPannlng Ifo.rest Apx. Densest Subgraph Apx. Set Cover Bellman-Ford
Bl.cc?nnectlwty | Triangle Counting Graph Coloring General Weight SSSP
Minimum Spanning Forest Higher-Clique Counting Integral VWeight SSSP
Strongly Connected Components SS Widest Path

k-Spanner

Eigenvector Problems

github.com/paralg/gbbs

PageRank
Personalized PageRank
Personalized SimRank



Benchmarking Connectivity on WebDataCommons Graph

1000

800

600

Running Time (Seconds)
B

200

External Memory
Distributed Memory
Shared Memory

o
GraFBoost
e GraFBoos .
o
eMosaic
e 1ashGraph
oGBBS s
102 103 10*

Memory Used (GB)

eStergiou

@Gluon
lota

10°

efastSV

1000

800

600

Running Time (Seconds)
A

200

109

® External Memory
GraFBoost
e GraFBoos ® Distributed Memory
® Shared Memory
o Mosaic
e FlashGraph
o Stergiou
SIOta ‘Gluon
GB.BS O o FastSV
10! 102 103 10* 10° 10°

Number of Processors



Benchmarking Connectivity on WebDataCommons Graph
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Benchmarking Connectivity on WebDataCommons Graph
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GBBS can analyze O(100B) edge graphs in seconds to minutes
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GBBS can analyze O(100B) edge graphs in seconds to minutes
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Work and Depth of GBBS Results "t in expectation  *: whp
Problem Work Depth
Breadth-First Search (BFS) O(m) O(diam(G))
Integral-Weight SSSP (weighted BFS) O(m)" O(diam(G))*
General-Weight SSSP (Bellman-Ford) O(diam(G) - m) O(diam(G))
Single-Source Widest Path (Bellman-Ford) O(diam(G) - m) O(diam(G))
Single-Source Betweenness Centrality (BC) O(m) O(diam(G))
O(k)-Spanner O(m) O(klog n)*
Low-Diameter Decomposition (LDD) O(m) O(log? n)*
Connectivity (CC) O(m)’ O(log> n)*
Spanning Forest O(m)’ O(log> n)*
Biconnectivity O(m)’ O(max(CC, BFYS))
Strongly Connected Components (SCC) O(mlogn)’ O(diam(G))*
Minimum Spanning Forest (MSF) O(mlogn) O(log? n)

Maximal Independent Set (MIS) O(m)" O(log? n)*

Maximal Matching (MM) O(m)" O(log” n)*

Graph Coloring O(m) O(logn + Llog A)
k-core O(m)" O(plogn)*
Approximate Set Cover O(m)T 0(j_0g3 n)*

Triangle Counting (TC) 0(m3/ 2) O(log n)
Approximate Densest Subgraph O(m) O(log” n)
PageRank Iteration O(n + m) O(log n)




Work and Depth of GBBS Results "+ in expectation  *: whp

Problem Work Depth
Breadth-First Search (BFS) O(m) O(diam(G))
Integral-Weight SSSP (weighted BFS) O(m)’ O(diam(G))*
General-Weight SSSP (Bellman-Ford) O(diam(G) - m) O(diam(G))
Single-Source Widest Path (Bellman-Ford) O(diam(G) - m) O(diam(G))
Single-Source Betweenness Centrality (BC) O(m) O(diam(G))
O(k)-Spanner O(m) O(klog n)*
Low-Diameter Decomposition (LDD) O(m) O(log? n)*
Connectivity (CC) O(m)! O(log> n)*
Spanning Forest O(m)! O(log> n)*
Biconnectivity O(m)" O(max(CC, BFS))
Strongly Connected Components (SCC) O(mlogn)’ O(diam(G))*
Minimum Spanning Forest (MSF) O(mlogn) O(log? n)
Maximal Independent Set (MIS) O(m)" O(log? n)*
Maximal Matching (MM ()" N(loo2 n)*

Main Challenge:
How do we build simple and provably-efficient implementations of

these algorithms that work on the largest real-world graphs?

p— g U o onw / 7 \_/ \J
O

PageRank Iteration O(n + m) O(log n)




GBBS Library
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in the lineage of Ligra [SB’12]
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GBBS Library

+ High-level graph processing interface
in the lineage of Ligra [SB’12]

* Provides many useful primitives

Vertex Operations Graph Operations
- Map - Filter
- Reduce  Pack
* Filter » Contract
» Pack
* Intersect

+ Compressed graph representations

/ Core GBBS Interfaces

Mmoo

Cilk, OpenMP, TBB,
Homegrown

Graph Representations

}

Compression Library

2 E - - - -am

.

Graph V| |E| |Size (CSR)| Compressed | Bytes/edge
WDC Hyperlink 3.5B | 128B | 1080GB 446GB .74
WDC Hyperlink (Sym)| 3.5B | 225B | 928 GB 351GB .56

|4
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k-Core Decomposition

k-core : maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

coreness : largest k-core that a given vertex participates in

3-core 2-core

| -core

Widely used in network analysis tasks such as

unsupervised clustering of social and biological networks

15
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The Peeling Algorithm

» Current degree of remaining vertices decreases as
vertices are peeled from the graph

* Once a vertex’s current degree is less than or equal to
the current core number, it gets peeled

All vertices “below threshold” can be peeled in parallel

Our contribution is to give a general interface for bucketing




A Work-Efficient k-core Decomposition Algorithm

GBBS Algorithm

+ Actual code in GBBS is
under 50 lines of C++

< Parallel cost:

O(m + n) expected work

O(plogn) depth whp

where p is the number of peeling rounds

Algorithm 1 k-core (Coreness)

1: Coreness[o0,..., n) =0
2: procedure CoreNEess(G(V, E))

3:

eSS

VERTEXMAP(V, fn v — Coreness[v] = d(v;)) > initialized to initial degrees
B = MAKEBUCKETS(|V|. Coreness, INCREASING) > buckets processed in increasing order
Finished := 0
while (Finished < |V|) do
!k, ids! = B.NEXTBUCKET! ! > current core number, and vertices peeled this step
Finished = Finished + |ids|
condFn := fn v — return true
applyFn := fn (v, edgesRemoved) —
inducedD = D[v]
if (inducedD > k) then
newD := max(inducedD — edgesRemoved, k)
Coreness[v] = newD
bkt := B.cerBuckeT(inducedD, newD)
if (bkt # nuLLBKT) then
return Some(bkt)
return NoONE

Moved = NGHCOUNT(G, idsi conani aeelen! > Moved is an bktdest vertexSubset

B.uppAaTEBUCKETS(Moved) > update the buckets of vertices in Moved

return Coreness




A Work-Efficient k-core Decomposition Algorithm

' Algorithm 1 k-core (C )
G B BS Algo rlth m 1: (C)‘zlreness[o, . Cf):)e = Zreness

2: procedure CoreNEess(G(V, E))
3: VERTEXMAP(V, fn v — Coreness[v] = d(v;)) > initialized to initial degrees
B = MAKEBUCKETS(|V|. Coreness, INCREASING)  » buckets processed in increasing order

+ Actual code in GBBS is o B
. : hil inished < |V|) d
U n d er 5 O I N eS Of C + + 3: " l!lz i(dil!n:s: ;.NZXZIIS)UCI?ET! ) > current core number, and vertices peeled this step
8:

Finished = Finished + |ids|

O P I I I . 9: condFn = fn v — return true
¢ aralie COSt. 10: applyFn = fn (v, edgesRemoved) —
11: inducedD = D[v]
12: if (inducedD > k) then
O(m n) expected WO rl( 13: newD := max(inducedD — edgesRemoved, k)
14: Coreness[v] = newD
15: bkt := B.cerBuckeT(inducedD, newD)
16: if (bkt # NUuLLBKT) then
0(p log n) depth WhP 17: return Some(bkt)
18: return NoNE
19: Moved := N6HCOUNT(G, ids, condFn, applyFn) > Moved is an bktdest vertexSubset
h . th b f I . d 20: B.uppATEBUCKETS(Moved) > update the buckets of vertices in Moved
where p is the number of peeling rounds S e sm—

Our algorithm is the first work-efficient algorithm for

k-core decomposition with non-trivial parallelism




k-Core Decomposition on the WebDataCommons Graph

BlueWaters [SRM’| 6]

Time 363 seconds
3-core 2-core Processors 8192
Memory 16 TB

T~ |-core Quality Approximate

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k Cost Very Expensive
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k-Core Decomposition on the WebDataCommons Graph
BlueWaters [SRM’'I6] GBBS [DBS’|8]

Time 363 seconds |84 seconds
3-core 2-core Processors 8192 72
Memory 16 TB | TB
\ | -core Quality Approximate Exact
k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k Cost Very Expensive High|)’ Affordable

|.95x faster than the approximate distributed result by SRM’ 16, using

56.8x fewer hyper-threads and |6.3x less memory




GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:
+ Fast Parallel Graph Connectivity [DHS'21] o
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GBBS as a Research Repository 5 Years On

Basis for many other parallel graph projects:
+ Fast Parallel Graph Connectivity [DHS'21] o
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+ Parallel k-clique enumeration [SDS’21]
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+ Graph Embedding [QDTPW’21] Moo &

ArbClique

+ Structural Graph Clustering [TDS21]

* Batch-Dynamic Graph Orientation [LSYDS'22]

Used at Google:

+ Fast and scalable implementations of parallel graph

clustering algorithms (e.g., Affinity Clustering) | | T F il
* Being used to develop and evaluate parallel hierarchical I ) : WMMMHM

agglomerative clustering (HAC) algorithms




Faster k-Means to
Accelerate ANNS



Clustering

+ Given a set of points P with a notion of distance between the points,
group the points into a number of clusters so that:

* Members of the same cluster are close / similar to each other
* Members of different clusters are dissimilar

Usually:
+ Points are in a high-dimensional space, e.g., P € R4, d > 100

+ Distance is measured using Euclidean distance, but other measures
also possible (e.g., Jaccard, edit-distance, etc)



Clustering

X X
X X X X
X XX X

X XX
X X

X

/ ~

Outlier Cluster



Clustering Problem: Building Bucketing-Based Indexes

Database o
N = 10° or 10° or 10*? points

“. a0 K=4 nearest
" neighbors (/,)

R4 d~100-1000

+ Exact retrieval requires exhaustive scan in the worst case; settle for
approximation instead.

+ Measure recall@k: the fraction of output candidates in true top k neighbors



Clustering Problem: Building Bucketing-Based Indexes

+ Build:
+ Assign points to one (or more) N
buckets / —| Bucket 1
+ Nearby points likely to be in the A O Bucket 2
same buckets O Bucket 3
—| Bucket
o Quer)l: 9 /
O O > Bucket 4
+ Probe a subset of buckets for the O © 0 Bucket 5
. . Uucke
queried point e __—

+ Compare with all points in these
buckets and report top-k



Graph Indexes

+ Main ideas:

+ Build graphs with polylog(n)
degree

+ Satisfy the “relative neighbor”
property (RNGs):

+ Points p, g connected by an edge if
there does not exist a third point r

that is closer to both p, g than
they are to each other

25



FAISS Index: k-Means Bucketing + Graph over Centroids

+ k-Means clustering partitions the data into
k convex clusters

Datapoint / Centroid
Clustroid

Cluster on
3 datapoints

+ ldea: run k-means with reasonably large k
(e.g.,on an n = 1¢Y point dataset, we
might use k = 1¢e6)



FAISS Index: k-Means Bucketing + Graph over Centroids

+ Such a large value of k creates an interesting
routing problem—given a query ¢, which
buckets (clusters) should we probe?

+ ldea: just build another ANN index over the

centroids. In this case, a graph index (e.g,,
HNSW or DiskANN)

entry point

+ In practice, we will figure
out the k' closest centroids
to the query and probe the
clusters for these centroids




k-Means for Product Quantization

+ Vectors in modern applications are large

+ Recent OpenAl text embeddings have
~1600 dimensions. Used to be 8 times
larger until recently

+ More dimensions useful in applications, but
costly to store and search

vector

+* PQ: main idea X

* D — D* dimensions

+ Reduce range of each dimension

* i.e., use uint8 instead of float

subvectors



k-Means for Product Quantization

< D B

¢ PQ: main idea
* D — D* dimensions

+ Reduce range of each dimension

* i.e., use uint8 instead of float

subvectors

subvectors reproduction values quantized subvectors

C q ( (,() reproduction

value IDs

+ Range reduction works by using
the id of a centroid (say one of

U
N
28 = 256 Centroids) § /—\C;gl/\>§
N
.
§

\ O' X — N \\< ---------

+ QOriginal point can be
approximated by remembering
the position of the centroid




All of these applications require fast k-means clustering

Can we build fast implementations with good accuracy (ideally
with some theoretical guarantees) and good scalability?



Our plan: implement a variety of k-means baselines

+ k-means objective: partition input points into
k clusters Cy, ..., C, minimizing:

. Datapaint Centroid
i=1 X&E Ci @
Clustroid

1 Cluster on
u; = mean(C;) = C| Z A 3 datapoints
l

xe(C;

+ Related to the idea of minimizing the
variance of a cluster (also called “Sum-of-
Squared Deviations”)



Lloyd’s Algorithm

+ Lloyd’s algorithm (baseline) ol I
+ Consists of two steps. Suppose some initial 08 1 yﬁ#% '
centers ¢y, ..., C; given: 0.7 1 ﬂ;% p
(I) Assignment: 06 | #
% assign each p € P to the cluster 05§ + H***#“L 3
corresponding to its nearest center - A
(2) Update: I I
% recompute ¢; based on the set of points 1
assigned to C, lteration #0

0.1+ t } } t ' ' ' '
0 01 02 03 04 05 06 07 0.8
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What is the cost of one Lloyd’s iteration in terms of n, k, d?

What potential for optimizations are there!



Better initialization: k-means++

k-means++: The Advantages of Careful Seeding

David Arthur * Sergei Vassilvitskii'

+ Instead of picking kK random centers initially:
+ Pick one center uniformly at random

+ For each point p not yet elected as a center,

compute D(x), the distance between p and
ItS nearest center

+ Sample an unchosen point to be chosen as
the center where points are sampled with

probability proportional to D(x)?

+ Amazingly, can show that the centers that
result from this procedure are an O(log n)
approximation of OPT (in expectation)



Scalable initialization: k-meansf| Scalable K-Means -+

e tatan’ BglmbVmer e et
bahmas;:g:trgh(f?rd.edu bmoselzrzbgiial’i;:is.edu avatt::g:;?c:czg_edu
Wi A Saggo Yasshoa
* A slightly more complex scheme, but admits R se@meoecan
more parallelism:
+ Sample O(k) points in each round
+ Repeat for approximately O(log n) rounds
+ Yields O(klog n) points that are then E=120 | k=150 [ k=100
, o Random | 176.4 | 166.8 | 60.4
reclustered into k initial centers F-means++ | 383 | 422 | 36.6
if':m"(’)agz _s | 369 | 308 | 302
’g':meza,:‘j s 233 | 281 | 29.7

+ Theory: initial O(klogn) centers give a
. . Table 6: Number of Lloyd’s iterations till conver-
constant factor approximation of OPT gence (averaged over 10 runs) for SPAM.



Avoiding distance comparisons

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means
with Consistent Speedup

+ Costly part of Lloyd iteration is comparing each

. . Yufei Ding* YDING8 @NCSU.EDU
Yue Zhao* YZHAO30@NCSU.EDU
point p with all k centers (costs O(nkd))
Xipeng Shen* XSHENS @NCSU.EDU
Madanlal Musuvathi® MADANM @MICROSOFT .COM
Todd Mytkowicz® TODDM @MICROSOFT.COM

+ ldea: use triangle inequality to avoid distance
computations for points

d(pa CZ(p)) R 6max

d@p, C,(p)) + 6(Ci(p))

P




Project plan:

+ Build a highly optimized shared-memory library
of k-means implementations

+ Evaluate existing algorithms for large n, k, d-
+* n = 1B points
+ k = 1M centers
+d € [100,1600]

Evaluate performance on real-world embedding
datasets from ANN search applications

(Hopefully) design new algorithms and heuristics
to obtain scalability improvements at billion-scale!



Thank you!
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