What Should We Grow Today so We Make Money Tomorrow? Reinforcement Learning for Small Farmers

Aviva Prins

Context

Greenhouse-in-a-box: an

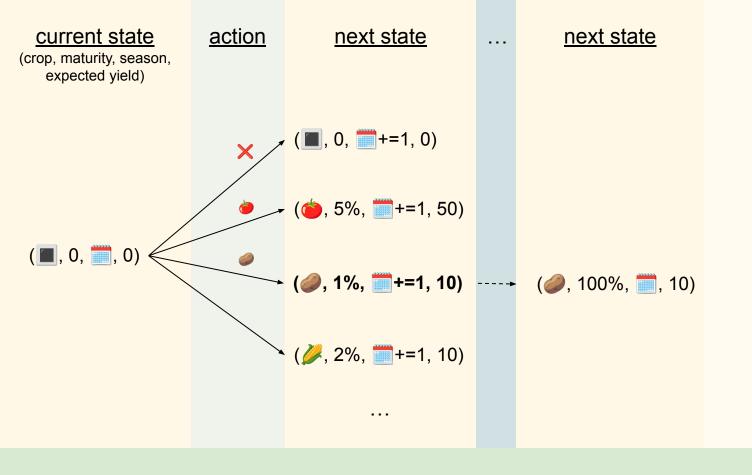
affordable, modular greenhouse that uses 90% less water, grows 7 times more food and gives farmers a steady dependable income.

Challenge

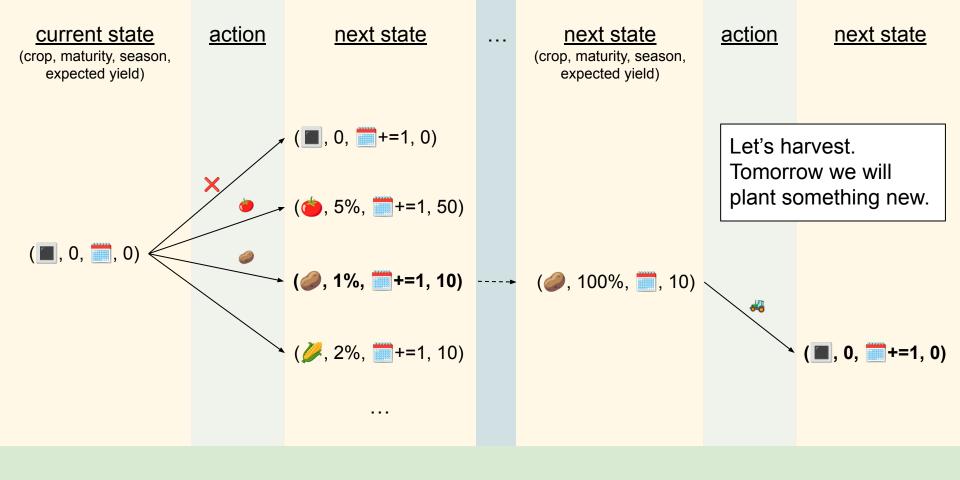
Develop an optimization-driven decision support system for this low-resource sector, with a holistic eye towards real-world and multi-agent considerations.

Decision support system

- 1. Plant tomatoes in December 2021
- 2. Plant cucumbers on April 24th, 2022
- 3. Plant **beetroot** on August 13th, 2022
- 4. Plant cabbages on November 11th, 2022



<u>profit</u>

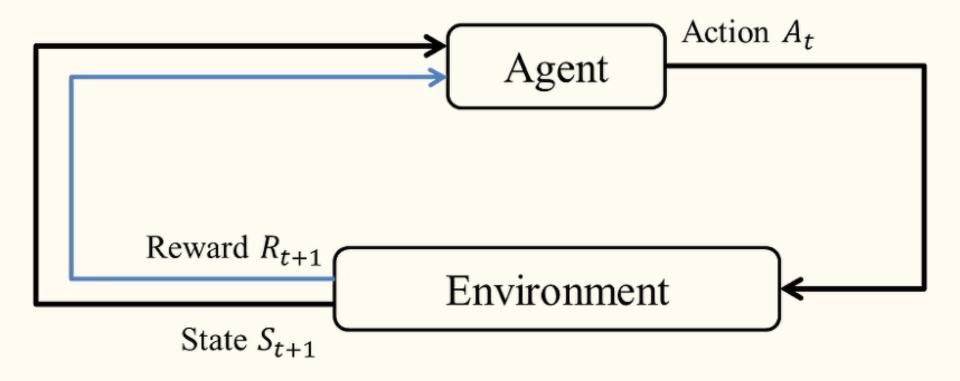


₹0

₹ 1,000

<u>profit</u>

Markov Decision Process



Markov Decision Process

State Space (crop, maturity, expiry, date, flag)

Action Space {N/A, harvest, plant c_1 , plant c_2 , ...}

```
Transition function P_a(s, s')
```

Reward function

$$r(s, a, s') = \begin{cases} < 0 & \text{if } a \text{ yields a constraint violation} \\ y(crop) & \text{if } a \text{ is } harvest \\ 0 & \text{otherwise} \end{cases}$$

Solve!

Goal: maximize expected total discounted reward $\,\mathbb E\,$

$$\left[\sum_{t=0}^{\infty} \gamma^t R_{a_t}(s_t, s_{t+1})\right]$$

$$V(s) := \sum_{s'} P_{\pi(s)}(s, s') \left(R_{\pi(s)}(s, s') + \gamma V(s') \right)$$
$$\pi(s) := \operatorname{argmax}_{a} \left\{ \sum_{s'} P_{a}(s, s') \left(R_{a}(s, s') + \gamma V(s') \right) \right\}$$

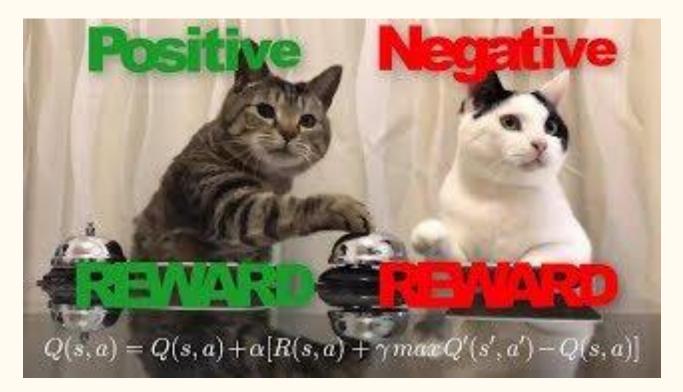
Our planning algorithm produced this!

- Plant tomatoes in December 2023
 Harvest a couple of times, but before they're fully harvested
- Plant cucumbers on April 24th, 2024
 Harvest a couple of times, but before they're fully harvested
- Plant beetroot on August 13th, 2024
 Rip them out of the ground in November so that you can plant
- 4. Plant cabbages on November 11th, 2024

Last summer, we improved: *learning* instead of *planning*

Adjusting the plan as we interact with the environment

Reinforcement learning



Solve!

Algorithm 1 Follow the Weighted Leader for MDP

Input: Transition matrix P, parameter $\theta \in [0, 1)$, initial state s_0 **Initialization:** \hat{R}_0

1: for t = 1 : H do

2: Update the weighted average of history rewards:

$$\hat{R}_t = (1-\theta)\hat{R}_{t-1} + \theta R_{t-1}$$

Update estimates using observations

3: Solve the MDP given reward matrix \hat{R}_t for the average optimal policy:

 $\pi_t \in \argmax_{\pi} g_{\hat{R}_t}(\pi)$

Recalculate the best action

4: Execute π_t , Update current State s_t

5: $R_t \leftarrow \text{true reward matrix}(\text{from market data})$ 6: end for

Output: π_t at each time step $t = 1, \ldots, H$

Observe what happens

Decision support system

Our algorithm produced this!

- Plant bottle brinjal in December 2023
 Wait until bottle brinjal are fully grown, then harvest
- Plant cucumber on March 12th, 2024
 Wait until cucumbers are fully grown, then harvest
- Plant beetroot on July 16th, 2024
 Wait until beetroot are fully grown, then harvest
- Plant cucumber on October 22nd, 2024
 Wait until cucumbers are fully grown, then harvest

Sounds like we have a working decision support system that recommends crops.

So what are we working on this summer?

1. We could do an even better job!

- a. Do we really need to reevaluate what action to take every day?
- b. The algorithm doesn't take into account future seasonality conditions.
- c. How would we explain the output to a farmer?

2. The multiple farmer universe

Is our recommendation still good if all of the farmers bring the same crops to market on the same day? **Probably not.**

Multi-agent reinforcement learning (MARL)

Each farmer is an agent motivated by their own rewards, and do actions to advance their own interests. In some MARL environments, these interests are opposed to the interests of other agents. We are in a unique position to provide small-scale coordination between agents.

Thank you

