BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Should Tables be Sorted:

William Gasarch

January 23, 2025

Credit Where Credit is Due

This is all from the paper Should Tables be Sorted? by Andrew Yao.

This was the first paper to apply Ramsey Theory to a problem in Theoretical Computer Science

The Cell Probe Model

Definition The *Cell Probe Model* for search is as follows:

- 1. The size of the universe is U. The universe is $\{1, \ldots, U\}$.
- 2. The number of elements from the universe that we will store is *n*.
- 3. The function PUT takes $A \in \binom{[U]}{n}$ and outputs the elements of A in some order. This tells us how to store A in an array.
- 4. An algorithm *FIND* that, on input $x \in U$, probes the array (by asking 'What is in cell c'), and based on the answer probes another cell, etc, and then says either x is in A, or x is not in A.

Examples One: Sort

- ► The function PUT takes $A \in \binom{[U]}{n}$ and puts them in an n-array SORTED.
- ► The algorithm *FIND* does Binary Search.

Number of Probes $\lceil (\rceil \log(n+1))$.

Can we do better?

Examples One: Sort

- ▶ The function PUT takes $A \in \binom{[U]}{n}$ and puts them in an n-array SORTED.
- ► The algorithm *FIND* does Binary Search.

Number of Probes $\lceil (\rceil \log(n+1))$.

Can we do better?

This depends on how n and U compare.

0 Probes But Its Stupid

Silly Example: U = n.

- ▶ The function PUT takes $A \in \binom{[n]}{n}$ and puts A into an n-array. Note that everything in U is in the table.
- Just say YES, since EVERY element is in the table.

Number of Probes 0.

Caveat The Model only asked us to determine if x is IN the table, not to find WHERE in the table x is.

1 Probes But Its Stupid

Silly Example: U = n + 1.

- ▶ The function PUT takes $A \in \binom{[n+1]}{n}$, notes that z is the ONLY element of U A, and puts $z 1 \pmod{U}$ into the first spot of the array.
- Figure Given x, look at the first spot of the array and you see w. If $x = w + 1 \pmod{U}$ then say NO, else say YES.

Number of Probes 1.

1 Probes and More Interesting

$$U = 2n - 2$$
.

I have notes on this on the website.

You probaby think the above examples are silly.

You probaby think the above examples are silly.

More rigorously If J isn't that much bigger than n, then there are tricks that lead to a very small number of probes.

You probaby think the above examples are silly.

More rigorously If J isn't that much bigger than n, then there are tricks that lead to a very small number of probes.

I know what you are thinking What if $n \ll U$? Then do you need log n probes? How much bigger than n does U have to be?

You probaby think the above examples are silly.

More rigorously If J isn't that much bigger than n, then there are tricks that lead to a very small number of probes.

I know what you are thinking What if $n \ll U$? Then do you need log n probes? How much bigger than n does U have to be? Perhaps a Ramsey Number?

Main Result

We saw that if U is **small** then we can do FIND with $<< \log n$ probes.

Main Result

We saw that if U is **small** then we can do FIND with $<< \log n$ probes.

The main result is that if U is **big** then it REQUIRES $\log n$ probes.

Lemma on Sorting

Lemma If $U \ge 2n-1$ and the elements are always put in in sorted order than ANY probe algorithm requires $\ge \log(n+1)$ probes.

Lemma on Sorting

Lemma If $U \ge 2n-1$ and the elements are always put in in sorted order than ANY probe algorithm requires $\ge \log(n+1)$ probes. We omit the proof. Its in the paper. It is an adversary argument.

Lemma on Sorting

Lemma If $U \ge 2n-1$ and the elements are always put in in sorted order than ANY probe algorithm requires $\ge \log(n+1)$ probes. We omit the proof. Its in the paper. It is an adversary argument. We can rephrase the lemma as follows:

Lemma Let σ be the permutation $(1,2,3,\ldots,n)$. If $U \ge 2n-1$ and the elements are always put in in the array using the perm σ then ANY probe algorithm requires $\ge \log(n+1)$ probes.

Lemma on Any Permutation

Let $\sigma = (3, 4, 5, 1, 2)$.

Then we can think of putting elements into an array using this σ .

A[1] would have the 3rd largest elements

A[2] would have the 4th largest elements

A[3] would have the 5th largest elements

A[4] would have the 1st largest elements

A[5] would have the 2nd largest elements

Lemma Let σ be any permutation of $\{1,\ldots,n\}$. If $U\geq 2n-1$ and the elements are always put in in the array using the perm σ then ANY probe algorithm requires $\geq \log(n+1)$ probes.

We omit the proof. Its in the paper. It is an adversary argument.

Main Theorem

Theorem Let $U \ge R_n(2n-1, n!)$ (*n*-ary Ramsey, 2n-1 homog set, n! color).

Main Theorem

Theorem Let $U \ge R_n(2n-1,n!)$ (*n*-ary Ramsey, 2n-1 homog set, n! color). Then any Cell Probe Search Algorithm requires $\log_2(n+1)$ probes.

Main Theorem

Theorem Let $U \ge R_n(2n-1, n!)$ (n-ary Ramsey, 2n-1 homog set, n! color).

Then any Cell Probe Search Algorithm requires $log_2(n+1)$ probes.

Proof Color $\binom{[U]}{n}$ as follows: Color $X \in \binom{[U]}{n}$ by σ such that X was put into the array via σ .

By the *n*-ary Ramsey Theorem and the definition of U there exists 2n-1 element that are always put into the array using the SAME perm, which we call σ .

By Lemma above, if you restrict the cell probe algorithm to there 2n-1 elements then ANY probe-algorithm requires $\log_2(n+1)$ probes.