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The Problem

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

2. A’s forehead has a, B’s has b, C’s has c.

3. They want to know if a + b + c = 2n+1 − 1.

4. Solution A says b, B then computes a + b + c and then says
YES if a + b + c = 2n+1 − 1, NO if not.

5. Solution uses n + 1 bits of comm. Can do better?
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Vote

1. Any protocol requires n + 1 bits, hence the one given that
takes n + 1 is the best you can do. The proof uses Theorems
that could be in this course.

2. There is a protocol that takes αn bits for some α < 1 but any
protocol requires Ω(n) bits. Either the proof of the upper
bound or the proof of the lower bound or both use Theorems
that could be in this course.

3. There is a protocol that takes � n bits. The proof uses
Theorems that could be in this course.

STUDENTS WORK IN GROUPS
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Protocol in n
2 + O(1) bits

1. A:a0 · · · an−1, B:b0 · · · bn−1, C:c0 · · · cn−1.

2. A says: bn−1 ⊕ c0, bn−2 ⊕ c1, · · · , bn/2 ⊕ cn/2−1.

3. Bob knows ci ’s so he now knows bn/2, . . . , bn−1.

4. Carol knows bi ’s so she now knows c0, . . . , cn/2−1.

5. Carol knows a0, . . . , an/2−1, b0, . . . , bn/2−1, c0, . . . , cn/2−1.
Hence she can compute
an/2−1 · · · a0 + bn/2−1 · · · b0 + cn/2−1 · · · c0.
View this as an (n/2)-bit string s and a carry bit z .

6. s = 1n/2: Carol says (MAYBE,z). Otherwise: Carol says NO.

7. Bob knows an/2, . . . , an−1, bn/2, . . . , bn−1, cn/2, . . . , cn−1 and
z so he can compute a + b + c . If = M then say YES, if not
then say NO.



Vote Again

Vote

I There is a protocol that uses � n bits AND I use Ramsey
Theory to prove it.

I There exists a 0 < β < 1
2 such that any protocol requires

≥ βn bits AND I use Ramsey Theory to prove it.

I will show a
√
n� n protocol, which will use 3-free sets so will

indeed use Ramsey Theory.
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We Look At the L-Theorem Backwards

Notation M will be 2n+1 − 1 which is 1n+1 in binary.
L-Theorem For all c there exists M such that for all c-colorings of
[M]× [M] there exists a mono L or q.

Fix M.
Q (∃c): [M]× [M] can be c-colored w/o mono L or q?

Yes c = M2, color every point differently.

Q (∃c � M2): [M]× [M] can be c-colored w/o mono L or q?

Yes, c = M, color every row differently.

Q (∃c): ALL c-colorings of [M]× [M] there is a mono L or q?

Yes c = 1. Stupid but true.

We actually need a stronger condition:
Definition Γ(M) is the least c such that there is a c-coloring of
[M]× [M] w/o mono L or q.

We give a 3 lg(Γ(M)) + O(1) bit protocol and then bound Γ(M).
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Protocol

M = 2n+1 − 1 throughout.

1. Pre-step: A, B, and C agree on a Γ(M)-coloring χ of
[M]× [M] that has no mono L or q.

2. A: b, c , B: a, c , C:a, b. a, b, c ∈ {0, 1}n numbers in binary.

3. If A sees b + c > M, says NO and protocol stops. B,C, sim.

4. A finds a′, s.t. a′ + b + c = M and says χ(a′, b).

5. B finds b′ s.t. a + b′ + c = M and says χ(a, b′).

6. C says Y if both colors agree with χ(a, b), no otherwise.

7. If they all broadcast the same color A says Y, else A says NO.

Number of bits: 2 lg(Γ(M)) + O(1). We show this is ≤ O(
√
n).

But first we show that it works.
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Why Does This Work?

Assume a + b + c = M − λ where λ ∈ Z.

a′ = M − b − c = M − (a + b + c) + (a + b + c)− b − c =
M − (M − λ) + a = a + λ

b′ = b + λ (similar reasoning)

(a′, b) = (a + λ, b)

(a, b′) = (a, b + λ)

If protocol says YES then χ(a + λ, b) = χ(a, b + λ) = χ(a, b).
Since χ has no mono L or q, λ = 0 so a + b + c = M.

If protocol says NO then either
χ(a + λ, b) 6= χ(a, b + λ): so λ 6= 0.
χ(a + λ, b) 6= χ(a, b): so λ 6= 0.
χ(a, b + λ) 6= χ(a, b): so λ 6= 0.

In all cases λ 6= 0 so a + b + c 6= M.
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Relating Γ(M) with VDW

We need to bound lg(Γ(M)).

Lemma Let Z be such that 3M <W (3,Z ). Then Γ(M) ≤ Z .
Proof
Let COL be an Z -coloring of {1, . . . , 3M} with no mono 3-AP’s.
Define COL′ : [M]× [M]→ [Z ]

COL′(x , y) = COL(x + 2y)

Claim COL′ has no mono L’s or q.
If COL′ has a mono L or q then there exists x , y ∈ [M], λ ∈ Z:

COL′(x , y) = COL′(x + λ, y) = COL′(x , y + λ) hence

COL(x+2y) = COL(x+2y+λ) = COL(x+2y+2λ): a mono 3-AP

(If λ < 0 then x + 2y + 2λ, x + 2y + λ, x + 2y is the 3-AP.
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Recall Last Slide From 3freetalk

In talk on W (3, c) we proved:
Thm Let V ∈ N and let A ⊆ [V ] be a 3-free set. Then there is a
V ln(V )
|A| -coloring of [V ] with no mono 3-APs. Hence

W (3, V ln(V )
|A| ) ≥ V .

In talk on W (3, c) we sketched:

Thm There exists a 3-free subset of [V ] of size ≥ V
1− 1√

lg V

We combine these two to get:

Thm Let V ∈ N. Then there is a V
1√
lg V ln(V )-coloring of [V ] with

no mono 3-APs. Hence

W (3,V
1√
lg V ln(V )) ≥ V .
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Just Plug in V = 3M

Thm Let V ∈ N. Then there is a V
1√
lg V ln(V )-coloring of [V ] with

no mono 3-APs. Hence

W (3,V
1√
lg V ln(V )) ≥ V .

Hence W (3, (3M)
1√

lg 3M ln(3M)) ≥ 3M.

Hence Γ(M) ≤ (3M)
1√

lg 3M ln(3M))

Hence lg(Γ(M)) ≤ 1√
lg 3M

lg(3M) + lg(ln(3M)) = O(
√

log(M))

M = 2n+1 − 1 ∼ 2n so lg(Γ(M)) ≤ O(
√
n)



Upper and Lower Bound on Protocol

I We showed our protocol uses ≤ 3 lg(Γ(M)) ≤ O(
√
n).

I Known: lower bound of Ω(lg(Γ(M)).

I Original paper had lower bound of Ω(1) which is all they
needed for their goal which was non-linear lower bounds on
branching programs.

I Gasarch showed lower bound of Ω(log log n).

I k-player version of this game has also been studied.


