
Infinite Can Ramsey’s Theorem
Three Proofs

Exposition by William Gasarch

1 Introduction

In this document we proof the Infinite Can Ramsey Theorem on Graphs
three ways.

Recall: Theorem: For every COL:
(
N
2

)
→ [c] there is an infinite ho-

mogenous set.

What if the number of colors was infinite?

Do not necessarily get a homog set since could color EVERY edge differ-
ently. But then get infinite rainbow set.

So maybe:
Theorem: For every COL:

(
N
2

)
→ ω there is an infinite homogenous set

OR an infinite rainb set.
FALSE:

• COL(i, j) = min{i, j}.

• COL(i, j) = max{i, j}.

Definition: Let COL:
(
N
2

)
→ ω. Let V ⊆ N.

• V is homogenous if COL(a, b) = COL(c, d) iff TRUE.

• V is min-homogenous if COL(a, b) = COL(c, d) iff a = c.

• V is max-homogenous if COL(a, b) = COL(c, d) iff b = d.

• V is rainbow if COL(a, b) = COL(c, d) iff a = c and b = d.

2 One-Dim Can Ramsey Theorem

Theorem 2.1 Let V be an countable set. Let COL: V → ω. Then there
exists either an infinite homog set (all the same color) or an infinite rainb
set (all diff colors).
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Proof:
Case 1: There exists some color that appears infinity often. Call it c. Then

{v : COL(v) = c}
is an infinite homog set.

Case 2: Every color appears finitely often. Then put a vertex in the set if
it is the first vertex of its color. Formallly

{v : (∀v′ < v)[COL(v′) ̸= COL(v)}
is an infinite rainbow set.

3 Proof of Can Ramsey Theorem on Graphs

that uses 4-Hypergraph Ramsey

The following proof is due to Erdos and Rado [1]. It was the first proof of
the theorem.

Theorem 3.1 Let COL:
(
N
2

)
V → ω. Then one of the following occurs.

• There exists an infinite homog set.

• There exists an infinite min-homog set.

• There exists an infinite max-homog set.

• There exists an infinite rainbow set.

Proof:
We are given COL:

(
N
2

)
→ ω.

Want to find infinite homog OR min-homog OR max-homog OR rainbow
set.

We use COL to define COL′ : :
(
N
4

)
→ [16]

We then apply 4-ary Ramsey theorem. (an “Application!”)
In the cases below x1 < x2 < x3 < x4.
All cases assume negation of prior cases. For each color we say how to go

from an infinite homog set for COL′ to an infinite homog or min-homog, or
max-homog, or rainbow set.
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1. COL(x1, x2) = COL(x1, x3) → COL′(x1 < x2 < x3 < x4) = 1.

2. COL(x1, x2) = COL(x1, x4) → COL′(x1 < x2 < x3 < x4) = 2.

3. COL(x1, x3) = COL(x1, x4) → COL′(x1 < x2 < x3 < x4) = 3.

4. COL(x2, x3) = COL(x2, x4) → COL′(x1 < x2 < x3 < x4) = 4.

Let H be an infinite homog set of color 1 (rest similar) for COL′. Let
COL′′ : H → N is COL′′(x) = color of all (x, y) with x < y ∈ H.
Use 1-dim Can Ramsey!:

• Case 1: COL′′ has homog set H ′ then H’ homog for COL.

• Case 2: COL′′ has rainb set H ′ then H ′ min-homog for COL.

1. COL(x1, x3) = COL(x2, x3) → COL′(x1 < x2 < x3 < x4) = 5.

2. COL(x1, x4) = COL(x2, x4) → COL′(x1 < x2 < x3 < x4) = 6.

3. COL(x1, x4) = COL(x3, x4) → COL′(x1 < x2 < x3 < x4) = 7.

4. COL(x2, x4) = COL(x3, x4) → COL′(x1 < x2 < x3 < x4) = 8.

Let H be an infinite homog set of color 5 (rest similar) for COL′. Let
COL′′ : H → N is COL′′(y) = color of all (x, y) with x < y ∈ H.

Use 1-dim Can Ramsey!:

• Case 1: COL′′ has homog set H ′ then H ′ homog for COL.

• Case 2: COL′′ has rainbow set H ′ then H ′ max-homog for COL.

1. COL(x1, x2) = COL(x2, x3) ⇒ COL(x1, x2, x3, x4) = 9.

2. COL(x1, x2) = COL(x2, x4) ⇒ COL(x1, x2, x3, x4) = 10.

3. COL(x1, x2) = COL(x3, x4) ⇒ COL(x1, x2, x3, x4) = 11.

4. COL(x1, x3) = COL(x2, x4) ⇒ COL(x1, x2, x3, x4) = 12.

5. COL(x1, x3) = COL(x3, x4) ⇒ COL(x1, x2, x3, x4) = 13.
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6. COL(x2, x3) = COL(x1, x4) ⇒ COL(x1, x2, x3, x4) = 14.

7. COL(x2, x3) = COL(x3, x4) ⇒ COL(x1, x2, x3, x4) = 15.

Let H be an infinite homog set of color 9 (rest similar) for COL′.
For all w < x < y < z ∈ H.

COL(w, x) = COL(x, y) = COL(y, z).

So H is homog for COL.
LAST COLOR:
If NONE of the above cases hold then COL(x1, x2, x3, x4) = 16.
Let H be an infinite homog set of color 16 for COL′.
All edges from H diff colors, so Rainbow Set.
We leave this for an exercise.

Note 3.2 PROS and CONS of this proof:

1. Each Case easy. Note that Rainbow case was easy.

2. Lots of Cases.

3. Use of 4-ary hypergraph Ramsey makes finite version have large bounds.

4 Proof of Can Ramsey Theorem on Graphs

that uses 3-Hypergraph Ramsey

The proof in this section is due to Rado [3].

Def 4.1 Let COL:
(
N
2

)
→ ω. If c is a color and v ∈ N then degc(v) is the

number of c-colored edges with v as an endpoint.

Lemma 4.2 Let X be infinite. Let COL:
(
X
2

)
→ ω. If for every x ∈ X and

c ∈ ω, degc(x) ≤ 1 then there is an infinite rainb set.

Proof: Let R be a MAXIMAL rainbow set of X.

(∀y ∈ X −R)[R ∪ {y} is not a rainbow set].

Let y ∈ X −R. Why is y /∈ R?
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1. There exists u ∈ R and {a, b} ∈
(
R
2

)
such that COL(y, u) = COL(a, b).

2. There exists {a, b} ∈
(
R
2

)
such that COL(y, a) = COL(y, b). This

cannot happen since then y has color degree ≤ 1.

Map X −R to R×
(
R
2

)
: map y ∈ X −R to (u, {a, b}) (item 1).

Map is injective: if y1 and y2 both map to (u, {a, b}) then COL(y1, u) =
COL(y2, u) but degc(u) ≤ 1.

Injection from X−R to R×
(
R
2

)
. If R finite then injection from an infinite

set to a finite set Impossible! Hence R is infinite.

Theorem 4.3 Let COL:
(
N
2

)
V → ω. Then one of the following occurs.

• There exists an infinite homog set.

• There exists an infinite min-homog set.

• There exists an infinite max-homog set.

• There exists an infinite rainbow set.

Proof: Given COL:
(
N
2

)
→ ω. We use COL to obtain COL′ :

(
N
3

)
→ [4]

We will use the 3-ary Ramsey theorem. In all of the below x1 < x2 < x3.

1. If COL(x1, x2) = COL(x1, x3) then COL′(x1 < x2 < x3) = 1.

2. If COL(x1, x3) = COL(x2, x3) then COL′(x1 < x2 < x3) = 2.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1 < x2 < x3) = 3.

4. If none of the above occur then COL′(x1 < x2 < x3) = 4.

If there is an infinite homog set for COL′ of color 1,2, or 3 then the proof
there is an infinite homog or max-homog or min-homog or rainbow set is
similar to the proof in Theorem 3.1.

Assume there is an infinite homog set H for COL′ of color 4:
Then for all colors c and h ∈ H, we have degc(v) ≤ 1, so we are done by

the lemma.

5



5 A Proof that Does Not Use Any Hyper-

graph Ramsey

The proof in this section is due to Mileti [2].
We will proof the Infinite Can Ramsey theory (for graphs) but not use

any hypergraph Ramsey Theorem.
It will be close in spirit to the proof of the infinite Ramsey Theorem.
We first restate how we used the infinite 1-hypergraph Ramsey Theorem

to prove the 2-hypergraph Ramsey Theorem:
If
(
N
2

)
is 2-colored and there is an infinite sequence of vertices:

X = {x1, x2, x3, . . .}

Then either

• There exists infinite YR ⊆ X such that

(∀x ∈ YR)[COL(x, y) = R].

• There exists infinite YB ⊆ X such that

(∀x ∈ YB)[COL(x, y) = B].

We then replace X with YR or YB.

We now describe the analog of that process which we will be using to
prove 2-hypergraph Can Ramsey from 1-hypergraph Can Ramsey.

If
(
N
2

)
is colored (note no bound on the number of colors) and there is an

infinite sequence of vertices:

x1, x2, x3, . . .

Then either

• There exists color c and infinite Yc ⊆ X such that

(∀x ∈ Y )[COL(x, y) = c].
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• There exists infinite Yω ⊆ X and an infinite set of colors C such that,

(∀c ∈ C)(∃!y ∈ Y )[COL(x, y) = c].

(Notation -(∃!y) means there is ONE y.)

We then replace X with Y1 or Y2 or · · · or Yω.
Here is the intuition: Either

• There is some color c such that COL(1, x) is c infinitely often. Then
restrict to that set and color 1 with (H, c).

• For every color c the set of x with COL(1, x) = c is finite. Then thin
out the set so that COL(1, x2), COL(1, x3), etc are all different. (When
dealing with x2 or x3 later instead of x1 this will get more complicated.)

We now describe it formally.
CONSTRUCTION
PART ONE

V0 = N
x1 = 1

If (∃c)|{v ∈ V0 | COL(x1, v) = c}| = ω then:

• c1 = (H, c)

• V1 = {v ∈ V0 | COL(x1, v) = c}. (Note that V1 is infinite)

If (∀c)|{v ∈ V0 | COL(x1, v) = c}| < ω then:

• V1 = {v ∈ V0 | (∃c)[COL(x1, v) = c ∧ (∀x1 < u < v)[COL(x1, u) ̸= c]]}
(so v is the first first with COL(x1, v) = c. Hence there will only be
ONE v with COL(x1, v) = c.) (Note that V1 is infinite)

• c1 = (RB, 1). (The 1 only marks that this is the first rainbow-color
assigned.)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:
xi gets the least element of Vi−1.
If there exists c such that Yc is infinite then

7



ci = (H, c)
Vi = Yc

If no such c exist then there exists Yω. We initially take
Vi = Yω

But we may thin it out. And we haven’t colored xi yet.
Do the following:
For all 1 ≤ j ≤ i− 1 such that COL(xj) = (RB, k) for some k then:

1. If |{y ∈ Yω : COL(xj, y) = COL(xi, y)}| = ω then let Vi be this set and
let ci = cj. (So COL(xi) will be of the form (RB, k) for some k). You
are done and do not go to the next j.

2. If |{y ∈ Yω : COL(xj, y) = COL(xi, y)}| < ω then let Vi be the Yω

minus those vertices.

If Case 1 ever happens then we are done. If Case 2 always happens then
note that xi disagrees with every xj on every element > xi. We ci with
(RB, k) where k is the least number not used for a rainbow color yet.
END OF PART ONE
PART TWO

Consider the infinite sequence

c1, c2, . . .

There are several cases:

• There is a c such that (H, c) appears infinitely often. Let

H = {xi : ci = (H, c)}.

This set is infinite homog.

• There is an infinite number of vertices colored H. Let

H ′ = {xi : (∃c)[ci = (H, c)]}

By the 1-hypergraph Can Ramsey applied to the coloring COL(xi) = c,
and the premise, we get a set H which we renumber so that

H = {y1 < y2 < y3 < · · · }

and COL(yi) = (H, i). H is infinite min-homog.
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• There is an k such that (RB, k) appears infinitely often. Let

H = {xi : ci = (RB, k)}.

This set is infinite max-homog.

• There is an infinite number of vertices colored RB. Let

H ′ = {xi : (∃k)[ci = (RB, k)]}

By the 1-hypergraph Can Ramsey applied to the coloring COL(xi) = k,
and the premise, we get a set H which we renumber so that

H = {y1 < y2 < y3 < · · · }

and COL(yi) = (RB, i).

H need not be rainbow! We take a subset of H as follows

H0 =

z1 = y1

Assume that z1, . . . , zn have been chosen and that all of the edges be-
tween them are different colors. Let SETCOLn be the set of colors of
edges (there are

(
n
2

)
of them). Also assume there is an infinite set Hn of

vertices that have not been killed. All of the elements of Hn are > zn.
Find the least element z of Hn such that,

(∀1 ≤ i ≤ n)[COL(zi, z) /∈ SETCOLn].

AND

(∀1 ≤ i < j ≤ n)[COL(zi, z) ̸= COL(zj, z)].

FIRST KEY: The second clause holds for all z since (after renum-
bering) COL′(zi) = (RB, i) and COL′(zj) = (RB, j), hence for all z
COL(zi, z) ̸= COL(zj, z). (This is the place we use that they are all
differeng RB-type colorings.)

SECOND KEY: we need to show that there exists a z satsifying the
first clause. Assume, by way of contradiction, that no such z exists.
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We map each z ∈ Hn to the REASON it does not work. Map Hn to
{1, . . . , n} × SETCOLn as follows:

z ∈ Hn. z DID NOT get to be zn+1. Hence there is some i (take the
least one) such that COL(zi, z) = c ∈ SETCOLn. Let i be the least
such i. Map Hn to (i, c).

This mapping maps an infinite set to a finite set. Hence some element
of the co-domain is mapped to infinitely often. We just need twice.
There is some (i, c) such that there is z, z′ ∈ Hn such that

COL(zi, z) = c

and

COL(zi, z
′) = c

This violated COL(zi) = (RB, i).
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