BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Application of PVDW: Constructing Graphs with High Chromatic Number and High Girth

January 23, 2025

Credit Where Credit is Due

The results are by Paul O'Donnell.

Credit Where Credit is Due

The results are by Paul O'Donnell.

My source for the material is

The Mathematical Coloring Book: Mathematics of Coloring and the Colorful life of its Creators by

Alexander Soifer

Credit Where Credit is Due

The results are by Paul O'Donnell.

My source for the material is

The Mathematical Coloring Book: Mathematics of Coloring and the Colorful life of its Creators

by

Alexander Soifer

I reviewed this book in my Book Review Column: https://www.cs.umd.edu/~gasarch/bookrev/40-3.pdf

Def Let G = (V, E) be a graph.

Def Let G = (V, E) be a graph.

1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. **Girth of** G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. **Girth of** G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

1.
$$\chi(I_n) = 0$$
, $g(I_n) = 0$. Low χ , Low g .

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

- 1. $\chi(I_n) = 0$, $g(I_n) = 0$. Low χ , Low g.
- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g

Def Let G = (V, E) be a graph.

- Chromatic Number of G is the least c such that there exists COL: V → [c] such that no neighbors have the same color. We denote this by χ(G). This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

- 1. $\chi(I_n) = 0$, $g(I_n) = 0$. Low χ , Low g.
- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}, g(C_n) = n$. Low χ , High g.

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

- 1. $\chi(I_n) = 0$, $g(I_n) = 0$. Low χ , Low g.
- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}$, $g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g?

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $\mathrm{COL}\colon V \to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

- 1. $\chi(I_n) = 0$, $g(I_n) = 0$. Low χ , Low g.
- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}$, $g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g? Yes

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

- 1. $\chi(I_n) = 0$, $g(I_n) = 0$. Low χ , Low g.
- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}$, $g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g? Yes Will we use PVDW's theorem?

Def Let G = (V, E) be a graph.

- 1. Chromatic Number of G is the least c such that there exists $COL\colon V\to [c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
- 2. Girth of G is the length of the shortest cycle. We denote this by g(G). This definition is standard, the notation is not.

Examples

- 1. $\chi(I_n) = 0$, $g(I_n) = 0$. Low χ , Low g.
- 2. $\chi(K_n) = n$, $g(K_n) = 3$. High χ , Low g
- 3. $\chi(C_n) \in \{2,3\}$, $g(C_n) = n$. Low χ , High g.

Are there graph with high χ and high g? Yes Will we use PVDW's theorem? **Yes**.

We will construct the following:

We will construct the following: For all $c \ge 3$:

We will construct the following: For all $c \ge 3$:

1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory

We will construct the following: For all $c \ge 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

We will construct the following: For all c > 3:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

We will construct the following: For all c > 3:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

 $(x,y) \notin E \implies d(x,y) \neq 1.$

We will construct the following: For all c > 3:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

 $(x,y) \notin E \implies d(x,y) \neq 1.$

Such graphs are motivated by work on the **Chromatic Number of the Plane.**

We will construct the following: For all c > 3:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

 $(x,y) \notin E \implies d(x,y) \neq 1.$

Such graphs are motivated by work on the **Chromatic Number of the Plane.**

We may or may not discuss this later.

We will construct the following:

For all $c \geq 3$:

- 1. G_c with $\chi(G_c) = c$ and g(G) = 6. Uses Pigeonhole Principle.
- 2. G_c with $\chi(G_c) = c$ and g(G) = 9. Uses PVDW and Numb. Theory
- 3. G_c with $\chi(G_c) = c$ and g(G) = 12. Use PVDW and Harder Numb Theory.

Better results are known; however, the structure of our G is such that G_4 can be embedded as a unit graph in the plane:

$$(x,y) \in E \implies d(x,y) = 1.$$

$$(x,y) \notin E \implies d(x,y) \neq 1.$$

Such graphs are motivated by work on the

Chromatic Number of the Plane.

We may or may not discuss this later. That is a tautology.

Application of Pigeonhole: Constructing Graphs with High Chromatic Number and Girth 6

January 23, 2025

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6$.

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $ightharpoonup g(G_c) = 6.$

Pf

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6$.

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6$.

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6$.

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

 $\chi(G_{c-1}) = c - 1, \text{ and }$

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6.$

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

- $\chi(G_{c-1}) = c 1, \text{ and }$
- $ightharpoonup g(G_{c-1}) = 6.$

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6.$

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

- $\chi(G_{c-1}) = c 1, \text{ and }$
- $ightharpoonup g(G_{c-1}) = 6.$

Let M_{c-1} be the number of vertices in G_{c-1} .

$$\chi(G_c)=c$$
, $g(G)=6$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 6.$

Pf

Base c = 2. Use C_6 , the cycle on 6 vertices.

Ind Hyp There exists G_{c-1} such that

- $\chi(G_{c-1}) = c 1, \text{ and }$
- $ightharpoonup g(G_{c-1}) = 6.$

Let M_{c-1} be the number of vertices in G_{c-1} .

Ind Step We construct G_c on next slide.

Construction of G_c

1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}}$:

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT *G*₄

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT *G*₄

Construction is done.

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}}$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT *G*₄

Construction is done.

We prove it works in the next few slides.

$$\chi(G_c) \leq c$$

$$\chi(G_c) \leq c$$

Color each G_{c-1}^A with [c-1].

$$\chi(G_c) \leq c$$

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

$$\chi(G_c) \leq c$$

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

Done!

$$\chi(G_c) \geq c$$

$$\chi(G_c) \geq c$$

Assume inductively that $\chi(G_{c-1})=c-1$. We show $\chi(G_c)\geq c$. Assume, BWOC, $\chi(G_c)\leq c-1$.

$$\chi(G_c) \geq c$$

Assume, BWOC, $\chi(G_c) \leq c - 1$.

Of the L base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color.

$$\chi(G_c) \geq c$$

Assume, BWOC, $\chi(G_c) \leq c - 1$.

Of the L base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color.

Choose *L* such that $\left\lceil \frac{L}{c-1} \right\rceil \geq M_{c-1}$.

$$\chi(G_c) \geq c$$

Assume, BWOC, $\chi(G_c) \leq c - 1$.

Of the L base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color.

Choose L such that $\left\lceil \frac{L}{c-1} \right\rceil \geq M_{c-1}$.

Let A be a set of M_{c-1} base vertices that are the same color.

$$\chi(G_c) \geq c$$

Assume, BWOC, $\chi(G_c) \leq c - 1$.

Of the L base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color.

Choose L such that $\left\lceil \frac{L}{c-1} \right\rceil \geq M_{c-1}$.

Let A be a set of M_{c-1} base vertices that are the same color.

There is a bijection from A to G_{c-1}^A and via edges.

$$\chi(G_c) \geq c$$

Assume, BWOC, $\chi(G_c) \leq c - 1$.

Of the L base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color.

Choose L such that $\left\lceil \frac{L}{c-1} \right\rceil \geq M_{c-1}$.

Let A be a set of M_{c-1} base vertices that are the same color.

There is a bijection from A to G_{c-1}^A and via edges.

The vertices in A must be a diff color than the c-1 colors used on the vertices of G_{c-1}^A . Hence the coloring must use $\geq c$ colors.

Contradiction. Done!

$$\chi(G_c) \geq c$$

Assume, BWOC, $\chi(G_c) \leq c - 1$.

Of the L base vertices, there exists $\left\lceil \frac{L}{c-1} \right\rceil$ that are same color.

Choose L such that $\left\lceil \frac{L}{c-1} \right\rceil \geq M_{c-1}$.

Let A be a set of M_{c-1} base vertices that are the same color.

There is a bijection from A to G_{c-1}^A and via edges.

The vertices in A must be a diff color than the c-1 colors used on the vertices of G_{c-1}^A . Hence the coloring must use $\geq c$ colors.

Contradiction. Done!

GOTO WHITE BOARD

$$g(G_c) \leq 6$$

Inductively G_{c-1}^A has a cycle of size 6. Hence G_c does.

$$g(G_c) \geq 6$$

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$.

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$.

0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$.

Assume inductively that $g(G_{c-1}) = 6$. Let C be a cycle in G_c . We show $|C| \ge 6$.

- 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$.
- 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!**

Assume inductively that $g(G_{c-1}) = 6$.

Let C be a cycle in G_c . We show $|C| \ge 6$.

- 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$.
- 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!**

Cycle goes from v to $G_{c-1}^{A_1}$ then leaves $G_{c-1}^{A_1}$ and has to goto a base vertex that is not v.

This is impossible. So this case can't happen.

Assume inductively that $g(G_{c-1}) = 6$.

Let C be a cycle in G_c . We show $|C| \ge 6$.

- 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$.
- 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!**

Cycle goes from v to $G_{c-1}^{A_1}$ then leaves $G_{c-1}^{A_1}$ and has to goto a base vertex that is not v.

This is impossible. So this case can't happen.

2) Can it use exactly 2 base vertices, say 1,2. Yes.

GOTO WHITE BOARD

B1 is Base vertex 1, B2 is Base vertex 2.

C1 is 1 in a copy of G_c , C2 is 2 in that copy.

D1 is 1 in a copy of G_c , D2 is 2 in that copy.

Assume inductively that $g(G_{c-1}) = 6$.

Let C be a cycle in G_c . We show $|C| \geq 6$.

- 0) If C has 0 base vertices then C is a cycle in G_{c-1}^A , so $|C| \ge 6$.
- 1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$. **GOTO White Board!**

Cycle goes from v to $G_{c-1}^{A_1}$ then leaves $G_{c-1}^{A_1}$ and has to goto a base vertex that is not v.

This is impossible. So this case can't happen.

2) Can it use exactly 2 base vertices, say 1,2. Yes.

GOTO WHITE BOARD

B1 is Base vertex 1, B2 is Base vertex 2.

C1 is 1 in a copy of G_c , C2 is 2 in that copy.

D1 is 1 in a copy of G_c , D2 is 2 in that copy.

Shortest cycle: (B1, C1, C2, B2, D2, D1, B1). Len 6.

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes.

GOTO WHITE BOARD

C1 is 1 in a copy of G_c , C2 is 2, C3 is 3.

D1 is 1 in a copy of G_c , D2 is 2, D3 is 3.

E1 is 1 in a copy of G_c , E2 is 2, E3 is 3.

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes.

GOTO WHITE BOARD

C1 is 1 in a copy of G_c , C2 is 2, C3 is 3.

D1 is 1 in a copy of G_c , D2 is 2, D3 is 3.

E1 is 1 in a copy of G_c , E2 is 2, E3 is 3.

Shortest cycle: (B1, C1, C2, B2, D2, D3, B3, E3, E1, B1). Len 9.

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes.

GOTO WHITE BOARD

C1 is 1 in a copy of G_c , C2 is 2, C3 is 3.

D1 is 1 in a copy of G_c , D2 is 2, D3 is 3.

E1 is 1 in a copy of G_c , E2 is 2, E3 is 3.

Shortest cycle: (B1, C1, C2, B2, D2, D3, B3, E3, E1, B1). Len 9.

4) Note If cycle uses $x \ge 2$ base vertices then shortest cycle is length 3x. (Will use this later)

GOTO WHITE BOARD

Upshot

We have

$$\chi(G_c) = c$$

$$g(G_c)=6.$$

So we are done.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane. The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane. The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4. This construction yields unit graphs when c = 4.

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane.

The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to **Blanch Descartes**, yields such a graph when c = 4.

This construction yields unit graphs when c = 4.

Hence they want to do that kind of construction.

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G) = G$, g(G) = g, G is unit graph in the plane. The construction we did for $\chi(G_c) = c$, $g(G_c) = 6$, credited to

Blanch Descartes, yields such a graph when c = 4.

This construction yields unit graphs when c = 4.

Hence they want to do that kind of construction.

Our interest Some of the constructions used VDW and PVDW!

Known: $(\forall c)(\exists G)[\chi(G) = c \text{ and } \ldots]$

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

Known:
$$(\forall c)(\exists G)[\chi(G) = c \text{ and } \ldots]$$

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

1. Don't want to show you messy OR Hard NT.

Known:
$$(\forall c)(\exists G)[\chi(G) = c \text{ and } \ldots]$$

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

- 1. Don't want to show you messy OR Hard NT.
- 2. Want to show you app of VDW or Poly VDW.

Known:
$$(\forall c)(\exists G)[\chi(G) = c \text{ and } \ldots]$$

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

- 1. Don't want to show you messy OR Hard NT.
- 2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:

g(G)	Math	who
9	PVDW & Easy Number Theory	Gasarch

Known:
$$(\forall c)(\exists G)[\chi(G) = c \text{ and } \ldots]$$

g(G)	Math	who	
6	PHP	Folklore	
9	VDW, Messy	O'Donnell	
12	PVDW & Hard Number Theory	O'Donnell	
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell	

- 1. Don't want to show you messy OR Hard NT.
- 2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:

g(G)	Math	who
9	PVDW & Easy Number Theory	Gasarch

We will do it the Gasarch Way!

Recall that we said earlier:

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses ${\bf 3}$ base vertices then it must have length ≥ 9

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses ${\bf 2}$ base vertices then cycle is ≥ 6

If a cycle uses ${f 3}$ base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses ${\bf 2}$ base vertices then cycle is ≥ 6

If a cycle uses ${f 3}$ base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points.

GOTO WHITE BOARD

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses ${\bf 3}$ base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points.

GOTO WHITE BOARD

Because there exists $A_1, A_2 \in \binom{[L]}{M_{c-1}}$ with $|A_1 \cap A_2| \geq 2$.

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses ${f 3}$ base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points.

GOTO WHITE BOARD

Because there exists $A_1, A_2 \in \binom{[L]}{M_{c-1}}$ with $|A_1 \cap A_2| \geq 2$.

We want the following:

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses ${f 3}$ base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points.

GOTO WHITE BOARD

Because there exists $A_1, A_2 \in \binom{[L]}{M_{c-1}}$ with $|A_1 \cap A_2| \geq 2$.

We want the following:

▶ Fewer sets A so that for all $A_1, A_2, |A_1 \cap A_2| \leq 1$.

Recall that we said earlier:

If a cycle uses 1 base vertices then this cannot happen!

If a cycle uses 2 base vertices then cycle is ≥ 6

If a cycle uses ${f 3}$ base vertices then it must have length ≥ 9

We make sure that a cycle cannot connect to 2 base points.

Lets look at cycles that connected to 2 base points.

GOTO WHITE BOARD

Because there exists $A_1, A_2 \in \binom{[L]}{M_{c-1}}$ with $|A_1 \cap A_2| \geq 2$.

We want the following:

- ▶ Fewer sets A so that for all $A_1, A_2, |A_1 \cap A_2| \leq 1$.
- ▶ Enough sets A so that can do the $\chi(G_c) \ge c$ proof.

Our set A will be a set of k-AP's $(k = M_{c-1})$ with diff d^m .

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m .

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m . Take two 5-APs with different differences, both powers of m.

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m . Take two 5-APs with **different** differences, both powers of m.

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

Our set A will be a set of k-AP's ($k = M_{c-1}$) with diff d^m . We take k = 5 for our running examples. Diff is d^m . Take two 5-APs with **different** differences, both powers of m.

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

 $a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$
Is there an m such that they **cannot** intersect in two places?
Next Slide

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

 $a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

 $a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$
 $a_1 + wd_1^m = a_2 + xd_2^m$
 $a_1 + yd_1^m = a_2 + zd_2^m$ where $w, x, y, z \in \{0, 1, 2, 3, 4\}$.

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

$$a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$$

$$a_1 + wd_1^m = a_2 + xd_2^m$$

$$a_1 + yd_1^m = a_2 + zd_2^m \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_1^m = (x - z)d_2^m \text{ so } \frac{w - y}{x - z} = \left(\frac{d_2}{d_1}\right)^m$$

$$a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$$

$$a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$$

$$a_{1} + wd_{1}^{m} = a_{2} + xd_{2}^{m}$$

$$a_{1} + yd_{1}^{m} = a_{2} + zd_{2}^{m} \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_{1}^{m} = (x - z)d_{2}^{m} \text{ so } \frac{w - y}{x - z} = (\frac{d_{2}}{d_{1}})^{m}$$

$$\frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{3}, \frac{3}{4}, \frac{4}{3}\}$$

$$a_{1}, a_{1} + d_{1}^{m}, a_{1} + 2d_{1}^{m}, a_{1} + 3d_{1}^{m}, a_{1} + 4d_{1}^{m}$$

$$a_{2}, a_{2} + d_{2}^{m}, a_{2} + 2d_{2}^{m}, a_{2} + 3d_{2}^{m}, a_{2} + 4d_{2}^{m}$$

$$a_{1} + wd_{1}^{m} = a_{2} + xd_{2}^{m} \quad \text{where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_{1}^{m} = (x - z)d_{2}^{m} \quad \text{so } \frac{w - y}{x - z} = (\frac{d_{2}}{d_{1}})^{m}$$

$$\frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\}$$
If $m = 2$ then $\frac{w - y}{x - z} \in \{\frac{1}{4}, 1, 4\}.$
Solution $w = 4$, $y = 3$, $x = 4$, $z = 0$, $d_{1} = 2$, $d_{2} = 1$.

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

$$a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$$

$$a_1 + wd_1^m = a_2 + xd_2^m$$

$$a_1 + yd_1^m = a_2 + zd_2^m \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_1^m = (x - z)d_2^m \text{ so } \frac{w - y}{x - z} = (\frac{d_2}{d_1})^m$$

$$\frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\}$$
If $m = 2$ then $\frac{w - y}{x - z} \in \{\frac{1}{4}, 1, 4\}.$
Solution $w = 4$, $y = 3$, $x = 4$, $z = 0$, $d_1 = 2$, $d_2 = 1$.
If $m = 3$ then $\frac{w - y}{x - z} = 1$, so $d_1^m = d_2^m$, so $d_1 = d_2$. No solution.

$$a_1, a_1 + d_1^m, a_1 + 2d_1^m, a_1 + 3d_1^m, a_1 + 4d_1^m$$

$$a_2, a_2 + d_2^m, a_2 + 2d_2^m, a_2 + 3d_2^m, a_2 + 4d_2^m$$

$$a_1 + wd_1^m = a_2 + xd_2^m \text{ where } w, x, y, z \in \{0, 1, 2, 3, 4\}.$$

$$(w - y)d_1^m = (x - z)d_2^m \text{ so } \frac{w - y}{x - z} = (\frac{d_2}{d_1})^m$$

$$\frac{w - y}{x - z} \in \{1, 2, 3, 4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\}$$
If $m = 2$ then $\frac{w - y}{x - z} \in \{\frac{1}{4}, 1, 4\}.$
Solution $w = 4$, $y = 3$, $x = 4$, $z = 0$, $d_1 = 2$, $d_2 = 1$.
If $m = 3$ then $\frac{w - y}{x - z} = 1$, so $d_1^m = d_2^m$, so $d_1 = d_2$. No solution.
Upshot If A_1, A_2 are two 5-APs with different differences, both

cubes, then $|A_1 \cap A_2| < 1$.

A Lemma and a Thm

Lemma Let $k \geq 3$. $(\exists m)$ such that the following holds: For all $\alpha, \beta \in \{1, ..., k\}$ there is **no** (d_1, d_2) with $d_1 \neq d_2$ such that

$$\alpha d_1^m = \beta d_2^m.$$

A Lemma and a Thm

Lemma Let $k \geq 3$. $(\exists m)$ such that the following holds: For all $\alpha, \beta \in \{1, ..., k\}$ there is **no** (d_1, d_2) with $d_1 \neq d_2$ such that

$$\alpha d_1^m = \beta d_2^m.$$

Thm Let $k \geq 3$. $(\exists m = m(k))$ such that the following holds: If A_1 is a k-AP with diff d_1^m and A_2 is a k-AP with diff d_2^m , with $d_1 \neq d_2$, then $|A_1 \cap A_2| \leq 1$.

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$.

Given k let m=m(k). Let $D=\{d^m\colon d\geq 1\}$. Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1\cap A_2|\leq 1$.

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$.

Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \leq 1$.

Bad News If A_1 and A_2 are k-APs with same diff in D, could have $|A_1 \cap A_2| \ge 2$.

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$.

Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \leq 1$.

Bad News If A_1 and A_2 are k-APs with same diff in D, could have $|A_1 \cap A_2| \geq 2$.

Example k = 5. d = 4.

$$|\{1,5,9,13,17\}\cap\{13,17,21,25,29\}|=2$$

Given k let m = m(k). Let $D = \{d^m : d \ge 1\}$.

Good news If A_1 and A_2 are k-APs with diffs in D, then $|A_1 \cap A_2| \leq 1$.

Bad News If A_1 and A_2 are k-APs with same diff in D, could have $|A_1 \cap A_2| \geq 2$.

Example k = 5. d = 4.

$$|\{1,5,9,13,17\}\cap\{13,17,21,25,29\}|=2$$

What to do Next Slide.

We Can Use the Following

Note that the following do not intersect in ≥ 2 places:

- (1, 5, 9, 13, 17)
- (2, 6, 10, 14, 18)
- (3, 7, 11, 15, 19)
- (4, 8, 12, 16, 20)

Do we need to stop here? No.

We Can Use the Following

Note that the following do not intersect in ≥ 2 places:

- (1, 5, 9, 13, 17)
- (2, 6, 10, 14, 18)
- (3, 7, 11, 15, 19)
- (4, 8, 12, 16, 20)

Do we need to stop here? No.

- (21, 25, 29, 33, 37)
- (22, 26, 30, 34, 38)
- (23, 27, 31, 35, 39)
- (24, 28, 32, 36, 40)

We Can Use the Following

Note that the following do not intersect in ≥ 2 places:

```
(1, 5, 9, 13, 17)
```

Do we need to stop here? No.

So can start with any $a \equiv 1, 2, 3, 4 \pmod{20}$.

More generally we can do the following for k-APs and $d \in D$.

More generally we can do the following for k-APs and $d \in D$.

Only use a such that $a \equiv 1, \dots, d \pmod{kd}$.

More generally we can do the following for k-APs and $d \in D$.

Only use a such that $a \equiv 1, ..., d \pmod{kd}$.

With this restriction on a, all k-APs with diff d intersect ≤ 1 .

More generally we can do the following for k-APs and $d \in D$.

Only use a such that $a \equiv 1, ..., d \pmod{kd}$.

With this restriction on a, all k-APs with diff d intersect ≤ 1 .

Easy to prove, but we won't do that.

Given k

Given kLet m = m(k).

```
Given k

Let m = m(k).

Let D = \{d^m : d \ge 1\}.
```

```
Given k
```

Let m = m(k).

Let $D = \{d^m : d \ge 1\}.$

Let S(k) be all k-APs such that

- ▶ Difference is $d^m \in D$.
- ▶ Starting point is $a \equiv 1, ..., d \pmod{kd^m}$.

Lemma If A_1 and A_2 are in S(k) then $|A_1 \cap A_2| \leq 1$.

```
Given k
```

Let m = m(k).

Let $D = \{d^m : d \ge 1\}.$

Let S(k) be all k-APs such that

- ▶ Difference is $d^m \in D$.
- ▶ Starting point is $a \equiv 1, ..., d \pmod{kd^m}$.

Lemma If A_1 and A_2 are in S(k) then $|A_1 \cap A_2| \leq 1$.

We won't prove this but its easy.

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$.

Pf View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\},\{d+1,\ldots,2d\},\cdots,\{(k-1)d+1,\ldots,kd\}$$

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$.

Pf View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\},\{d+1,\ldots,2d\},\cdots,\{(k-1)d+1,\ldots,kd\}$$

Assume a is in the ith chunk.

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$.

Pf View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\},\{d+1,\ldots,2d\},\cdots,\{(k-1)d+1,\ldots,kd\}$$

Assume a is in the ith chunk.

Then a + d is in the i + 1st chunk (count mod k).

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$.

Pf View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\},\{d+1,\ldots,2d\},\cdots,\{(k-1)d+1,\ldots,kd\}$$

Assume a is in the ith chunk.

Then a + d is in the i + 1st chunk (count mod k).

 $a+d, a+2d, \ldots, a+(k-1)d$ hits every chunk, including 1st one.

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$.

Pf View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\},\{d+1,\ldots,2d\},\cdots,\{(k-1)d+1,\ldots,kd\}$$

Assume a is in the ith chunk.

Then a + d is in the i + 1st chunk (count mod k).

 $a+d, a+2d, \ldots, a+(k-1)d$ hits every chunk, including 1st one.

End of Pf

Start Lemma Consider the numbers

$$a, a+d, \ldots, a+(k-1)d.$$

One of them is $\equiv 1, \ldots, d \pmod{kd}$.

Pf View $\{1, \ldots, kd\}$ in chunks as follows:

$$\{1,\ldots,d\},\{d+1,\ldots,2d\},\cdots,\{(k-1)d+1,\ldots,kd\}$$

Assume a is in the ith chunk.

Then a + d is in the i + 1st chunk (count mod k).

 $a+d, a+2d, \ldots, a+(k-1)d$ hits every chunk, including 1st one.

End of Pf

Note We will be applying this with $k = M_{c-1}$ and $d = d^m$.

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 9.$

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and

Pf

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and
- $g(G_c) = 9.$

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

 $\chi(G_{c-1}) = c - 1, \text{ and }$

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

- $ilde{\ }\chi(G_{c-1})=c-1$, and
- $ightharpoonup g(G_{c-1}) = 9.$

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and
- $ightharpoonup g(G_c) = 9.$

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

- $\chi(G_{c-1}) = c 1, \text{ and }$
- $ightharpoonup g(G_{c-1}) = 9.$

Let M_{c-1} be the number of vertices in G_{c-1} .

$$\chi(G_c)=c$$
, $g(G)=9$

- $\blacktriangleright \chi(G_c) = c$, and
- $ightharpoonup g(G_c) = 9.$

Pf

Base c = 3. Use C_9 , the cycle on 9 vertices.

Ind Hyp There exists G_{c-1} such that

- $\chi(G_{c-1}) = c 1, \text{ and }$
- $ightharpoonup g(G_{c-1}) = 9.$

Let M_{c-1} be the number of vertices in G_{c-1} .

Ind Step We construct G_c on next slide.

1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}} \cap S(M_{c-1})$:

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT *G*₄

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT G_4

Construction is done.

- 1. Let *L* be a large number to be picked later. We call [*L*] the base vertices. They will **not** be connected to each other.
- 2. For every $A \in \binom{[L]}{M_{c-1}} \cap S(M_{c-1})$:
 - a) Make a copy of G_{c-1} : G_{c-1}^A . (G_{c-1}^A has M_{c-1} verts.)
 - b) Put edges between A and the verts of G_{c-1}^A as a bijection.

GOTO WHITE BOARD TO LOOK AT G4

Construction is done.

We prove it works in the next few slides.

$$\chi(G_c) \leq c$$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

$$\chi(G_c) \leq c$$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

Color each G_{c-1}^A with [c-1].

$$\chi(G_c) \leq c$$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

$$\chi(G_c) \leq c$$

Assume inductively that $\chi(G_{c-1}) = c - 1$.

Color each G_{c-1}^A with [c-1].

Color all of the base vertices c.

Done!

$$\chi(G_c) \geq c$$
 (This uses PVDW!)

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

Assume inductively that $\chi(G_{c-1})=c-1$. We show $\chi(G_c)\geq c$. Assume, BWOC, $\chi(G_c)\leq c-1$ via COL.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

Assume, BWOC, $\chi(G_c) \leq c - 1$ via COL.

L is a c-1-colored sequence of integers.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

Assume, BWOC, $\chi(G_c) \leq c - 1$ via COL.

L is a c-1-colored sequence of integers.

Choose $L = W(x^m, 2x^m, \dots, \Box x^m; c-1)$ where we choose \Box later.

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

Assume, BWOC, $\chi(G_c) \leq c - 1$ via COL.

L is a c-1-colored sequence of integers.

Choose $L = W(x^m, 2x^m, \dots, \Box x^m; c-1)$ where we choose \Box later.

There exists d such that

$$a, a + d^m, a + 2d^m, \dots, a + \square d^m$$
 same color.

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color

Assume inductively that $\chi(G_{c-1}) = c - 1$. We show $\chi(G_c) \ge c$.

Assume, BWOC, $\chi(G_c) \leq c - 1$ via COL.

L is a c-1-colored sequence of integers.

Choose $L = W(x^m, 2x^m, \dots, \Box x^m; c-1)$ where we choose \Box later.

There exists d such that

$$a, a + d^m, a + 2d^m, \dots, a + \square d^m$$
 same color.

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color We are halfway there since diff is an mth power.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

 $(\exists a,d)[a,a+d^m,a+2d^m,\ldots,a+\Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

 $(\exists a,d)[a,a+d^m,a+2d^m,\ldots,a+\Box d^m$ same color]. Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color. We are halfway there since diff that is an mth power.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

We are halfway there since diff that is an *m*th power.

By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, ..., d \pmod{M_{c-1}d^m}$.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

We are halfway there since diff that is an *m*th power.

By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$.

If we start out sequence there we get

$$(a + xd^m, a + (x+1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

We are halfway there since diff that is an *m*th power.

By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$.

If we start out sequence there we get

$$(a + xd^m, a + (x+1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

Need all of these to be $\leq \Box d^m$.

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

We are halfway there since diff that is an *m*th power.

By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \ldots, d \pmod{M_{c-1}d^m}$.

If we start out sequence there we get

$$(a + xd^m, a + (x+1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

Need all of these to be $\leq \Box d^m$.

$$M_{c-1} + x - 1 \le M_{c-1} + M_{c-1} - 1 = 2M_{c-1} - 1.$$

 $(\exists a, d)[a, a + d^m, a + 2d^m, \dots, a + \Box d^m \text{ same color }].$

Want to obtain an M_{c-1} -AP in $S(M_{c-1})$ that is same color.

We are halfway there since diff that is an *m*th power.

By **Start Lemma** there exists $0 \le x \le M_{c-1} - 1$ such that $a + xd^m \equiv 1, \dots, d \pmod{M_{c-1}d^m}$.

If we start out sequence there we get

$$(a + xd^m, a + (x+1)d^m, \dots, a + (M_{c-1} + x - 1)d^m) \in S(M_{c-1}).$$

Need all of these to be $\leq \Box d^m$.

$$M_{c-1} + x - 1 \le M_{c-1} + M_{c-1} - 1 = 2M_{c-1} - 1.$$

Set $\square = 2M_{c-1}$. (Could have made it $2M_{c-1} - 1$ but bad for slides.)

We want to prove $\chi(G_c) \geq c$.

We want to prove $\chi(G_c) \geq c$. We assume, BWOC, that $\chi(G_c) \leq c-1$ via COL.

We want to prove $\chi(G_c) \geq c$. We assume, BWOC, that $\chi(G_c) \leq c-1$ via COL . Look at COL on the L base points.

Back to $\chi(G_c) > c$

We want to prove $\chi(G_c) \geq c$.

We assume, BWOC, that $\chi(G_c) \leq c - 1$ via COL.

Look at COL on the L base points.

L is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

We want to prove $\chi(G_c) \geq c$.

We assume, BWOC, that $\chi(G_c) \leq c - 1$ via COL.

Look at COL on the *L* base points.

L is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A .

We want to prove $\chi(G_c) \geq c$.

We assume, BWOC, that $\chi(G_c) \leq c - 1$ via COL.

Look at COL on the *L* base points.

L is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A . G_{c-1}^A requires c-1 colors.

We want to prove $\chi(G_c) \geq c$.

We assume, BWOC, that $\chi(G_c) \leq c - 1$ via COL.

Look at COL on the L base points.

L is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A .

 G_{c-1}^A requires c-1 colors.

None of them can be the color of A.

We want to prove $\chi(G_c) \geq c$.

We assume, BWOC, that $\chi(G_c) \leq c - 1$ via COL.

Look at COL on the *L* base points.

L is chosen to be $W(x^m, 2x^m, \dots, 2M_{c-1}x^m; c-1)$, so that there will be a mono $A \in S(M_{c-1})$.

So we have a mono $A \in S(M_{c-1})$. Look at G_{c-1}^A .

 G_{c-1}^A requires c-1 colors.

None of them can be the color of A.

Hence $\chi(G_c) \geq c$. Done

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$. Familiar Cases

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$. Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^A , so $|C| \ge 9$.

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$.

Familiar Cases

- 1) C has 0 base points. Then C is a cycle in G_{c-1}^A , so $|C| \ge 9$.
- 2) C has 1 base point v. Then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$.

Assume inductively that $g(G_{c-1}) = 9$. Let C be a cycle in G_c . We show $|C| \ge 9$.

Familiar Cases

- 1) C has 0 base points. Then C is a cycle in G_{c-1}^A , so $|C| \ge 9$.
- 2) C has 1 base point v. Then v has two edges coming out of it, to $G_{c-1}^{A_1}$ and $G_{c-1}^{A_2}$.

Cycle goes from v to $G_{c-1}^{A_1}$ then leaves $G_{c-1}^{A_1}$ and has to goto a base vertex that is not v.

This is impossible. So this case can't happen.

$g(G_c) \geq 9$: The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD

Will show that u, v must be in the same $A \in S(M_{k-1})$.

$$g(G_c) \geq 9$$
: The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD

Will show that u, v must be in the same $A \in S(M_{k-1})$. Recall that $S(M_{k-1})$ was constructed so that no two APs in it intersected in ≥ 2 points.

$g(G_c) \geq 9$: The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD

Will show that u, v must be in the same $A \in S(M_{k-1})$. Recall that $S(M_{k-1})$ was constructed so that no two APs in it

intersected in ≥ 2 points.

Hence this cannot happen.

$g(G_c) \geq 9$: The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD

Will show that u, v must be in the same $A \in S(M_{k-1})$. Recall that $S(M_{k-1})$ was constructed so that no two APs in it intersected in > 2 points.

Hence this cannot happen.

4) C has ≥ 3 base points. Can show that C has length ≥ 9 . Touched on this earlier in the proof for $\chi(G_c) = c$, $g(G_c) = 6$.

Application of VDW: **Constructing Graphs with High Chromatic Number** and Girth 12

January 23, 2025

Recall that we said earlier:

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use ${\color{red} 2}$ base vertices then cycle is ${\color{gray} \geq 6}$

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use 2 base vertices then cycle is ≥ 6

If a cycle use ${\color{red}3}$ base vertices then it must have length ≥ 9

Recall that we said earlier:

```
If a cycle use 1 base vertices then this cannot happen!
```

If a cycle use 2 base vertices then cycle is ≥ 6

If a cycle use $\bf 3$ base vertices then it must have length ≥ 9

If a cycle use 4 base vertices then it must have length ≥ 12

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use ${\color{red} 2}$ base vertices then cycle is ${\color{gray} \geq 6}$

If a cycle use $\bf 3$ base vertices then it must have length ≥ 9

If a cycle use 4 base vertices then it must have length ≥ 12

So lets try to make sure that a cycle cannot have 3 base points.

Recall that we said earlier:

If a cycle use 1 base vertices then this cannot happen!

If a cycle use $\mathbf{2}$ base vertices then cycle is ≥ 6

If a cycle use $\bf 3$ base vertices then it must have length ≥ 9

If a cycle use 4 base vertices then it must have length ≥ 12

So lets try to make sure that a cycle cannot have 3 base points.

The same construction I did for $g(G_c) = 9$ actually shows $g(G_c) = 12$ but uses harder Number Theory.