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Credit Where Credit Was Due

I do not know who first proved the main theorem in these slides,
which is called The Thin Set Theorem.

I first saw it in notes by Harvey Friedman.

He is interested in the logical strength of The Thin Set
Theorem. This will not be our concern.
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Recall What an Onto Function Is

Def f : X → Y is onto if

for all y ∈ Y there exists x ∈ X such that f (x) = y .

It is quite possible that f : X → Y is onto but if you restrict f to
X ′ ⊆ X then not onto.

Example
f : Z→ Z via f (x) = x + 1 is onto
f : N→ Z via f (x) = x + 1 is NOT onto.
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When Can We Restrict Domain So f Not Onto?

Question For which f : Z→ Z is there a set D ⊆ Z such that
f : D→ Z is not onto.

Stupid Question Just take A = ∅ or a finite set.

Good Question For which f : Z→ Z is there an INFINITE set
D ⊆ Z such that f : D→ Z is not onto.
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Domain Z

Thm ∀ f : Z→ Z ∃ an INFINITE set D ⊆ Z such that f : D→ Z
is not onto.

If f is not onto then take D = Z.

If f is onto then take D = Z− f −1(0).
That wasn’t stupid, but it was easy.
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Domain Z× Z

What if we look at f : Z× Z→ Z and want D ⊆ Z such that
f : D× D is not onto.

Vote Which of the following is true?

(1) ∀f : Z× Z→ Z ∃ infinite D ⊆ Z such that f : D× D is not
onto.

(2) ∃f : Z× Z→ Z ∀ infinite D ⊆ Z f : D× D is onto.

(3) The question is independent of ZFC.

Answer on next page.
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Can Always Find D

Thm ∀f : Z× Z→ Z ∃ infinite D ⊆ Z, f : D× D is not onto.

Given f , we will use Ramsey’s Theorem 3 times.

Why 3? We will discuss that later.
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First Use of Ramsey

Define COL1 : Z→ [4] via

COL1(x) =


0 if f (x) = 0

1 if f (x) = 1

2 if f (x) = 2

R if f (x) /∈ {0, 1, 2}

Let H1 be the infinite homog set.
If COL1(H1) = 0 then (∀x ∈ H1)[f (x , x) = 0].
If COL1(H1) = 1 then (∀x ∈ H1)[f (x , x) = 1].
If COL1(H1) = 2 then (∀x ∈ H1)[f (x , x) = 2].
If COL1(H1) = R then (∀x ∈ H1)[f (x , x) /∈ {0, 1, 2}].
Not done- that’s just f (x , x).
Will now look at f restricted to (x , y) ∈ H1 × H1 with x < y .
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Define COL2 :
(H1
2

)
→ [4]

Recall that the coloring is on unordered pairs
COL2 takes input {x , y} and we can assume x < y .
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If COL2(H2) = 2 then (∀x , y ∈ H2, x < y)[f (x , y) = 2].
If COL2(H2) = R then (∀x , y ∈ H1, x < y)[f (x , y) /∈ {0, 1, 2}].
Not done yet. On H2 we control f (x , x), f (x , y) with x < y .
Now look at f restricted to (x , y) ∈ H1 × H1 with x > y .
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f Restricted to H3 × H3 is Not Onto

All pairs are from H3 × H3.

f (x , x) is always 0, always 1, always 2, or always /∈ {0, 1, 2}.
f (x , y) with x < y is always 0, always 1, always 2, or always
/∈ {0, 1, 2}.
f (x , y) with x > y is always 0, always 1, always 2, or always
/∈ {0, 1, 2}.

One of the four colors is not here. Which one?

if color 0 then 0 not in the image, so NOT onto.

if color 1 then 1 not in the image, so NOT onto.

if color 2 then 2 not in the image, so NOT onto.

if color R then image is subset of {0, 1, 2}, so NOT onto.
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f Why [4]?

Why four colors?

f can have three kinds of input:

x , y where x = y .

x , y where x < y .

y < x where x > y .

We pick 4 since it is one more than the number possible types of
inputs.

We will discuss this more after we do the 3-hypergraph Ramsey
Theorem and can examine f (x , y , z).
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