Application! Restricting Domains To Stop Being Onto

Exposition by William Gasarch

December 22, 2024

I do not know who first proved the main theorem in these slides, which is called **The Thin Set Theorem**.

I do not know who first proved the main theorem in these slides, which is called **The Thin Set Theorem**.

I first saw it in notes by Harvey Friedman.

I do not know who first proved the main theorem in these slides, which is called **The Thin Set Theorem**.

I first saw it in notes by Harvey Friedman.

He is interested in the logical strength of **The Thin Set Theorem**. This will not be our concern.

Def $f: X \to Y$ is **onto** if

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$ such that f(x) = y.

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$ such that f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then not onto.

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$ such that f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then not onto.

Example

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$ such that f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then not onto.

Example

 $f: \mathbb{Z} \to \mathbb{Z}$ via f(x) = x + 1 is onto

Def $f: X \to Y$ is **onto** if for all $y \in Y$ there exists $x \in X$ such that f(x) = y.

It is quite possible that $f: X \to Y$ is onto but if you restrict f to $X' \subseteq X$ then not onto.

Example

 $f: \mathbb{Z} \to \mathbb{Z}$ via f(x) = x + 1 is onto $f: \mathbb{N} \to \mathbb{Z}$ via f(x) = x + 1 is NOT onto.

Question For which $f: \mathbb{Z} \to \mathbb{Z}$ is there a set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \to \mathbb{Z}$ is not onto.

Question For which $f: \mathbb{Z} \to \mathbb{Z}$ is there a set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \to \mathbb{Z}$ is not onto.

Stupid Question Just take $A = \emptyset$ or a finite set.

Question For which $f: \mathbb{Z} \to \mathbb{Z}$ is there a set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \to \mathbb{Z}$ is not onto.

Stupid Question Just take $A = \emptyset$ or a finite set.

Good Question For which $f: \mathbb{Z} \to \mathbb{Z}$ is there an INFINITE set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \to \mathbb{Z}$ is not onto.

Thm $\forall f : \mathbb{Z} \to \mathbb{Z} \exists$ an INFINITE set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

Thm $\forall f : \mathbb{Z} \to \mathbb{Z} \exists$ an INFINITE set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

If f is not onto then take $\mathbb{D} = \mathbb{Z}$.

Thm $\forall f : \mathbb{Z} \to \mathbb{Z} \exists$ an INFINITE set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \to \mathbb{Z}$ is not onto.

If f is not onto then take $\mathbb{D} = \mathbb{Z}$.

If f is onto then take $\mathbb{D} = \mathbb{Z} - f^{-1}(0)$.

Thm $\forall f: \mathbb{Z} \to \mathbb{Z} \exists$ an INFINITE set $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \to \mathbb{Z}$ is not onto.

If f is not onto then take $\mathbb{D} = \mathbb{Z}$.

If f is onto then take $\mathbb{D} = \mathbb{Z} - f^{-1}(0)$.

That wasn't stupid, but it was easy.

What if we look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \times \mathbb{D}$ is not onto.

What if we look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \times \mathbb{D}$ is not onto.

Vote Which of the following is true?

What if we look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \times \mathbb{D}$ is not onto.

Vote Which of the following is true?

(1) $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \times \mathbb{D}$ is not onto.

What if we look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \times \mathbb{D}$ is not onto.

Vote Which of the following is true?

- (1) $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \times \mathbb{D}$ is not onto.
- (2) $\exists f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \ \forall \text{ infinite } \mathbb{D} \subseteq \mathbb{Z} \ f : \mathbb{D} \times \mathbb{D} \text{ is onto.}$

What if we look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \times \mathbb{D}$ is not onto.

Vote Which of the following is true?

- (1) $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \times \mathbb{D}$ is not onto.
- (2) $\exists f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \ \forall \text{ infinite } \mathbb{D} \subseteq \mathbb{Z} \ f : \mathbb{D} \times \mathbb{D} \text{ is onto.}$
- (3) The question is independent of ZFC.

What if we look at $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and want $\mathbb{D} \subseteq \mathbb{Z}$ such that $f: \mathbb{D} \times \mathbb{D}$ is not onto.

Vote Which of the following is true?

- (1) $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$ such that $f : \mathbb{D} \times \mathbb{D}$ is not onto.
- (2) $\exists f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \ \forall \text{ infinite } \mathbb{D} \subseteq \mathbb{Z} \ f : \mathbb{D} \times \mathbb{D} \text{ is onto.}$
- (3) The question is independent of ZFC.

Answer on next page.

Can Always Find D

Can Always Find \mathbb{D}

Thm $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto.

Can Always Find \mathbb{D}

Thm $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto. Given f, we will use Ramsey's Theorem 3 times.

Can Always Find \mathbb{D}

Thm $\forall f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \exists$ infinite $\mathbb{D} \subseteq \mathbb{Z}$, $f : \mathbb{D} \times \mathbb{D}$ is not onto.

Given f, we will use Ramsey's Theorem 3 times.

Why 3? We will discuss that later.

$$\mathrm{COL}_1(x) = \left\{$$

$$COL_1(x) = \begin{cases} 0 \text{ if } f(x) = 0 \end{cases}$$

$$COL_1(x) = \begin{cases} 0 \text{ if } f(x) = 0\\ 1 \text{ if } f(x) = 1 \end{cases}$$

$$COL_1(x) = \begin{cases} 0 \text{ if } f(x) = 0\\ 1 \text{ if } f(x) = 1\\ 2 \text{ if } f(x) = 2 \end{cases}$$

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$COL_{1}(x) = \begin{cases} 0 \text{ if } f(x) = 0\\ 1 \text{ if } f(x) = 1\\ 2 \text{ if } f(x) = 2\\ \mathbf{R} \text{ if } f(x) \notin \{0, 1, 2\} \end{cases}$$

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$ext{COL}_1(x) = egin{cases} 0 & ext{if } f(x) = 0 \\ 1 & ext{if } f(x) = 1 \\ 2 & ext{if } f(x) = 2 \\ extbf{R} & ext{if } f(x)
otin \{0, 1, 2\} \end{cases}$$

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$ext{COL}_1(x) = egin{cases} 0 & ext{if } f(x) = 0 \\ 1 & ext{if } f(x) = 1 \\ 2 & ext{if } f(x) = 2 \\ extbf{R} & ext{if } f(x)
otin \{0, 1, 2\} \end{cases}$$

Let H_1 be the infinite homog set. If $COL_1(H_1) = 0$ then $(\forall x \in H_1)[f(x,x) = 0]$.

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$ext{COL}_1(x) = egin{cases} 0 & ext{if } f(x) = 0 \\ 1 & ext{if } f(x) = 1 \\ 2 & ext{if } f(x) = 2 \\ extbf{R} & ext{if } f(x)
otin \{0, 1, 2\} \end{cases}$$

If
$$COL_1(H_1) = 0$$
 then $(\forall x \in H_1)[f(x, x) = 0]$.
If $COL_1(H_1) = 1$ then $(\forall x \in H_1)[f(x, x) = 1]$.

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$ext{COL}_1(x) = egin{cases} 0 & ext{if } f(x) = 0 \\ 1 & ext{if } f(x) = 1 \\ 2 & ext{if } f(x) = 2 \\ extbf{R} & ext{if } f(x)
otin \{0, 1, 2\} \end{cases}$$

If
$$COL_1(H_1) = 0$$
 then $(\forall x \in H_1)[f(x, x) = 0]$.

If
$$COL_1(H_1) = 1$$
 then $(\forall x \in H_1)[f(x, x) = 1]$.

If
$$COL_1(H_1) = 2$$
 then $(\forall x \in H_1)[f(x, x) = 2]$.

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$ext{COL}_1(x) = egin{cases} 0 & ext{if } f(x) = 0 \\ 1 & ext{if } f(x) = 1 \\ 2 & ext{if } f(x) = 2 \\ extbf{R} & ext{if } f(x)
otin \{0, 1, 2\} \end{cases}$$

```
\begin{split} &\text{If $\mathrm{COL}_1(H_1)=0$ then $(\forall x\in H_1)[f(x,x)=0]$.} \\ &\text{If $\mathrm{COL}_1(H_1)=1$ then $(\forall x\in H_1)[f(x,x)=1]$.} \\ &\text{If $\mathrm{COL}_1(H_1)=2$ then $(\forall x\in H_1)[f(x,x)=2]$.} \\ &\text{If $\mathrm{COL}_1(H_1)=$$\it $\mathbb{R}$ then $(\forall x\in H_1)[f(x,x)\notin \{0,1,2\}]$.} \end{split}
```

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$COL_{1}(x) = \begin{cases} 0 \text{ if } f(x) = 0\\ 1 \text{ if } f(x) = 1\\ 2 \text{ if } f(x) = 2\\ \mathbf{R} \text{ if } f(x) \notin \{0, 1, 2\} \end{cases}$$

Let H_1 be the infinite homog set. If $\mathrm{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x,x) = 0]$. If $\mathrm{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x,x) = 1]$. If $\mathrm{COL}_1(H_1) = 2$ then $(\forall x \in H_1)[f(x,x) = 2]$. If $\mathrm{COL}_1(H_1) = \mathbf{R}$ then $(\forall x \in H_1)[f(x,x) \notin \{0,1,2\}]$. Not done- that's just f(x,x).

Define $\mathrm{COL}_1 \colon \mathbb{Z} \to [4]$ via

$$COL_{1}(x) = \begin{cases} 0 \text{ if } f(x) = 0\\ 1 \text{ if } f(x) = 1\\ 2 \text{ if } f(x) = 2\\ \mathbf{R} \text{ if } f(x) \notin \{0, 1, 2\} \end{cases}$$

Let H_1 be the infinite homog set. If $\mathrm{COL}_1(H_1) = 0$ then $(\forall x \in H_1)[f(x,x) = 0]$. If $\mathrm{COL}_1(H_1) = 1$ then $(\forall x \in H_1)[f(x,x) = 1]$. If $\mathrm{COL}_1(H_1) = 2$ then $(\forall x \in H_1)[f(x,x) = 2]$. If $\mathrm{COL}_1(H_1) = \mathbf{R}$ then $(\forall x \in H_1)[f(x,x) \notin \{0,1,2\}]$. Not done- that's just f(x,x).

Will now look at f restricted to $(x, y) \in H_1 \times H_1$ with x < y.

Define $COL_2: {H_1 \choose 2} \rightarrow [4]$

Define $COL_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs**

Define $COL_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

Define $\mathrm{COL}_2 \colon \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$\mathrm{COL}_2(x,y) = \left\{$$

Define $\mathrm{COL}_2 \colon {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_2(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0 \\ \end{cases}$$

Define $COL_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_2(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1 \end{cases}$$

Define $\mathrm{COL}_2 \colon \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2 \end{cases}$$

Define $COL_2: {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Define $COL_2 \colon {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set.

Define $COL_2 \colon {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $COL_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$.

Define $COL_2: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set.

If
$$COL_2(H_2) = 0$$
 then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$.
If $COL_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$.

Define $COL_2: {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set.

If
$$COL_2(H_2) = 0$$
 then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$.
If $COL_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$.
If $COL_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$.

Define $COL_2: {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\mathrm{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\mathrm{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$. If $\mathrm{COL}_2(H_2) = \mathbb{R}$ then $(\forall x, y \in H_1, x < y)[f(x, y) \notin \{0, 1, 2\}]$.

Define $\mathrm{COL}_2 \colon {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbb{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\mathrm{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\mathrm{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$. If $\mathrm{COL}_2(H_2) = \mathbf{R}$ then $(\forall x, y \in H_1, x < y)[f(x, y) \notin \{0, 1, 2\}]$. Not done yet. On H_2 we control f(x, x), f(x, y) with x < y.

Define $\mathrm{COL}_2 \colon {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_2 takes input $\{x,y\}$ and we can assume x < y.

$$COL_{2}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbb{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (1)

Let $H_2 \subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_2(H_2) = 0$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 0]$. If $\mathrm{COL}_2(H_2) = 1$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 1]$. If $\mathrm{COL}_2(H_2) = 2$ then $(\forall x, y \in H_2, x < y)[f(x, y) = 2]$. If $\mathrm{COL}_2(H_2) = \mathbf{R}$ then $(\forall x, y \in H_1, x < y)[f(x, y) \notin \{0, 1, 2\}]$. Not done yet. On H_2 we control f(x, x), f(x, y) with x < y. Now look at f restricted to $(x, y) \in H_1 \times H_1$ with x > y.

Define $COL_3: {H_1 \choose 2} \rightarrow [4]$

Define $COL_3: \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs**

Define $\mathrm{COL}_3\colon \binom{H_1}{2}\to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

Define $\mathrm{COL}_3\colon \binom{H_1}{2}\to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

Define $\mathrm{COL}_3 \colon \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_3(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0 \end{cases}$$

Define $\mathrm{COL}_3 \colon \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL3(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1 \end{cases}$$

Define $\mathrm{COL}_3\colon \binom{H_1}{2}\to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2 \end{cases}$$

Define $COL_3: {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Define $\mathrm{COL}_3\colon \binom{H_1}{2}\to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set.

Define $\mathrm{COL}_3 \colon \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $COL_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$.

Define $COL_3: {H_1 \choose 2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\mathrm{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$.

Second Use of Ramsey

Define $\mathrm{COL}_3\colon \binom{H_1}{2}\to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Let $H_3\subseteq H_2\subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_3(H_3)=0$ then $(\forall x,y\in H_3,x>y)[f(x,y)=0]$. If $\mathrm{COL}_3(H_3)=1$ then $(\forall x,y\in H_3,x>y)[f(x,y)=1]$. If $\mathrm{COL}_3(H_3)=2$ then $(\forall x,y\in H_3,x>y)[f(x,y)=2]$.

Second Use of Ramsey

Define $\mathrm{COL}_3\colon \binom{H_1}{2}\to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x>y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\mathrm{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$. If $\mathrm{COL}_3(H_3) = 2$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 2]$. If $\mathrm{COL}_3(H_3) = \mathbb{R}$ then $(\forall x, y \in H_1, x > y)[f(x, y) \notin \{0, 1, 2\}]$.

Second Use of Ramsey

Define $\mathrm{COL}_3 \colon \binom{H_1}{2} \to [4]$ Recall that the coloring is on **unordered pairs** COL_3 takes input $\{x,y\}$ and we can assume x > y.

$$COL_{3}(x,y) = \begin{cases} 0 \text{ if } f(x,y) = 0\\ 1 \text{ if } f(x,y) = 1\\ 2 \text{ if } f(x,y) = 2\\ \mathbf{R} \text{ if } f(x,y) \notin \{0,1,2\} \end{cases}$$
 (2)

Let $H_3 \subseteq H_2 \subseteq H_1$ be the infinite homog set. If $\mathrm{COL}_3(H_3) = 0$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 0]$. If $\mathrm{COL}_3(H_3) = 1$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 1]$. If $\mathrm{COL}_3(H_3) = 2$ then $(\forall x, y \in H_3, x > y)[f(x, y) = 2]$. If $\mathrm{COL}_3(H_3) = \mathbf{R}$ then $(\forall x, y \in H_1, x > y)[f(x, y) \notin \{0, 1, 2\}]$. We show that f on $H_3 \times H_3$ is not onto.

All pairs are from $H_3 \times H_3$.

All pairs are from $H_3 \times H_3$.

f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

All pairs are from $H_3 \times H_3$.

```
f(x,x) is always 0, always 1, always 2, or always \notin \{0,1,2\}. f(x,y) with x < y is always 0, always 1, always 2, or always \notin \{0,1,2\}.
```

All pairs are from $H_3 \times H_3$.

```
f(x,x) is always 0, always 1, always 2, or always \notin \{0,1,2\}.
```

f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

All pairs are from $H_3 \times H_3$.

f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one?

All pairs are from $H_3 \times H_3$.

f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one? if color 0 then 0 not in the image, so NOT onto.

All pairs are from $H_3 \times H_3$.

f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one?

if color 0 then 0 not in the image, so NOT onto.

if color 1 then 1 not in the image, so NOT onto.

All pairs are from $H_3 \times H_3$.

f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one?

if color 0 then 0 not in the image, so NOT onto.

if color 1 then 1 not in the image, so NOT onto.

if color 2 then 2 not in the image, so NOT onto.

All pairs are from $H_3 \times H_3$.

f(x,x) is always 0, always 1, always 2, or always $\notin \{0,1,2\}$.

f(x, y) with x < y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

f(x, y) with x > y is always 0, always 1, always 2, or always $\notin \{0, 1, 2\}$.

One of the four colors is not here. Which one?

if color 0 then 0 not in the image, so NOT onto.

if color 1 then 1 not in the image, so NOT onto.

if color 2 then 2 not in the image, so NOT onto.

if color \mathbb{R} then image is subset of $\{0,1,2\}$, so NOT onto.

Why four colors?

Why four colors?

f can have three kinds of input:

Why four colors?

f can have three kinds of input:

x, y where x = y.

Why four colors?

f can have three kinds of input:

x, y where x = y.

x, y where x < y.

Why four colors?

f can have three kinds of input:

x, y where x = y.

x, y where x < y.

y < x where x > y.

Why four colors?

f can have three kinds of input:

x, y where x = y.

x, y where x < y.

y < x where x > y.

We pick 4 since it is one more than the number possible types of inputs.

Why four colors?

f can have three kinds of input:

x, y where x = y.

x, y where x < y.

y < x where x > y.

We pick 4 since it is one more than the number possible types of inputs.

We will discuss this more after we do the 3-hypergraph Ramsey Theorem and can examine f(x, y, z).