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The Erdös-Turan Conjecture

Def Let N ∈ N. Let A ⊆ [N]. The density of A is |A|/N.

Szemerédi’s Thm For all δ > 0, for all k , there exists
N = N(δ, k) such that the following holds:

If A ⊆ [N] and A has density ≥ δ then A has a k-AP.

We won’t do the (hard) proof. We will do:

1) Some easy cases, and

2) The k = 3 case which involves the Discrete Fourier Transform.
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An Easy Case

Thm Let N ≥ 3. Let A ⊆ [N] of density ≥ 0.67. Then A contains
a 3-AP.

We can assume N ≡ 0 (mod 3).
Look at

{1, 2, 3}, {4, 5, 6}, . . . , {N − 2,N − 1,N}.

Case 1 ∃x ≡ 1 (mod 3), {x , x + 1, x + 2} ∈ A. A has a 3-AP.

Case 2 ∀x ≡ 1 (mod 3), |{x , x + 1, x + 2} ∩ A| ≤ 2. Then

|A| ≤ 2× N
3 ≤ 0.667N < 0.67N

This contradicts A having density ≥ 0.67.

There may be a HW where you are asked to prove theorems like
the 0.67-Theorem.
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Roth’s Theorem

Roth’s Theorem For all δ > 0 there exists N = N(δ) such that
the following holds
For all A ⊆ [N] of density ≥ δ, A has a 3-AP.

The Intuition behind the proof will be short and clear.

The formal proof will be long and use some hard math.
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Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a+ d , . . . , a+ kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.
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How Will δ′ and δ Relate

What if the δ increase as follows;
δ,

δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67 or any number you could prove Roth’s
Theorem for.
It turns out that we increase δ enough so that the density goes to
1.
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Let

δ0 = δ.
δn = δn − 1 + δn−1

80 = (1 + 1
80)δ

n−1.
δn = (1 + 1

80)
Lδn−L

Plug in L = n − 1
δn = (1 + 1

80)
n−1δ

Since 1 + 1
80 > 1, δn goes to infty. In particular, at some point its

> 0.67.
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Detour:
Discrete Fourier Transform


