Roth's Theorem A Dense Enough Set Has a 3-AP

Exposition by William Gasarch and Kelin Zhu

December 23, 2024

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is |A|/N.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is |A|/N. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds:

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is |A|/N. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP.

ション ふゆ アメリア メリア しょうくしゃ

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is |A|/N. Szemerédi's Thm For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do:

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is |A|/N. Szemerédi's Thm For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do: 1) Some easy cases, and

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is |A|/N. Szemerédi's Thm For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do: 1) Some easy cases, and

2) The k = 3 case which involves the Discrete Fourier Transform.

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

$$\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N - 2, N - 1, N\}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

$$\{1, 2, 3\}, \{4, 5, 6\}, \dots, \{N - 2, N - 1, N\}.$$

Case 1 $\exists x \equiv 1 \pmod{3}, \{x, x + 1, x + 2\} \in A$. A has a 3-AP.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \dots, \{N - 2, N - 1, N\}.$ Case 1 $\exists x \equiv 1 \pmod{3}, \{x, x + 1, x + 2\} \in A$. A has a 3-AP. Case 2 $\forall x \equiv 1 \pmod{3}, |\{x, x + 1, x + 2\} \cap A| \le 2$. Then

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \dots, \{N - 2, N - 1, N\}.$ Case 1 $\exists x \equiv 1 \pmod{3}, \{x, x + 1, x + 2\} \in A$. A has a 3-AP. Case 2 $\forall x \equiv 1 \pmod{3}, |\{x, x + 1, x + 2\} \cap A| \le 2$. Then $|A| \le 2 \times \frac{N}{3} \le 0.667N < 0.67N$

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \dots, \{N - 2, N - 1, N\}.$ Case 1 $\exists x \equiv 1 \pmod{3}, \{x, x + 1, x + 2\} \in A$. A has a 3-AP. Case 2 $\forall x \equiv 1 \pmod{3}, |\{x, x + 1, x + 2\} \cap A| \leq 2$. Then $|A| \leq 2 \times \frac{N}{3} \leq 0.667N < 0.67N$ This contradicts A having density ≥ 0.67 .

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \dots, \{N - 2, N - 1, N\}.$ Case 1 $\exists x \equiv 1 \pmod{3}, \{x, x + 1, x + 2\} \in A$. A has a 3-AP. Case 2 $\forall x \equiv 1 \pmod{3}, |\{x, x + 1, x + 2\} \cap A| \le 2$. Then $|A| \le 2 \times \frac{N}{3} \le 0.667N < 0.67N$ This contradicts A having density ≥ 0.67 .

There may be a HW where you are asked to prove theorems like the 0.67-Theorem.

Roth's Theorem

Roth's Theorem For all $\delta > 0$ there exists $N = N(\delta)$ such that the following holds For all $A \subseteq [N]$ of density $\geq \delta$, A has a 3-AP.

Roth's Theorem

Roth's Theorem For all $\delta > 0$ there exists $N = N(\delta)$ such that the following holds For all $A \subseteq [N]$ of density $\geq \delta$, A has a 3-AP.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The **Intuition** behind the proof will be short and clear.

Roth's Theorem For all $\delta > 0$ there exists $N = N(\delta)$ such that the following holds For all $A \subseteq [N]$ of density $\geq \delta$, A has a 3-AP.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

The **Intuition** behind the proof will be short and clear. The **formal proof** will be long and use some hard math.

Given $A \subseteq [N]$ of density δ we show one of the following happens.

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP.

(ロト (個) (E) (E) (E) (E) のへの

Given $A \subseteq [N]$ of density δ we show one of the following happens.

- 1) A looks random. Then A will have a 3-AP.
- 2) There is a very large AP $N' \subseteq [N]$

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$N' = \{a+d, \ldots, a+kd\}$$

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$N' = \{a+d,\ldots,a+kd\}$$

such that $A \cap N'$ has density $\delta' > \delta$ in N'.

Given A ⊆ [N] of density δ we show one of the following happens.
1) A looks random. Then A will have a 3-AP.
2) There is a very large AP N' ⊆ [N]

$$N' = \{a+d,\ldots,a+kd\}$$

ション ふゆ アメリア メリア しょうくしゃ

such that $A \cap N'$ has density $\delta' > \delta$ in N'. Can view $A \cap N'$ as a denser-than- δ subset of N'.

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$N' = \{a+d,\ldots,a+kd\}$$

such that

 $A \cap N'$ has density $\delta' > \delta$ in N'.

Can view $A \cap N'$ as a denser-than- δ subset of N'.

Repeat this procedure until either you get the **Random** case or the density is ≥ 0.67 .

ション ふゆ アメリア メリア しょうくしゃ

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$N' = \{a+d, \ldots, a+kd\}$$

such that

 $A \cap N'$ has density $\delta' > \delta$ in N'.

Can view $A \cap N'$ as a denser-than- δ subset of N'.

Repeat this procedure until either you get the **Random** case or the density is ≥ 0.67 .

Much of what I said here isn't quite right, but thats the intuition.

```
What if the \delta increase as follows; \delta,
```


What if the δ increase as follows; δ , $\delta + \frac{\delta^{100}}{2}$,

+ロト 4 個 ト 4 国 ト 4 国 ト 1 の 4 で

What if the δ increase as follows;

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

$$\begin{split} & \delta, \\ & \delta + \frac{\delta^{100}}{2}, \\ & \delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}. \end{split}$$

What if the δ increase as follows;

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

$$\begin{split} \delta, \\ \delta &+ \frac{\delta^{100}}{2}, \\ \delta &+ \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}. \\ \delta &+ \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \end{split}$$

What if the δ increase as follows;

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{split} \delta, \\ \delta &+ \frac{\delta^{100}}{2}, \\ \delta &+ \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}. \\ \delta &+ \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \\ \vdots \end{split}$$

What if the δ increase as follows;

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{split} \delta, \\ \delta &+ \frac{\delta^{100}}{2}, \\ \delta &+ \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}. \\ \delta &+ \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \\ \vdots \end{split}$$

Then density is always

What if the δ increase as follows;

$$\begin{split} & \delta, \\ & \delta + \frac{\delta^{100}}{2}, \\ & \delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}, \\ & \delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \\ & \vdots \\ & \\ & \text{Then density is always} \\ & < \delta + \delta^{100} \sum_{i=1}^{\infty} \frac{1}{2^i} = \delta + \delta^{100}. \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

What if the δ increase as follows: δ,
$$\begin{split} \delta &+ \frac{\delta^{100}}{2}, \\ \delta &+ \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}, \\ \delta &+ \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \end{split}$$
Then density is always $<\delta+\delta^{100}\sum_{i=1}^{\infty}\frac{1}{2^i}=\delta+\delta^{100}.$ If $\delta = \frac{1}{10}$ then density is always $< \frac{1}{10} + \frac{1}{10^{100}}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

What if the δ increase as follows: δ,
$$\begin{split} & \delta + \frac{\delta^{100}}{2}, \\ & \delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}, \\ & \delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \end{split}$$
Then density is always $< \delta + \delta^{100} \sum_{i=1}^{\infty} \frac{1}{2^i} = \delta + \delta^{100}.$ If $\delta = \frac{1}{10}$ then density is always $< \frac{1}{10} + \frac{1}{10^{100}}$. Much less than 0.67 or any number you could prove Roth's Theorem for.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ・ヨ・ ��や

What if the δ increase as follows: δ,
$$\begin{split} & \delta + \frac{\delta^{100}}{2}, \\ & \delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}. \\ & \delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}. \end{split}$$
Then density is always $< \delta + \delta^{100} \sum_{i=1}^{\infty} \frac{1}{2^i} = \delta + \delta^{100}.$ If $\delta = \frac{1}{10}$ then density is always $< \frac{1}{10} + \frac{1}{10^{100}}$. Much less than 0.67 or any number you could prove Roth's Theorem for.

It turns out that we increase δ enough so that the density goes to 1.

We will get $\delta' = \delta + \frac{\delta}{80}$. Let

We will get $\delta' = \delta + \frac{\delta}{80}$. Let $\delta_0 = \delta$.

We will get
$$\delta' = \delta + \frac{\delta}{80}$$
.
Let
 $\delta_0 = \delta$.
 $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

We will get
$$\delta' = \delta + \frac{\delta}{80}$$
.
Let
 $\delta_0 = \delta$.
 $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$.
 $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$

We will get
$$\delta' = \delta + \frac{\delta}{80}$$
.
Let
 $\delta_0 = \delta$.
 $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$.
 $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$
Plug in $L = n - 1$

We will get
$$\delta' = \delta + \frac{\delta}{80}$$
.
Let
 $\delta_0 = \delta$.
 $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$.
 $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$
Plug in $L = n - 1$
 $\delta_n = (1 + \frac{1}{80})^{n-1}\delta$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We will get $\delta' = \delta + \frac{\delta}{80}$. Let $\delta_0 = \delta$. $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$. $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$ Plug in L = n - 1 $\delta_n = (1 + \frac{1}{80})^{n-1}\delta$ Since $1 + \frac{1}{80} > 1$, δ_n goes to infty. In particular, at some point its > 0.67.

▲ロト ▲園 ト ▲画 ト ▲画 ト ▲回 ト

Detour: Discrete Fourier Transform

イロト 不得 トイヨト イヨト ヨー ろくで