Roth's Theorem A Dense Enough Set Has a 3-AP

Exposition by William Gasarch and Kelin Zhu

December 23, 2024

KOKK@KKEKKEK E 1990

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$.

KID KARA KE KIEK LE KORO

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds:

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP.

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do:

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do: 1) Some easy cases, and

Def Let $N \in \mathbb{N}$. Let $A \subseteq [N]$. The density of A is $|A|/N$. **Szemerédi's Thm** For all $\delta > 0$, for all k, there exists $N = N(\delta, k)$ such that the following holds: If $A \subseteq [N]$ and A has density $\geq \delta$ then A has a k-AP. We won't do the (hard) proof. We will do: 1) Some easy cases, and

2) The $k = 3$ case which involves the Discrete Fourier Transform.

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP.

KID KIN KE KAEK LE I DAG

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$.

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

Thm Let $N \ge 3$. Let $A \subseteq [N]$ of density ≥ 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

$$
\{1,2,3\},\{4,5,6\},\ldots,\{N-2,N-1,N\}.
$$

Thm Let $N > 3$. Let $A \subset [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP.

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \leq 2$. Then

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \leq 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \leq 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$ This contradicts A having density ≥ 0.67 .

Thm Let $N > 3$. Let $A \subseteq [N]$ of density > 0.67 . Then A contains a 3-AP. We can assume $N \equiv 0 \pmod{3}$. Look at

 $\{1, 2, 3\}, \{4, 5, 6\}, \ldots, \{N-2, N-1, N\}.$ **Case 1** ∃x \equiv 1 (mod 3), {x, x + 1, x + 2} \in A. A has a 3-AP. **Case 2** $\forall x \equiv 1 \pmod{3}$, $|\{x, x+1, x+2\} \cap A| \leq 2$. Then $|{\mathcal A}| \leq 2 \times \frac{{\mathcal N}}{3} \leq 0.667$ ${\mathcal N} < 0.67$ ${\mathcal N}$ This contradicts A having density ≥ 0.67 .

There may be a HW where you are asked to prove theorems like the 0.67-Theorem.

KORKAR KERKER SAGA

Roth's Theorem

Roth's Theorem For all $\delta > 0$ there exists $N = N(\delta)$ such that the following holds For all $A \subseteq [N]$ of density $\geq \delta$, A has a 3-AP.

KORK ERKER ADAM ADA

Roth's Theorem

Roth's Theorem For all $\delta > 0$ there exists $N = N(\delta)$ such that the following holds For all $A \subseteq [N]$ of density $\geq \delta$, A has a 3-AP.

The **Intuition** behind the proof will be short and clear.

Roth's Theorem

Roth's Theorem For all $\delta > 0$ there exists $N = N(\delta)$ such that the following holds For all $A \subseteq [N]$ of density $\geq \delta$, A has a 3-AP.

KO KA KO KE KA E KA SA KA KA KA KA KA A

The **Intuition** behind the proof will be short and clear. The **formal proof** will be long and use some hard math.

Given $A \subseteq [N]$ of density δ we show one of the following happens.

KID KARA KE KIEK LE KORO

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP.

KO KA KO KE KA E KA SA KA KA KA KA KA A

Given $A \subseteq [N]$ of density δ we show one of the following happens.

KO KA KO KE KA E KA SA KA KA KA KA KA A

- 1) A looks random. Then A will have a 3-AP.
- 2) There is a very large AP $N' \subseteq [N]$

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$
N'=\{a+d,\ldots,a+kd\}
$$

KO KA KO KE KA E KA SA KA KA KA KA KA A

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$
N'=\{a+d,\ldots,a+kd\}
$$

KORKA SERVER ORA

such that $A \cap N'$ has density $\delta' > \delta$ in N' .

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$
N'=\{a+d,\ldots,a+kd\}
$$

KORKA SERVER ORA

such that $A \cap N'$ has density $\delta' > \delta$ in N' . Can view $A \cap N'$ as a denser-than- δ subset of N' .

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$
N'=\{a+d,\ldots,a+kd\}
$$

such that

 $A \cap N'$ has density $\delta' > \delta$ in N' .

Can view $A \cap N'$ as a denser-than- δ subset of N' .

Repeat this procedure until either you get the **Random** case or the density is > 0.67 .

Given $A \subseteq [N]$ of density δ we show one of the following happens. 1) A looks random. Then A will have a 3-AP. 2) There is a very large AP $N' \subseteq [N]$

$$
N'=\{a+d,\ldots,a+kd\}
$$

such that

 $A \cap N'$ has density $\delta' > \delta$ in N' .

Can view $A \cap N'$ as a denser-than- δ subset of N' .

Repeat this procedure until either you get the **Random** case or the density is > 0.67 .

Much of what I said here isn't quite right, but thats the intuition.

```
What if the \delta increase as follows;
δ,
```


What if the δ increase as follows; δ, $\delta + \frac{\delta^{100}}{2}$ $\frac{100}{2}$,

K ロ X x 4D X X B X X B X X D X O Q O

What if the δ increase as follows;

Kロトメ部トメミトメミト ミニのRC

$$
\delta, \n\delta + \frac{\delta^{100}}{2}, \n\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}.
$$

What if the δ increase as follows;

Kロトメ部トメミトメミト ミニのRC

$$
\delta, \n\delta + \frac{\delta^{100}}{2}, \n\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2} \n\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3}.
$$

What if the δ increase as follows;

$$
\delta, \n\delta + \frac{\delta^{100}}{2}, \n\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2} \n\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3} \n\vdots
$$

What if the δ increase as follows;

イロト イ御 トイミト イミト ニミー りんぺ

$$
\delta, \n\delta + \frac{\delta^{100}}{2}, \n\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2} \n\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3} \n\vdots
$$

Then density is always

What if the δ increase as follows;

$$
\delta, \n\delta + \frac{\delta^{100}}{2}, \n\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2} \n\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2} + \frac{\delta^{100}}{2^3} \n\vdots \n\therefore
$$
\nThen density is always

Then density is always $<\delta+\delta^{100}\sum_{i=1}^{\infty}\frac{1}{2^{i}}$ $\frac{1}{2^{i}} = \delta + \delta^{100}.$

What if the δ increase as follows: δ . $\delta + \frac{\delta^{100}}{2}$, 2 $\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}$ $\frac{100}{2^2}$. $\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2}$ $\frac{100}{2^2} + \frac{\delta^{100}}{2^3}$ $rac{100}{2^3}$ Then density is always $<\delta+\delta^{100}\sum_{i=1}^{\infty}\frac{1}{2^{i}}$ $\frac{1}{2^{i}} = \delta + \delta^{100}.$ If $\delta = \frac{1}{10}$ then density is always $< \frac{1}{10} + \frac{1}{10^{100}}$.

KORK EXTERNE DRAM

What if the δ increase as follows: δ . $\delta + \frac{\delta^{100}}{2}$ $\frac{1}{2}$, $\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}$ $\frac{100}{2^2}$. $\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2}$ $\frac{100}{2^2} + \frac{\delta^{100}}{2^3}$ $rac{100}{2^3}$ Then density is always $<\delta+\delta^{100}\sum_{i=1}^{\infty}\frac{1}{2^{i}}$ $\frac{1}{2^{i}} = \delta + \delta^{100}.$ If $\delta = \frac{1}{10}$ then density is always $< \frac{1}{10} + \frac{1}{10^{100}}$. Much less than 0.67 or any number you could prove Roth's Theorem for.

KED KAR KED KED E YOUN

What if the δ increase as follows: δ . $\delta + \frac{\delta^{100}}{2}$ $\frac{1}{2}$, $\delta + \frac{\delta^{100}}{2} + \frac{\delta^{100}}{2^2}$ $\frac{100}{2^2}$. $\delta + \frac{\delta^2}{2} + \frac{\delta^{100}}{2^2}$ $\frac{100}{2^2} + \frac{\delta^{100}}{2^3}$ $rac{100}{2^3}$ Then density is always $<\delta+\delta^{100}\sum_{i=1}^{\infty}\frac{1}{2^{i}}$ $\frac{1}{2^{i}} = \delta + \delta^{100}.$ If $\delta = \frac{1}{10}$ then density is always $< \frac{1}{10} + \frac{1}{10^{100}}$. Much less than 0.67 or any number you could prove Roth's Theorem for. It turns out that we increase δ enough so that the density goes to

1.

We will get $\delta' = \delta + \frac{\delta}{80}$. Let

We will get $\delta' = \delta + \frac{\delta}{80}$. Let $\delta_0 = \delta$.

We will get
$$
\delta' = \delta + \frac{\delta}{80}
$$
.
\nLet
\n $\delta_0 = \delta$.
\n $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$.

KOKK@KKEKKEK E 1990

We will get
$$
\delta' = \delta + \frac{\delta}{80}
$$
.
\nLet
\n $\delta_0 = \delta$.
\n $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$.
\n $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$

K ロ K K B K K B K X B X X A X Y Q Q Q Y

We will get
$$
\delta' = \delta + \frac{\delta}{80}
$$
. Let $\delta_0 = \delta$. $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$. $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$ \nPlug in $L = n - 1$

KOKK@KKEKKEK E 1990

We will get
$$
\delta' = \delta + \frac{\delta}{80}
$$
. Let $\delta_0 = \delta$. $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}$. $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$ $\text{Plug in } L = n - 1$ $\delta_n = (1 + \frac{1}{80})^{n-1}\delta$

KOKK@KKEKKEK E 1990

We will get $\delta' = \delta + \frac{\delta}{80}$. Let $\delta_0 = \delta$. $\delta_n = \delta n - 1 + \frac{\delta_{n-1}}{80} = (1 + \frac{1}{80})\delta^{n-1}.$ $\delta_n = (1 + \frac{1}{80})^L \delta^{n-L}$ Plug in $L = n - 1$ $\delta_{\textit{n}} = (1+\frac{1}{80})^{\textit{n}-1} \delta$ Since $1+\frac{1}{80} > 1$, δ_n goes to infty. In particular, at some point its > 0.67 .

KED KAR KED KED E YOUN

Detour: Discrete Fourier Transform

KORK EXTERNE DRAM