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What a Mono Unit Square?

Def a Mono Unit Square is a unit square with all four corners
the same color.

Def A coloring is proper if there is no unit square.

Question Is there a proper 2-coloring of R2?

Answer Yes. We leave this for an exercise.
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What About Higher Dimensions?

Vote
1) There is a proper 2-col of R2 but not R3.
2) There is a proper 2-col of R3 but not R4.
3) There is a proper 2-col of R4 but not R5.
4) There is a proper 2-col of R5 but not R6.
5) The exact cutoff is Unknown to Science!

The answer is on the next slide.
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The Exact Cutoff is Unknown To Science!

Here is all that is known:

I There is a proper 2-col of R2.

I There is no proper 2-col of R4.

The proof is a bit beyond this class so we prove the following
instead: We will show that
For all COL : R6 → [2] there exists a Mono Unit Square.
For all COL : R5 → [2] there exists a Mono Unit Square.
The R5 result is really an observation about the R6 proof.
We will also have comments on the R4 proof.
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The following theorem is due to Stefan Burr, as noted earlier.

Thm For all COL : R6 → [2] there exists a Mono Unit Square.

Let COL : R6 → [2].

We form a coloring COL′ :
([6]
2

)
→ [2].
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We Look at 15 Points in R6

We look at the following 15 points of R6.

p1,2 = ( 1√
2
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2
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2
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2
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p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
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Define COL′(i , j) = COL(pi ,j).



We Look at 15 Points in R6

We look at the following 15 points of R6.
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).

...
p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
).

Define COL′(i , j) = COL(pi ,j).



We Look at 15 Points in R6

We look at the following 15 points of R6.
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).

...
p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
).

Define COL′(i , j) = COL(pi ,j).



We Look at 15 Points in R6

We look at the following 15 points of R6.
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).

...

p5,6 = (0, 0, 0, 0, 1√
2
, 1√

2
).

Define COL′(i , j) = COL(pi ,j).



We Look at 15 Points in R6

We look at the following 15 points of R6.
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).

...
p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
).

Define COL′(i , j) = COL(pi ,j).



We Look at 15 Points in R6

We look at the following 15 points of R6.
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).

...
p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
).

Define COL′(i , j) = COL(pi ,j).



Use Mono C4 Theorem

C4 Thm For all 2-colorings of
([6]
2

)
→ [2] there is a mono C4.

By Thm, COL′ has a mono C4. We assume

COL′(1, 2) = COL′(2, 3) = COL′(3, 4) = COL′(4, 1) = R
Hence
COL(p1,2) = COL(p2,3) = COL(p3,4) = COL(p4,1) = R

These points form a unit square:

pi ,i+1 and pi+1,i+2

On ith coordinate pi ,i+1 is 1√
2

, pi+1,i+2 is 0.

On ith coordinate pi ,i+1 is 0, pi+1,i+2 is 1√
2

.

On all other coordinates pi ,i+1 and pi+1,i+2 agree.

Hence d(pi ,i+1, pi+1,i+2) =
√

( 1√
2

)2 + ( 1√
2

)2 = 1.
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Improvements On R6



What About R5?

Observation The 15 vectors

p1,2 = ( 1√
2
, 1√

2
, 0, 0, 0, 0), p1,3 = ( 1√

2
, 0, 1√

2
, 0, 0, 0), · · · ,

p5,6 = (0, 0, 0, 0, 1√
2
, 1√

2
)

are all on the 5-dim hyperplane
H = {(x1, . . . , x6) ∈ R6 : x1 + x2 + x3 + x4 + x5 + x6 = 2√

2
.

Hence there is a rotation that maps H to {(x1, x2, x3, x4, x5, 0)}.
We modify the rotation to omit the last coordinate. So f maps H
to R5.

Key Points
1) f is a bijection from H to R5. Let g be its inverse.
2) f preserves distance: d(x , y) = d(f (x), f (y)).

We use this in proof on next slide.
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Key Points
1) f is a bijection from H to R5. Let g be its inverse.
2) f preserves distance: d(x , y) = d(f (x), f (y)).

We use this in proof on next slide.
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Theorem For R5

Thm For all COL : R5 → [2] there exists a Mono Unit Square.
Recall that for 1 ≤ i < j ≤ 6, pi ,j ∈ H ⊆ R6.

For all 1 ≤ i < j ≤ 6 let qi ,j = g(pi ,j) ∈ R5.

Let COL′ : {pi ,j : 1 ≤ i ≤ j ≤ 6} → [2] be COL′(pi ,j) = COL(qi ,j).

By the proof of the R6 theorem there is a mono (using COL′) unit
square using four points from {pi ,j : 1 ≤ i ≤ j ≤ 6}.
Map those four points with f to get four points in R5 that form a
mono unit square.
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What About R4?

Note

1) The proof we presented for R6 used very little geometry.
2) The proof we presented for R5 used a bit more geometry.

Kent Cantwell showed
Thm For all COL : R4 → [2] there exists a Mono Unit Square.

His proof used a lot more geometry than the proof for R6 and R5.

Here is the link to the paper:
https://www.cs.umd.edu/~gasarch/COURSES/752/S25/

slides/R4square.pdf
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