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Wanted: Simple and HS
Lower Bounds on R(k)

Or Evidence That This is
an Impossible Dream

Exposition by William Gasarch



Recall

I presented a HS proof that Ω(k3) ≤ R(k).

There is a very complicated proof that 2Ω(kδ) ≤ R(k).

We want a HS proof of a BETTER result.

Or evidence that this is hard to obtain (e.g., assuming P 6= NP).
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Restating What We Need

PROBLEM
We want to find a coloring of the edges of Kn without a mono Kk

for (say) n = 2ck for some c .

WRONG QUESTION
I only need show that such a coloring exists.

Key This was Erdös ’s big breakthrough.
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Pick a coloring at Random!

Numb of colorings: 2(n2).

Numb of colorings: that have mono Kk is bounded by(
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Prob that a random 2-coloring HAS a homog set is bounded by(n
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Pick a coloring at Random! (cont)

Recap If we color
([n]

2

)
at random then

Prob that the coloring HAS a homog set of size k is ≤ nk

k!2k(k−1)/2 .

IF this prob is < 1 then there exists a coloring of the edges
([n]

2

)
with no homog set of size k.

So if nk

k!2k(k−1)/2 < 1 then there exists a coloring of the edges
([n]

2

)
with no homog set of size k.

We will work out the algebra of nk

k!2k(k−1)/2 < 1 on the next slide;
however, the real innovation here is that we show that a coloring
exists by showing that the prob that it does not exists is < 1.
This is The Probabilistic Method. We talk more about its
history later.
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Upper and Lower Bounds

1

e
√

2
k2k/2 ≤ R(k) ≤ 22k

√
k

David Conlon https://arxiv.org/pdf/math/0607788.pdf

using sophisticated methods improved the upper bound to:

(∀a ∈ N)

[
R(k) ≤ 22k

ka

]

Joel Spencer spencerLBR using sophisticated methods improved
the lower bound to:

√
2

e
k2k/2 ≤ R(k).

Joel Spencer told me he was hoping for a better improvement.

https://arxiv.org/pdf/math/0607788.pdf
spencerLBR
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The Prob Method

The Prob Method Showing that an object exists by showing that
the prob that it exists is nonzero.

I Used a lot in combinatorics, algorithms, complexity theory.

I Uses very sophisticated probability and has been the
motivation for new theorems in probability.

I Origin is Ramsey Theory. Erdös developed it to get better
lower bounds on R(k) as shown here.

I I would not call the Prob Method and application of Ramsey.
(Some articles do.)

I I would say that Ramsey Theory was the initial motivation for
the Prob Method which is now used for many other things,
some of which are practical.
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History

1) In 1958 the only LB on R(k) known was R(k) ≥ Ω(k2).

2)(1959) Erdös dev. Prob. Method to show R(k) ≥ Ω(k2k/2).

3) This inspired the following lines of research:

a) The Prob. Method is non-constructive. Work on constructive
LBs. List in last slide packet summarized this work. All of those
result are after Erdös paper.

b) We know 2k/2 ≤ R(k) ≤ 22k−1. Progress on both ends.

c) Prob Method used: LB on other Ram Numbs (e.g., bipartite).

d) Work on Const for LB: other Ram Numbers (e.g., bipartite).
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