BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Wanted: Simple and HSLower Bounds on R(k)Or Evidence That This isan Impossible Dream

Exposition by William Gasarch

Recall

<ロト < 畳 > < 三 > < 三 > のへの

I presented a HS proof that $\Omega(k^3) \leq R(k)$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

I presented a HS proof that $\Omega(k^3) \leq R(k)$. There is a very complicated proof that $2^{\Omega(k^{\delta})} \leq R(k)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

I presented a HS proof that $\Omega(k^3) \leq R(k)$. There is a very complicated proof that $2^{\Omega(k^{\delta})} \leq R(k)$. We want a HS proof of a BETTER result.

- I presented a HS proof that $\Omega(k^3) \leq R(k)$.
- There is a very complicated proof that $2^{\Omega(k^{\delta})} \leq R(k)$.
- We want a HS proof of a BETTER result.
- Or evidence that this is hard to obtain (e.g., assuming $P \neq NP$).

ション ふゆ アメビア メロア しょうくしゃ

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for (say) $n = 2^{ck}$ for some c.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for (say) $n = 2^{ck}$ for some c.

WRONG QUESTION

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for (say) $n = 2^{ck}$ for some c.

WRONG QUESTION

I only need show that such a coloring exists.

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for (say) $n = 2^{ck}$ for some c.

ション ふゆ アメビア メロア しょうくしゃ

WRONG QUESTION

I only need show that such a coloring exists.

Key This was Erdös 's big breakthrough.

Numb of colorings: $2^{\binom{n}{2}}$.

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

$$\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

$$\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}$$

Prob that a random 2-coloring HAS a homog set is bounded by

$$\frac{\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}}{2^{\binom{n}{2}}} \le \frac{\binom{n}{k} \times 2}{2^{\binom{k}{2}}} \le \frac{n^{k}}{k! 2^{k(k-1)/2}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap If we color $\binom{[n]}{2}$ at random then

Recap If we color $\binom{[n]}{2}$ at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap If we color $\binom{[n]}{2}$ at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$. IF this prob is < 1 then **there exists** a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

Recap If we color $\binom{[n]}{2}$ at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then there exists a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

Recap If we color $\binom{[n]}{2}$ at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then there exists a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

We will work out the algebra of $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is < 1.

Recap If we color $\binom{[n]}{2}$ at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then there exists a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

We will work out the algebra of $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is < 1. This is **The Probabilistic Method**. We talk more about its history later.

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k}2^{(k-1)/2} = (k!)^{1/k}\frac{1}{\sqrt{2}}2^{k/2}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k} 2^{(k-1)/2} = (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} \left(\frac{k}{e}\right)^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k} 2^{(k-1)/2} = (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} \left(\frac{k}{e}\right)^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right)$
 $n < (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k/2}$
 $\sim (2\pi k)^{1/2k} \frac{1}{e\sqrt{2}} k 2^{k/2}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k} 2^{(k-1)/2} = (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} \left(\frac{k}{e}\right)^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right)$
 $n < (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k/2}$
 $\sim (2\pi k)^{1/2k} \frac{1}{e\sqrt{2}} k 2^{k/2}$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Want *n* large. $n = \frac{1}{e\sqrt{2}}k2^{k/2}$ works.

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

ション ふゆ アメビア メロア しょうくしゃ

Joel Spencer told me he was hoping for a better improvement.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▶ Used a lot in combinatorics, algorithms, complexity theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▶ Used a lot in combinatorics, algorithms, complexity theory.

Uses very sophisticated probability and has been the motivation for new theorems in probability.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- ▶ Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- ▶ Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)
- I would say that Ramsey Theory was the initial motivation for the Prob Method which is now used for many other things, some of which are practical.

- * ロ > * 週 > * 注 > * 注 > ・ 注 - の < @

1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$.

1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$. 2)(1959) Erdös dev. Prob. Method to show $R(k) \ge \Omega(k2^{k/2})$.

- 1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$.
- 2)(1959) Erdös dev. Prob. Method to show $R(k) \ge \Omega(k2^{k/2})$.

3) This inspired the following lines of research:

1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$.

2)(1959) Erdös dev. Prob. Method to show $R(k) \ge \Omega(k2^{k/2})$.

3) This inspired the following lines of research:

a) The Prob. Method is non-constructive. Work on constructive LBs. List in last slide packet summarized this work. All of those result are after Erdös paper.

1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$.

2)(1959) Erdös dev. Prob. Method to show $R(k) \ge \Omega(k2^{k/2})$.

3) This inspired the following lines of research:

a) The Prob. Method is non-constructive. Work on constructive LBs. List in last slide packet summarized this work. All of those result are after Erdös paper.

b) We know $2^{k/2} \leq R(k) \leq 2^{2k-1}$. Progress on both ends.

1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$.

2)(1959) Erdös dev. Prob. Method to show $R(k) \ge \Omega(k2^{k/2})$.

3) This inspired the following lines of research:

a) The Prob. Method is non-constructive. Work on constructive LBs. List in last slide packet summarized this work. All of those result are after Erdös paper.

- b) We know $2^{k/2} \le R(k) \le 2^{2k-1}$. Progress on both ends.
- c) Prob Method used: LB on other Ram Numbs (e.g., bipartite).

1) In 1958 the only LB on R(k) known was $R(k) \ge \Omega(k^2)$.

2)(1959) Erdös dev. Prob. Method to show $R(k) \ge \Omega(k2^{k/2})$.

3) This inspired the following lines of research:

a) The Prob. Method is non-constructive. Work on constructive LBs. List in last slide packet summarized this work. All of those result are after Erdös paper.

- b) We know $2^{k/2} \le R(k) \le 2^{2k-1}$. Progress on both ends.
- c) Prob Method used: LB on other Ram Numbs (e.g., bipartite).
- d) Work on Const for LB: other Ram Numbers (e.g., bipartite).

A D > A P > A E > A E > A D > A Q A