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Notation

Let a,n € N. Let A be a set. A can be finite or infinite.
1. N is the naturals which are {1,2,3,...}.
2. [n] =A1,...,n}.
3. 2 is the powerset of A.
4, (:\) is the set of all a-sized subsets of A.

Let COL: (%) — [2]. A set H C A is homogenous if COL
restricted to (%) is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H C Ais a homog if either

(a) every {x1,...,xa} € (';’) has written a paper together, or

(b) every {x1,...,xa} € (/) has NOT written a paper together.
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The Infinite Hypergraph Ramsey Theorem

Thm For all a > 1, for all COL: (Ij) — [2] there exists an infinite
homog set.

a = 1: V 2-colorings of N some color appears co. The set of x € N
of that color is an infinite homog set.

a =2: oo Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3; These Slides!. We will use a =1 and a = 2 cases.

We do some an example of the first few steps of the construction.
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First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so | won't
(.

Look at all triples that have 1 in them.

COL(1,2,3) =

COL(1,2,4) =

COL(1,2,5) =

COL(1,3,4) = R.

What to make of this? Discuss.
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Construct a Coloring of @)

We are given COL: () — [2].

Let
COL’: <N _2{1}> — N be defined by

COL/(y,z) = COL(1,y, z).

Apply the a = 2 case to get a homog (relative to COL’) set H;.
We'll say the color is ¢;

For all y,z € N—{1], COL(1,y, z) = c1.

If y € H; we say that y agrees.
If y ¢ Hy we say that y disagrees.

Kill all those who disagree!
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We now have x; = 1.

Hi: for all y,z € Hy, COL(xy,y,z) = c1.
c.

X is the least element of H;.

COL/: (M=a}) 5 2] is defined by COL/(y, z) = COL/(x2,y, 2)
H, is the homog set.

¢y is the color of the homog set.

Next Slide is General Case.
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Construction of xsy1, Hsy1, Cs11

Assume we have xs, Hs, Cs.

Xs+1 IS the least element of Hs.

COL/: (M=en)) 5 [2] is defined by
COL/(y,z) = COL/(xx41,y, 2)

Hs. 1 is the infinite homog set from COL/'.
Cs+1 is the color of Hgyg.
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The Coloring of the Nodes

ONONONONOR

(V1 < i < j)[COL(x1, xi,xj) = R (more generally cy).
(V2 < i < j)[COL(x2, xi, xj) = B (more generally ).
(V3 < i < j)[COL(x3, xi, xj) = B (more generally c3).

What do you think our next step is?
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Some Color Appears Infinitely Often

ONONONBONOR

Some color appears infinitely often, say R.

H={y e X:COL(y) =

@@@.@

For all i < j < k, COL(x;, xj, xx) = R. (More generally c.)

H is clearly a homog set!
DONE!
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The Infinite a-Ary Ramsey Theorem

Thm For all a > 1, for all COL: (Ij) — [2] there exists an infinite
homog set.

a = 1: V 2-colorings of N some color appears co. The set of x € N
of that color is an infinite homog set.

a =2: oo Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3; These Slides!. We will use a =1 and a = 2 cases.

a > 4: Might be a HW. Should be easy for you now.
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Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on Ry(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on R,(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to R,(k).



