Finite Ramsey Theorem For 3-Hypergraph: Better Bounds

Exposition by William Gasarch

December 10, 2024

Credit Where Credit is Due

The main theorem in these slides, in fact not just the 3-ary case but also the *a*-ary case, appeared in **Combinatorial Theorems on Classifications of Subsets of a Given Set** by Erdös and Rado (1952).

Credit Where Credit is Due

The main theorem in these slides, in fact not just the 3-ary case but also the *a*-ary case, appeared in **Combinatorial Theorems on Classifications of Subsets of a Given Set** by Erdös and Rado (1952).

Proceedings of the London Math Society, Volume 2, No. 3, 1952.

Credit Where Credit is Due

The main theorem in these slides, in fact not just the 3-ary case but also the a-ary case, appeared in

Combinatorial Theorems on Classifications of Subsets of a Given Set

by Erdös and Rado (1952).

Proceedings of the London Math Society, Volume 2, No. 3, 1952.

Here is a link
https://www.cs.umd.edu/users/gasarch/TOPICS/
canramsey/ErdosRado2.pdf

Thm $(\forall a)(\forall k)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm $(\forall a)(\forall k)$ $(\exists n)$ such that

Thm $(\forall a)(\forall k)$ $(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \to [2])$ there exists an homog set of size k.

Thm $(\forall a)(\forall k)$ $(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. $a = 1: \forall 2\text{-colorings of } [2k - 1]$ some color appears k times. The set of all x with that color is a homog set of size k.

ション ふぼう メリン メリン しょうくしゃ

Thm $(\forall a)(\forall k)$ $(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. $a = 1: \forall 2$ -colorings of [2k - 1] some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

Thm $(\forall a)(\forall k)$ $(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. $a = 1: \forall 2\text{-colorings of } [2k - 1]$ some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

a = 3: We proved this with n = TOW(2k - 1).

Thm $(\forall a)(\forall k)$ $(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{a} \rightarrow [2])$ there exists an homog set of size k. $a = 1: \forall 2\text{-colorings of } [2k - 1]$ some color appears k times. The set of all x with that color is a homog set of size k.

a = 2: This is the finite Ramsey Thm for Graphs, which gave $n = 2^{2k-1}$. Our proof used a = 1 case.

a = 3: We proved this with n = TOW(2k - 1). We will do much better.

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: {[n] \choose 3} \rightarrow [2])$ there exists an homog set of size k.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: {[n] \choose 3} \rightarrow [2])$ there exists an homog set of size k.

ション ふゆ アメビア メロア しょうくしゃ

The proof took *n* and did the following:

1) Start with $H_1 = [n]$.

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: {[n] \choose 3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

- 1) Start with $H_1 = [n]$.
- 2) Apply 2-ary Ramsey Theory 2k 1 times. $|H_i| \ge \Omega(\log(|H_{i-1}|))$.

ション ふゆ アメビア メロア しょうくしゃ

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

- 1) Start with $H_1 = [n]$.
- 2) Apply 2-ary Ramsey Theory 2k 1 times. $|H_i| \ge \Omega(\log(|H_{i-1}|))$.

3) Apply 1-ary Ramsey Theory 1 time. $H = H_{2k-1}/2$.

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: {[n] \choose 3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

- 1) Start with $H_1 = [n]$.
- 2) Apply 2-ary Ramsey Theory 2k 1 times. $|H_i| \ge \Omega(\log(|H_{i-1}|))$.

3) Apply 1-ary Ramsey Theory 1 time. $H = H_{2k-1}/2$.

Idea We would get a much better bound if we did:

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

- 1) Start with $H_1 = [n]$.
- 2) Apply 2-ary Ramsey Theory 2k 1 times. $|H_i| \ge \Omega(\log(|H_{i-1}|))$.

3) Apply 1-ary Ramsey Theory 1 time. $H = H_{2k-1}/2$.

Idea We would get a much better bound if we did:

1) Start with $H_1 = [n]$.

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

- 1) Start with $H_1 = [n]$.
- 2) Apply 2-ary Ramsey Theory 2k 1 times. $|H_i| \ge \Omega(\log(|H_{i-1}|))$.

3) Apply 1-ary Ramsey Theory 1 time. $H = H_{2k-1}/2$.

Idea We would get a much better bound if we did:

- 1) Start with $H_1 = [n]$.
- 2) Apply 1-ary Ramsey Theory lots of times. $|H_i| \ge H_{i-1}/2$.

Thm $(\forall k)(\exists n)$ such that $(\forall \text{COL}: \binom{[n]}{3} \rightarrow [2])$ there exists an homog set of size k.

The proof took *n* and did the following:

- 1) Start with $H_1 = [n]$.
- 2) Apply 2-ary Ramsey Theory 2k 1 times. $|H_i| \ge \Omega(\log(|H_{i-1}|))$.

3) Apply 1-ary Ramsey Theory 1 time. $H = H_{2k-1}/2$.

Idea We would get a much better bound if we did:

- 1) Start with $H_1 = [n]$.
- 2) Apply 1-ary Ramsey Theory lots of times. $|H_i| \ge H_{i-1}/2$.
- 3) Apply 2-ary Ramsey Theory 1 time. $H = \Omega(\log H_i)$.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Look at all triples that have 1,2 in them.

Since every 3-subset has a color, harder to draw pictures so I won't :-(. Look at all triples that have 1,2 in them. COL(1,2,3) = R.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.
Look at all triples that have 1,2 in them.
COL(1,2,3) = R.
COL(1,2,4) = B.
```

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.
Look at all triples that have 1,2 in them.
COL(1,2,3) = R.
COL(1,2,4) = B.
COL(1,2,5) = B.
```

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.
Look at all triples that have 1, 2 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 2, 6) = R.
```

```
Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1, 2 in them.

COL(1, 2, 3) = \mathbb{R}.

COL(1, 2, 4) = \mathbb{B}.

COL(1, 2, 5) = \mathbb{B}.

COL(1, 2, 6) = \mathbb{R}.

:

COL(1, 2, n) = \mathbb{R}.
```

ション ふゆ アメビア メロア しょうくしゃ

```
Since every 3-subset has a color, harder to draw pictures so I won't
:-(.
Look at all triples that have 1,2 in them.
COL(1, 2, 3) = \mathbf{R}.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 2, 6) = \mathbf{R}.
\operatorname{COL}(1,2,n) = \mathbf{R}.
What to make of this?
```

ション ふゆ アメビア メロア しょうくしゃ

```
Since every 3-subset has a color, harder to draw pictures so I won't
:-(.
Look at all triples that have 1,2 in them.
COL(1, 2, 3) = \mathbf{R}.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 2, 6) = \mathbf{R}.
\operatorname{COL}(1,2,n) = \mathbf{R}.
What to make of this? Discuss.
```

We are given COL: $\binom{[n]}{3} \rightarrow [2]$.

We are given COL: $\binom{[n]}{3} \rightarrow [2]$. $x_1 = 1$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We are given COL: $\binom{[n]}{3} \rightarrow [2]$. $x_1 = 1$. $x_2 = 2$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.
 $x_1 = 1$. $x_2 = 2$. $H_1 = [n] - \{1, 2\}$.

We are given COL:
$$\binom{[n]}{3} \to [2]$$
.
 $x_1 = 1$. $x_2 = 2$. $H_1 = [n] - \{1, 2\}$.
COL': $H_1 \to [2]$ is COL' $(z) = \text{COL}(x_1, x_2, z)$.

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.
 $x_1 = 1$. $x_2 = 2$. $H_1 = [n] - \{1, 2\}$.
COL': $H_1 \rightarrow [2]$ is COL' $(z) = \text{COL}(x_1, x_2, z)$.
 $c_{1,2}$ is the color that occurs the most often.

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.
 $x_1 = 1$. $x_2 = 2$. $H_1 = [n] - \{1, 2\}$.
COL': $H_1 \rightarrow [2]$ is COL' $(z) = \text{COL}(x_1, x_2, z)$.
 $c_{1,2}$ is the color that occurs the most often.

$$H_2 = \{z : \text{COL}(x_1, x_2, z) = c_{1,2}\}.$$
 Note $|H_2| \ge |H_1|/2.$
First Stage Formally

We are given COL:
$$\binom{[n]}{3} \rightarrow [2]$$
.
 $x_1 = 1$. $x_2 = 2$. $H_1 = [n] - \{1, 2\}$.
COL': $H_1 \rightarrow [2]$ is COL' $(z) = \text{COL}(x_1, x_2, z)$.
 $c_{1,2}$ is the color that occurs the most often.

$$H_2 = \{z : \text{COL}(x_1, x_2, z) = c_{1,2}\}.$$
 Note $|H_2| \ge |H_1|/2.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Now what? Discuss.

We have $H_1, x_1, x_2, c_{1,2}, H_2$

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$.

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable.

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable. $COL': H_2 \rightarrow [2]$ is $COL'(z) = COL(x_1, x_3, z)$.

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable. $COL': H_2 \rightarrow [2]$ is $COL'(z) = COL(x_1, x_3, z)$. $c_{1,3}$ is the color that occurs the most often.

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable. $COL': H_2 \rightarrow [2]$ is $COL'(z) = COL(x_1, x_3, z)$. $c_{1,3}$ is the color that occurs the most often.

$$H_3 = \{z : \text{COL}(x_1, x_2, z) = c_{1,2}\}.$$
 Note $|H_3| \ge |H_2|/2 \ge |H_1|/2^2.$

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable. $COL': H_2 \rightarrow [2]$ is $COL'(z) = COL(x_1, x_3, z)$. $c_{1,3}$ is the color that occurs the most often.

 $H_3 = \{z : \operatorname{COL}(x_1, x_2, z) = c_{1,2}\}.$ Note $|H_3| \ge |H_2|/2 \ge |H_1|/2^2.$ $\operatorname{COL}' : H_3 \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_2, x_3, z).$

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable. $COL': H_2 \rightarrow [2]$ is $COL'(z) = COL(x_1, x_3, z)$. $c_{1,3}$ is the color that occurs the most often.

 $H_3 = \{z : \operatorname{COL}(x_1, x_2, z) = c_{1,2}\}.$ Note $|H_3| \ge |H_2|/2 \ge |H_1|/2^2.$ $\operatorname{COL}' : H_3 \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_2, x_3, z).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $c_{2,3}$ is the color that occurs the most often.

We have $H_1, x_1, x_2, c_{1,2}, H_2$ x_3 is the least element of H_2 . Discuss what to do next. Key Will look at $COL(x_1, x_3, z)$ and $COL(x_2, x_3, z)$. Notation We will use H_3 as a running variable. $COL': H_2 \rightarrow [2]$ is $COL'(z) = COL(x_1, x_3, z)$. $c_{1,3}$ is the color that occurs the most often.

 $H_3 = \{z : \operatorname{COL}(x_1, x_2, z) = c_{1,2}\}.$ Note $|H_3| \ge |H_2|/2 \ge |H_1|/2^2.$ $\operatorname{COL}' : H_3 \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_2, x_3, z).$

 $c_{2,3}$ is the color that occurs the most often.

$$H_3 = \{z : \text{COL}(x_2, x_2, z) = c_{2,3}\}.$$
 Note $|H_3| \ge |H_3|/2 \ge |H_1|/2^3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} \colon 1 \leq i < j \leq s\}$

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} \colon 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s .

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} \colon 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $\operatorname{COL}(x_1, x_{s+1}, z)$, $\operatorname{COL}(x_2, x_{s+1}, z)$, ..., $\operatorname{COL}(x_s, x_{s+1}, z)$.

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} \colon 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $\operatorname{COL}(x_1, x_{s+1}, z)$, $\operatorname{COL}(x_2, x_{s+1}, z)$, \ldots , $\operatorname{COL}(x_s, x_{s+1}, z)$. Notation We will use H_{s+1} as a running variable.

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} : 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $\operatorname{COL}(x_1, x_{s+1}, z)$, $\operatorname{COL}(x_2, x_{s+1}, z)$, \ldots , $\operatorname{COL}(x_s, x_{s+1}, z)$. Notation We will use H_{s+1} as a running variable. $\operatorname{COL}': H_s \to [2]$ is $\operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z)$.

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} : 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . **Key** $\operatorname{COL}(x_1, x_{s+1}, z)$, $\operatorname{COL}(x_2, x_{s+1}, z)$, \ldots , $\operatorname{COL}(x_s, x_{s+1}, z)$. **Notation** We will use H_{s+1} as a running variable. $\operatorname{COL}': H_s \rightarrow [2]$ is $\operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z)$. $c_{1,s+1}$ is the color that occurs the most often.

We have H_s, x_1, \ldots, x_s and $\{c_{i,j} \colon 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $\operatorname{COL}(x_1, x_{s+1}, z)$, $\operatorname{COL}(x_2, x_{s+1}, z)$, \ldots , $\operatorname{COL}(x_s, x_{s+1}, z)$. Notation We will use H_{s+1} as a running variable. $\operatorname{COL}' \colon H_s \to [2]$ is $\operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z)$. $c_{1,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z \colon \operatorname{COL}(x_1, x_{s+1}, z) = c_{1,s+1}\}$.

We have H_s, x_1, \ldots, x_s and $\{c_{i,j}: 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . **Key** $\operatorname{COL}(x_1, x_{s+1}, z)$, $\operatorname{COL}(x_2, x_{s+1}, z)$, ..., $\operatorname{COL}(x_s, x_{s+1}, z)$. **Notation** We will use H_{s+1} as a running variable. $\operatorname{COL}': H_s \rightarrow [2]$ is $\operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z)$. $c_{1,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z: \operatorname{COL}(x_1, x_{s+1}, z) = c_{1,s+1}\}$. $\operatorname{COL}': H_{s+1} \rightarrow [2]$ is $\operatorname{COL}'(z) = \operatorname{COL}(x_2, x_{s+1}, z)$.

We have $H_s, x_1, ..., x_s$ and $\{c_{i,i} : 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $COL(x_1, x_{s+1}, z)$, $COL(x_2, x_{s+1}, z)$, ..., $COL(x_s, x_{s+1}, z)$. **Notation** We will use H_{s+1} as a running variable. $\operatorname{COL}': H_s \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z).$ $c_{1,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z : COL(x_1, x_{s+1}, z) = c_{1,s+1}\}.$ $\operatorname{COL}': H_{s+1} \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_2, x_{s+1}, z).$ $c_{2,s+1}$ is the color that occurs the most often.

・ロト・西ト・モート ヨー シタク

We have $H_s, x_1, ..., x_s$ and $\{c_{i,i} : 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $COL(x_1, x_{s+1}, z)$, $COL(x_2, x_{s+1}, z)$, ..., $COL(x_s, x_{s+1}, z)$. **Notation** We will use H_{s+1} as a running variable. $\operatorname{COL}': H_s \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z).$ $c_{1,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z: COL(x_1, x_{s+1}, z) = c_{1,s+1}\}.$ $\operatorname{COL}': H_{s+1} \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_2, x_{s+1}, z).$ $c_{2,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z : COL(x_2, x_{s+1}, z) = c_{2,s+1}\}.$

We have $H_s, x_1, ..., x_s$ and $\{c_{i,i} : 1 \le i < j \le s\}$ x_{s+1} is the least element of H_s . Key $COL(x_1, x_{s+1}, z)$, $COL(x_2, x_{s+1}, z)$, ..., $COL(x_s, x_{s+1}, z)$. **Notation** We will use H_{s+1} as a running variable. $\operatorname{COL}': H_s \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_1, x_{s+1}, z).$ $c_{1,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z : COL(x_1, x_{s+1}, z) = c_{1,s+1}\}.$ $\operatorname{COL}': H_{s+1} \to [2] \text{ is } \operatorname{COL}'(z) = \operatorname{COL}(x_2, x_{s+1}, z).$ $c_{2,s+1}$ is the color that occurs the most often. $H_{s+1} = \{z : COL(x_2, x_{s+1}, z) = c_{2,s+1}\}.$ Keep doing this for x_3, \ldots, x_s .

 $|H_1| = n$

 $|H_1| = n$ H_{s+1} takes H_s and cuts it in half s times.

 $|H_1| = n$ H_{s+1} takes H_s and cuts it in half s times. $|H_{s+1}| \geq \frac{1}{2^s} |H_s|$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{split} |H_1| &= n \\ H_{s+1} \text{ takes } H_s \text{ and cuts it in half } s \text{ times.} \\ |H_{s+1}| &\geq \frac{1}{2^s} |H_s| \\ |H_{s+1}| &\geq \frac{1}{2^s} |H_s| = \frac{1}{2^s} \frac{1}{2^{s-1}} |H_{s-1}| = \frac{1}{2^{s+(s-1)}} |H_{s-1}|. \end{split}$$

ション ふぼう メリン メリン しょうくしゃ

$$\begin{split} |H_{1}| &= n \\ H_{s+1} \text{ takes } H_{s} \text{ and cuts it in half } s \text{ times.} \\ |H_{s+1}| &\geq \frac{1}{2^{s}} |H_{s}| \\ |H_{s+1}| &\geq \frac{1}{2^{s}} |H_{s}| = \frac{1}{2^{s}} \frac{1}{2^{s-1}} |H_{s-1}| = \frac{1}{2^{s+(s-1)}} |H_{s-1}|. \\ |H_{s+1}| &\geq \frac{1}{2^{s+(s-1)+\dots+1}} |H_{1}| \sim \frac{|H_{1}|}{2^{s^{2}/2}} = \frac{n}{2^{s^{2}/2}}. \end{split}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\begin{split} |H_{1}| &= n \\ H_{s+1} \text{ takes } H_{s} \text{ and cuts it in half } s \text{ times.} \\ |H_{s+1}| &\geq \frac{1}{2^{s}} |H_{s}| \\ |H_{s+1}| &\geq \frac{1}{2^{s}} |H_{s}| = \frac{1}{2^{s}} \frac{1}{2^{s-1}} |H_{s-1}| = \frac{1}{2^{s+(s-1)}} |H_{s-1}|. \\ |H_{s+1}| &\geq \frac{1}{2^{s+(s-1)+\dots+1}} |H_{1}| \sim \frac{|H_{1}|}{2^{s^{2}/2}} = \frac{n}{2^{s^{2}/2}}. \\ \text{Approx } |H_{s}| &\geq \frac{n}{2^{s^{2}/2}}. \end{split}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\begin{split} |H_{1}| &= n \\ H_{s+1} \text{ takes } H_{s} \text{ and cuts it in half } s \text{ times.} \\ |H_{s+1}| &\geq \frac{1}{2^{s}} |H_{s}| \\ |H_{s+1}| &\geq \frac{1}{2^{s}} |H_{s}| = \frac{1}{2^{s}} \frac{1}{2^{s-1}} |H_{s-1}| = \frac{1}{2^{s+(s-1)}} |H_{s-1}|. \\ |H_{s+1}| &\geq \frac{1}{2^{s+(s-1)+\dots+1}} |H_{1}| \sim \frac{|H_{1}|}{2^{s^{2}/2}} = \frac{n}{2^{s^{2}/2}}. \\ \text{Approx } |H_{s}| &\geq \frac{n}{2^{s^{2}/2}}. \\ \text{We will later see how big we need } n \text{ to be.} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○○

Assume we do the construction to get x_1, \ldots, x_s .

Assume we do the construction to get x_1, \ldots, x_s . We pick *s* later.

Assume we do the construction to get x_1, \ldots, x_s . We pick *s* later. How big does *n* have to be so that construction goes for *s* steps?

Assume we do the construction to get x_1, \ldots, x_s . We pick *s* later. How big does *n* have to be so that construction goes for *s* steps? $\frac{n}{2^{s^2/2}} \ge 1$

Assume we do the construction to get x_1, \ldots, x_s . We pick *s* later. How big does *n* have to be so that construction goes for *s* steps?

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

$$\frac{n}{2^{s^2/2}} \ge 1$$
$$n \ge 2^{s^2/2}.$$

The Coloring of Pairs of Vertices
▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

We have x_1, \ldots, x_s .

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$.

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}^{\prime\prime} \begin{pmatrix} \{x_1, \ldots, x_s\} \\ 2 \end{pmatrix} \to [2]$.

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}'' \begin{pmatrix} \{x_1, \ldots, x_s\} \\ 2 \end{pmatrix} \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$.

We later pick s such that $k \leq \log(s)/2$. Assume |H| = k.

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}''({x_1, \ldots, x_s}) \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$.

We later pick s such that $k \leq \log(s)/2$. Assume |H| = k.

Assume the color of the homog set is **R**.

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}'' \begin{pmatrix} \{x_1, \ldots, x_s\} \\ 2 \end{pmatrix} \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$. We later pick s such that $k \le \log(s)/2$. Assume |H| = k. Assume the color of the homog set is **R**. Assume

$$H = \{x_{i_1} < x_{i_2} < \cdots < x_{i_k}\}$$

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}'' \begin{pmatrix} \{x_1, \ldots, x_s\} \\ 2 \end{pmatrix} \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$. We later pick s such that $k \le \log(s)/2$. Assume |H| = k. Assume the color of the homog set is **R**. Assume

$$H = \{x_{i_1} < x_{i_2} < \cdots < x_{i_k}\}$$

Let a < b < c.

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}''({x_1, \ldots, x_s}) \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$. We later pick s such that $k \le \log(s)/2$. Assume |H| = k. Assume the color of the homog set is **R**. Assume

$$H = \{x_{i_1} < x_{i_2} < \cdots < x_{i_k}\}$$

Let a < b < c. Look at $COL(x_{i_a}, x_{i_b}, x_{i_c})$

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}''({x_1, \ldots, x_s}) \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$. We later pick s such that $k \le \log(s)/2$. Assume |H| = k. Assume the color of the homog set is **R**. Assume

$$H = \{x_{i_1} < x_{i_2} < \cdots < x_{i_k}\}$$

Let a < b < c. Look at $COL(x_{i_a}, x_{i_b}, x_{i_c})$ Since $x_{i_a}, x_{i_b} \in H$, $COL(x_{i_a}, x_{i_b}, z) = \mathbb{R}$ for any surviving z.

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}''({x_1, \ldots, x_s}) \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$. We later pick s such that $k \le \log(s)/2$. Assume |H| = k. Assume the color of the homog set is **R**. Assume

$$H = \{x_{i_1} < x_{i_2} < \cdots < x_{i_k}\}$$

Let a < b < c. Look at $COL(x_{i_a}, x_{i_b}, x_{i_c})$ Since $x_{i_a}, x_{i_b} \in H$, $COL(x_{i_a}, x_{i_b}, z) = \mathbb{R}$ for any surviving z. So $COL(x_{i_a}, x_{i_b}, x_{i_c}) = \mathbb{R}$.

(ロ)、(型)、(E)、(E)、(E)、(Q)、(C)

We have x_1, \ldots, x_s . For all $1 \le i < j \le s$ we have $c_{i,j}$. We have created a coloring $\operatorname{COL}''({x_1, \ldots, x_s}) \to [2]$. We apply 2-ary Ramsey to COL'' to get a homog set H of size $\log s/2$. We later pick s such that $k \le \log(s)/2$. Assume |H| = k. Assume the color of the homog set is **R**. Assume

$$H = \{x_{i_1} < x_{i_2} < \cdots < x_{i_k}\}$$

Let a < b < c. Look at $COL(x_{i_a}, x_{i_b}, x_{i_c})$ Since $x_{i_a}, x_{i_b} \in H$, $COL(x_{i_a}, x_{i_b}, z) = \mathbb{R}$ for any surviving z. So $COL(x_{i_a}, x_{i_b}, x_{i_c}) = \mathbb{R}$.

Hence H is homog for COL.

We need

We need

 $k \leq \log s/2$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We need

$$k \leq \log s/2$$

$2k \leq \log s$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We need

$$k \leq \log s/2$$

$2k \leq \log s$

 $s \ge 2^{2k}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We need

$$k \leq \log s/2$$

 $2k \leq \log s$

 $s \ge 2^{2k}$

$$n \ge 2^{s^2/2} \ge 2^{2^{4k}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We take $n = 2^{2^{4k}}$.

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$

- 1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$
- 2) One can show that there exists c_4, c_5, \ldots such that

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$

2) One can show that there exists c_4, c_5, \ldots such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$ 2) One can show that there exists $c_4, c_5, ...$ such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{c_5k}}}].$

ション ふぼう メリン メリン しょうくしゃ

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$ 2) One can show that there exists $c_4, c_5, ...$ such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{2^{c_5k}}}}].$ etc.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$ 2) One can show that there exists $c_4, c_5, ...$ such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{c_5k}}}].$ etc.
- 3) Conlon, Fox, Sudakov (2009) $(\forall k)[R_3(k) \le 2^{2^{2k}}]$..

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$ 2) One can show that there exists $c_4, c_5, ...$ such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{c_5k}}}].$ etc.

3) Conlon, Fox, Sudakov (2009) $(\forall k)[R_3(k) \le 2^{2^{2k}}]$.. This can be used to improve the c_4, c_5, \ldots

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$

2) One can show that there exists c_4, c_5, \ldots such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{2^{c_5k}}}}].$ etc.

3) Conlon, Fox, Sudakov (2009) $(\forall k)[R_3(k) \le 2^{2^{2^k}}]$.. This can be used to improve the c_4, c_5, \ldots

4) Why did it take 2009-1952= 57 years to improve the bound? Discuss.

ション ふぼう メリン メリン しょうくしゃ

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$

2) One can show that there exists c_4, c_5, \ldots such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_5k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{2^{c_5k}}}}].$ etc.

3) Conlon, Fox, Sudakov (2009) $(\forall k)[R_3(k) \le 2^{2^{2^k}}]$.. This can be used to improve the c_4, c_5, \ldots

4) Why did it take 2009-1952= 57 years to improve the bound? Discuss.

ション ふぼう メリン メリン しょうくしゃ

5) Lower Bound: $R_3(k) \ge 2^{k/2}$.

1) Erdös-Turan (1952) $(\forall k)[R_3(k) \le 2^{2^{4k}}].$

2) One can show that there exists c_4, c_5, \ldots such that $(\forall k)[R_4(k) \le 2^{2^{2^{c_4k}}}].$ $(\forall k)[R_5(k) \le 2^{2^{2^{2^{c_5k}}}}].$ etc.

3) Conlon, Fox, Sudakov (2009) $(\forall k)[R_3(k) \le 2^{2^{2^k}}]$.. This can be used to improve the c_4, c_5, \ldots

4) Why did it take 2009-1952= 57 years to improve the bound? Discuss.

ション ふぼう メリン メリン しょうくしゃ

- 5) Lower Bound: $R_3(k) \ge 2^{k/2}$.
- 6) The good money says $R_3(k) \ge 2^{2^{\Omega(k)}}$.