BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Euclidean Ramsey Theory: Triangles

Exposition by William Gasarch

January 23, 2025

Credit Where Credit is Due

The the main thm of these slides is due to Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Credit Where Credit is Due

The the main thm of these slides is due to Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

Euclidean Ramsey Theorems I

Credit Where Credit is Due

The the main thm of these slides is due to Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

Euclidean Ramsey Theorems I

Journal of Combinaorical Theory (A), Vol. 14, 341-363, 1973

Here is a link. https://www.cs.umd.edu/~gasarch/TOPICS/eramsey/ eramseyOne.pdf

Want an Equilateral Triangle

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Want an Equilateral Triangle

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color. **Vote**

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Want an Equilateral Triangle

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Vote

1) \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ a mono eq-tri.

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Vote

- 1) \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ a mono eq-tri.
- 2) \exists COL: $\mathbb{R}^2 \rightarrow [2]$ such that there are no mono eq-tri.

ション ふゆ アメビア メロア しょうくしゃ

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Vote

- 1) \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ a mono eq-tri.
- 2) \exists COL: $\mathbb{R}^2 \rightarrow [2]$ such that there are no mono eq-tri.

3) Unknown to Science!

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Vote

- 1) \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ a mono eq-tri.
- 2) \exists COL: $\mathbb{R}^2 \rightarrow [2]$ such that there are no mono eq-tri.

3) Unknown to Science!

Answer on next slide

Thm \exists COL: $\mathbb{R}^2 \rightarrow [2]$ with no mono Eq-Tri.

Thm $\exists \operatorname{COL} \colon \mathbb{R}^2 \to [2]$ with no mono Eq-Tri.

Leave as an exercise.

Thm \exists COL: $\mathbb{R}^2 \rightarrow [2]$ with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-(

Thm \exists COL: $\mathbb{R}^2 \rightarrow [2]$ with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-(How about a 2 - 2 - 2 triangle? :-)

Thm \exists COL: $\mathbb{R}^2 \rightarrow [2]$ with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-(How about a 2 - 2 - 2 triangle? :-) **Thats stupid!** Just scale the coloring. :-(

ション ふゆ アメビア メロア しょうくしゃ

Thm $\exists \text{ COL}: \mathbb{R}^2 \rightarrow [2]$ with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-(How about a 2 - 2 - 2 triangle? :-) Thats stupid! Just scale the coloring. :-(New Question either a mono 1 - 1 - 1 or mono 2 - 2 - 2 or \cdots .

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

- Let T_{α} be the $\alpha \alpha \alpha$ Eq Triangle.
- T_{α} is mono if all of the vertices are the same color.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let T_{lpha} be the lpha - lpha - lpha Eq Triangle.

 T_{α} is mono if all of the vertices are the same color.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Thm $\forall \mathrm{COL} \colon \mathbb{R}^2 \to [2]$ either

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle. T_{α} is mono if all of the vertices are the same color.

```
Thm \forall \text{COL} \colon \mathbb{R}^2 \to [2] either \exists a mono T_2, or
```

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Thm $\forall \text{COL} \colon \mathbb{R}^2 \to [2]$ either \exists a mono T_2 , or \exists a mono $T_{2\sqrt{3}}$, or

```
Let T_{\alpha} be the \alpha - \alpha - \alpha Eq Triangle.
```

 T_{α} is **mono** if all of the vertices are the same color.

ション ふゆ アメビア メロア しょうくしゃ

```
Thm \forall \text{COL} : \mathbb{R}^2 \rightarrow [2] either

\exists a mono T_2, or

\exists a mono T_{2\sqrt{3}}, or

\exists a mono T_4.
```

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Thm $\forall \text{COL} \colon \mathbb{R}^2 \to [2]$ either \exists a mono T_2 , or \exists a mono $T_{2\sqrt{3}}$, or \exists a mono T_4 . We prove this rather than $T_1 - T_{\sqrt{3}} - T_2$ since this makes the figures easier to draw.

(口) (問) (흔) (흔) 흔 키이()

Thm $\forall \text{COL} \colon \mathbb{R}^2 \to [2]$ either


```
Thm \forall \text{COL} \colon \mathbb{R}^2 \to [2] either \exists a mono T_2, or
```


*ロ * * @ * * ミ * ミ * ・ ミ * の < や

```
Thm \forall \text{COL} \colon \mathbb{R}^2 \to [2] either
\exists a mono T_2, or
\exists a mono T_{2\sqrt{3}}, or
```

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

```
Thm \forall \text{COL} : \mathbb{R}^2 \rightarrow [2] either

\exists a mono T_2, or

\exists a mono T_{2\sqrt{3}}, or

\exists a mono T_4.
```

Thm
$$\forall \text{COL}: \mathbb{R}^2 \rightarrow [2]$$
 either
 \exists a mono T_2 , or
 \exists a mono $T_{2\sqrt{3}}$, or
 \exists a mono T_4 .
Assume by way of contradiction that there is a $\text{COL}: \mathbb{R}^2 \rightarrow [2]$

with no mono T_2 , $T_{2\sqrt{3}}$ or T_4 .

There are Two R Points Two Apart

By Thm from last lecture \exists two points, an inch apart, same color. We can assume that (0,0) and (2,0) are **R**.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

There are Two R Points Two Apart

By Thm from last lecture \exists two points, an inch apart, same color. We can assume that (0,0) and (2,0) are **R**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

There are Two R Points Two Apart

By Thm from last lecture \exists two points, an inch apart, same color. We can assume that (0,0) and (2,0) are **R**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

On the next slide we add four more points of interest.

・ロト ・回 ・ ・ ヨ ・ ・ 回 ・ ・ つ く の

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト・日本・ヨト・ヨト・日・ つへぐ

 $(1,\sqrt{3})$ and $(1,-\sqrt{3})$ are B

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()・

 $(1,\sqrt{3})$ and $(1,-\sqrt{3})$ are B

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

 $(1,\sqrt{3})$ and $(1,-\sqrt{3})$ are B

 $(1,\sqrt{3}) - (1,-\sqrt{3}) - (4,0)$ is a $T_{2\sqrt{3}}$ so $\text{COL}(4,0) = \mathbb{R}$. Next picture has this information. $(\mathbf{4},\mathbf{0})$ is R

ふりゃん 同 ふぼとうぼう (日本)

(4,0) is **R**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(4,0) is **R**

 $(2,0) - (4,0) - (3,\sqrt{3})$ is a T_2 so $COL(3,\sqrt{3}) = B$. Next picture has this info.

・ロト・日本・ヨト・ヨト・日・ つへぐ

 $(\mathbf{3},\sqrt{\mathbf{3}})$ is **B**

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

 $(3,\sqrt{3})$ is **B**

Next picture removes stuff we don't need anymore.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Where We Are Now

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Where We Are Now

We add a the point $(2, 2\sqrt{3})$ on the next slide.

(ロト (個) (E) (E) (E) (E) のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

