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Finding Small Dominating Set
Via the Prob Method
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Dominating Sets

Def Let G = (V ,E ) be a graph. D ⊆ V is a dominating set if

(∀v ∈ V )[v ∈ D ∨ (∃y ∈ D)[(x , y) ∈ E ].

Easy Every graph has a dominating set of size n: D = V .

Question Does every graph have a smaller dominating set?

Answer No- take the graph with n vertices and no edges.

Modify the Problem What if we assume the min degree is ≥ d?

We sketch a proof that every graph with min degree d has a
dominating set of size ≤ f (n, d) where f (n, d) < n.
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Theorem on Dom Set

Thm If G = (V ,E ) is a graph on n vertices with min degree ≥ d
then G has a dominating set of size ≤ f (n, d).

Pf p is prob TBD.

Pick X ⊆ V as follows: For every v ∈ V choose x with prob p.

Each v ∈ V has prob p of being chosen, so E (|X |) = pn.

Let Y ⊆ V − X that DO NOT have an edge to an elt of X .

If v ∈ V then prob that v ∈ Y is prod of the following

I Prob v /∈ X . That’s (1− p).

I Prob that all ≥ d neighbors of v are not in X . That’s
≤ (1− p)d .

Hence prob v ∈ Y is ≤ (1− p)d+1. Hence E (|Y |) ≤ n(1− p)d+1.
Note that (1) X ∪ Y is a dominating set, and (2)

E (|X ∪ Y |) = E (|X |) + E (|Y |) ≤ np + n(1− p)d+1.
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Picking p: Set Up

E (|X ∪ Y |) = E (|X |) + E (|Y |) ≤ np + n(1− p)d+1.

Want to pick p to minimize this, but that’s messy. Instead:

np + (1− p)d+1 ≤ np + ne−p(d+1)

Want to pick p to minimize this. Will do it on next slide.
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Picking p to Minimizing E(|X ∪ Y |)

We need to minimize the following function on the interval [0, 1].

f (p) = np + ne−p(d+1)

f ′(p) = n + n(−(d + 1))e−p(d+1) Set to 0

n − n(d + 1)e−p(d+1) = 0
1− (d + 1)e−p(d+1) = 0
1 = (d + 1)e−p(d+1)

(d + 1)−1 = e−p(d+1)

− ln(d + 1) = −p(d + 1)
ln(d + 1) = p(d + 1)

p =
ln(d + 1)

d + 1
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Back to our Problem

E (|X ∪ Y |) ≤ np + ne−p(d+1) = n(p + e−p(d+1))

p =
ln(d + 1)

d + 1

p+e−p(d+1) = p+e− ln(d+1) =
ln(d + 1)

d + 1
+

1

d + 1
=

ln(d + 1) + 1

d + 1

E (|X ∪ Y |) ≤ n

(
ln(d + 1) + 1

d + 1

)
How good is this? Next Slide.
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Table of d :10-100

.

d ln(d+1)+1
d+1

10 0.3089
20 0.192596
30 0.143032
40 0.114965
50 0.0967025
60 0.0837848
70 0.0741223
80 0.0665981
90 0.0605589

100 0.0555953



Table of d100-1000

.

d ln(d+1)+1
d+1

100 0.0555953
200 0.0313597
300 0.0222828
400 0.0174413
500 0.0144044
600 0.0123105
700 0.0107739
800 0.00959533
900 0.00866094

1000 0.00790085



Table of d1000-10000

.

d ln(d+1)+1
d+1

1000 0.00790085
2000 0.00429855
3000 0.00300123
4000 0.00232299
5000 0.0019031
6000 0.00161634
7000 0.00140749
8000 0.00124826
9000 0.00112266

10000 0.00102094



Examples

1. If a graph has min degree ≥ 100 then there is DS size
≤ 0.06n, 3n

50 .

2. If a graph has min degree ≥ 1000 then there is DS size
≤ 0.008n, 2n

250 .

3. If a graph has min degree ≥ 10000 then there is DS size
≤ 0.002n, n

500 .
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The Theorem Restated Completely

Thm If G = (V ,E ) is a graph on n vertices with min degree ≥ d
then G has a dominating set of size

≤ n

(
ln(d + 1) + 1

d + 1

)
.

Pf
Since the Expected Value of the experiment produced a set of this
size, there must be some set of ≥ this size.
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Other Information

DS is Dominating Set. OPT means the min size of a DS.
Alg means Poly Time Algorithm. We assume P 6= NP.

1. The above gives a fast rand alg to find a nontrivial Dom Set.

2. Finding the minimum size Dom Set is not in P.

3. ∃ an approx alg that returns DS of size ≤ ln(n)OPT(G ).

4. ∀δ < 1 there is no approx alg that returns a DS of size
≤ δ ln(n)OPT(G ).

5. If you fix k and ask if there is a Dom Set of size k, can do in
nO(k) time but likely not better (W [2]-complete).

6. Fix ∆. Restrict to graphs with MAX degree ∆.
a) ∃ approx alg that returns a DS of size ≤ O(log ∆)OPT(G ).
b) ∃δ st NO approx alg returns DS of size ≤ δOPT(G ).
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