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Preface

Ramsey Theory on the Integers covers a variety of topics from the
field of Ramsey theory, limiting its focus to the set of integers — an
area that has seen a remarkable burst of research activity during the
past twenty years.

The book has two primary purposes: (1) to provide students with
a gentle, but meaningful, introduction to mathematical research — to
give them an appreciation for the essence of mathematical research
and its inescapable allure and also to get them started on their own
research work; (2) to be a resource for all mathematicians who are
interested in combinatorial or number theoretical problems, particu-
larly “Erdés-type” problems.

Many results in Ramsey theory sound rather complicated and
can be hard to follow; they tend to have a lot of quantifiers and may
well involve objects whose elements are sets whose elements are sets
(that is not a misprint). However, when the objects under consider-
ation are sets of integers, the situation is much simpler. The student
need not be intimidated by the words “Ramsey theory,” thinking that
the subject matter is too deep or complex — it is not! The material
in this book is, in fact, quite accessible. This accessibility, together
with the fact that scores of questions in the subject are still to be
answered, makes Ramsey theory on the integers an ideal subject for
a student’s first research experience. To help students find suitable

xiii



xiv Preface

projects for their own research, every chapter includes a section of
“Research Problems,” where we present a variety of unsolved prob-
lems, along with a list of suggested readings for each problem.

Ramsey Theory on the Integers has several unique features. No
other book currently available on Ramsey theory offers a cohesive
study of Ramsey theory on the integers. Among several excellent
books on Ramsey theory, probably the most well-known, and what
may be considered the Ramsey theory book, is by Graham, Roth-
schild, and Spencer (Ramsey Theory, 2" Edition [127]). Other im-
portant books are by Graham (Rudiments of Ramsey Theory [122]),
McCutcheon (Elemental Methods in Ergodic Ramsey Theory [184]),
Nesetiil and Rodl (Mathematics of Ramsey Theory [199]), Promel
and Voigt (Aspects of Ramsey Theory [207]), Furstenberg (Dynami-
cal Methods in Ramsey Theory [111]), and Winn (Asymptotic Bounds
for Classical Ramsey Numbers [274]). These books, however, gener-
ally cover a broad range of subject matter of which Ramsey theory
on the integers is a relatively small part. Furthermore, the vast ma-
jority of the material in the present book is not found in any other
book. In addition, to the best of our knowledge, ours is the only
Ramsey theory book that is accessible to the typical undergraduate
mathematics major. It is structured as a textbook, with numerous
(over 150) exercises, and the background needed to read the book
is rather minimal: a course in elementary linear algebra and a 1-
semester junior-level course in abstract algebra would be sufficient;
an undergraduate course in elementary number theory or combina-
torics would be helpful, but not necessary. Finally, Ramsey Theory on
the Integers offers something new in terms of its potential appeal to
the research community in general. Books offering a survey of solved
and unsolved problems in combinatorics or number theory have been
quite popular among researchers; they have also proven beneficial by
serving as catalysts for new research in these fields. Examples include
Old and New Problems and Results in Combinatorial Number Theory
[92] by Erdés and Graham, Unsolved Problems in Number Theory
[135] by Guy, and The New Book of Prime Number Records [220]
by Ribenboim. With our text we hope to offer mathematicians an
additional resource for intriguing unsolved problems. Although not
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nearly exhaustive, the present book contains perhaps the most sub-
stantial account of solved and unsolved problems in Ramsey theory
on the integers.

This text may be used in a variety of ways:

e as an undergraduate or graduate textbook for a second course
in combinatorics or number theory;

e in an undergraduate or graduate seminar, a capstone course
for undergraduates, or an independent study course;

e by students working under an REU program, or who are en-
gaged in some other type of research experience;

e by graduate students looking for potential thesis topics;

e by the established researcher seeking a worthwhile resource
in its material, its list of open research problems, and its
somewhat enormous (often a fitting word when discussing
Ramsey theory) bibliography.

Chapter 1 provides preliminary material (for example, the pi-
geonhole principle) and a brief introduction to the subject, including
statements of three classical theorems of Ramsey theory: van der
Waerden’s theorem, Schur’s theorem, and Rado’s theorem. Chapter
2 covers van der Waerden’s theorem; Chapters 3—-7 deal with various
topics related to van der Waerden’s theorem; Chapter 8 is devoted to
Schur’s theorem and a generalization; Chapter 9 explores Rado’s the-
orem; and Chapter 10 presents several other topics involving Ramsey
theory on the integers.

The text provides significant latitude for those designing a syl-
labus for a course. The only material in the book on which other
chapters depend is that through Section 2.2. Thus, other chapters or
sections may be included or omitted as desired, since they are essen-
tially independent of one another (except for an occasional reference
to a previous definition or theorem). We do, however, recommend
that all sections included in a course be studied in the same order in
which they appear in the book.

Each chapter concludes with a section of exercises, a section of

research problems, and a reference section. Since the questions con-
tained in the Research Problem sections are still open, we cannot say
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with certainty how difficult a particular one will be to solve; some
may actually be quite simple and inconsequential. The problems
that we deem most difficult, however, are labeled with the symbol
«. The reference section of each chapter is organized by section num-
bers (including the exercise section). The specifics of each reference
are provided in the bibliography at the end of the book.

The material covered in this book represents only a portion of
the subject area indicated by the book’s title. Many additional topics
have been investigated, and we have attempted to include at least ref-
erences for these in the reference sections. Yet, for every problem that
has been thought of in Ramsey theory, there are many more which
that problem will generate and, given the great variety of combina-
torial structures and patterns that lie in the set of integers, countless
new problems wait to be explored.

We would like to thank Dr. Edward Dunne and the members of
the AMS production staff for their assistance in producing this book.
We also thank Tom Brown, Scott Gordon, Jane Hill, Dan Saracino,
Dan Schaal, Ralph Sizer, and the AMS reviewers for their helpful com-
ments and advice, which greatly improved the manuscript. We also
express our gratitude to Ron Graham and Doron Zeilberger for their
support of this project. We owe a big debt to the pioneers and masters
of the field, especially Ron Graham, Jarik Nesetfil, Joel Spencer, Neil
Hindman, Tom Brown, Timothy Gowers, Hillel Furstenberg, Vitaly
Bergelson, Vojtéch Rodl, Endre Szemerédi, Laszl6 Lovasz (we had to
stop somewhere), and of course Bartel van der Waerden, Issai Schur,
Richard Rado, and Frank Ramsey. To all of the others who have con-
tributed to the field of Ramsey theory on the integers, we extend our
sincere appreciation. Finally, we want to acknowledge that this book
would not exist without the essential contributions of the late Paul
Erdés. But beyond the content of his achievements, he has personally
inspired the authors as mathematicians. Our professional lives would
have had far less meaning and fulfillment without his work and his
presence in our field. For that pervasive, though perhaps indirect,
contribution to this text, we are in his debt.

Chapter 1

Preliminaries

Unsolved problems abound, and additional interest-
ing open questions arise faster than solutions to the
ezisting problems. - F. Harary

The above quote, which appeared in the 1983 article “A Trib-
ute to F. P. Ramsey,” is at least as apropos today as it was then.
In this book alone, which covers only a modest portion of Ramsey
theory, you will find a great number of open research problems. The
beauty of Ramsey theory, especially Ramsey theory dealing with the
set of integers, is that, unlike many other mathematical fields, very
little background is needed to understand the problems. In fact, with
just a basic understanding of some of the topics in this text, and a
desire to discover new results, the undergraduate mathematics stu-
dent will be able to experience the excitement and challenge of doing
mathematical research.

Ramsey theory is named after Frank Plumpton Ramsey and his
eponymous theorem, which he proved in 1928 (it was published post-
humously in 1930). So, what is Ramsey theory? Although there
is no universally accepted definition of Ramsey theory, we offer the
following informal description:

Ramsey theory is the study of the preservation of
properties under set partitions.

O—‘I



2 1. Preliminaries

In other words, given a particular set S that has a
property P, is it true that whenever S is partitioned
into finitely many subsets, one of the subsets must
also have property P?

To illustrate further what sorts of problems Ramsey theory deals
with, here are a few simple examples of Ramsey theory questions.

Example 1.1. Obviously, the equation x + y = 2 has a solution in
the set of positive integers (there are an infinite number of solutions);
for example, x = 1, y = 4, z = 5 is one solution. Here’s the question:
is it true that whenever the set of positive integers is partitioned into
a finite number of sets Sy, 5,...,S5,, then at least one of these sets
will contain a solution to x +y = 2?7 The answer turns out to be yes,
as we shall see later in this chapter.

Example 1.2. Is it true that whenever the set {1,2,...,100} is par-
titioned into two subsets A and B, then at least one of the two subsets
contains a pair of integers which differ by exactly two? To answer this
question, consider the partition consisting of

A=1{1,5,9,13,...,97} U{2,6,10,...,98}

and
B={3,7,11,...,99} U {4,8,12,...,100}.

We see that neither A nor B contains a pair of integers that differ by
two, so that the answer to the given question is no.

Example 1.3. True or false: if there are 18 people in a group, then
there must be either 4 people who are mutual acquaintances or 4
people who are mutual “strangers” (no two of whom have ever met)?
(You will find the answer to this one later in the chapter.)

There is a wide range of structures and sets with which Ram-
sey theory questions may deal, including the real numbers, algebraic
structures such as groups or vector spaces, graphs, points in the plane
or in n dimensions, and others. This book limits its scope to Ramsey
theory on the set of integers. (There is one exception — Ramsey’s
theorem itself — which is covered in this chapter.)

1.1. The Pigeonhole Principle 3

In this chapter we introduce the reader to some of the most well-
known and fundamental theorems of Ramsey theory. We also present
some of the basic terminology and notation that we will use.

1.1. The Pigeonhole Principle

Imagine yourself as a mailroom clerk in a mailroom with n slots in
which to place the mail. If you have n + 1 pieces of mail to place
into the n slots, what can we say about the amount of mail that will
go into a slot? Well, we can’t say much about the amount of mail a
particular slot receives because, for example, one slot may get all of
the mail. However, we can say that at least one slot must end up with
at least two pieces of mail. To see this, imagine that you are trying to
avoid having any slot with more than one piece of mail. By placing
one piece of mail at a time into an unoccupied slot you can sort n
pieces of mail. However, since there are more than n pieces of mail,
you will run out of unoccupied slots before you are done. Hence, one
slot must have at least two pieces of mail.

This simple idea is known as the pigeonhole principle, which can
be stated this way:

If more than n pigeons are put into n pigeonholes, then some pigeon-
hole must contain at least two pigeons.

We now present the pigeonhole principle using somewhat more
mathematical language.

Theorem 1.4 (Basic Pigeonhole Principle). If an n-element subset
is partitioned into r disjoint subsets where n > r, then at least one of
the subsets contains more than one element.

Example 1.5. In any class of 27 (or more) students, there must be
two whose last name begins with the same letter.

Theorem 1.4 is a special case of the following more general prin-
ciple.

Theorem 1.6 (Generalized Pigeonhole Principle). If more than mr
elements are partitioned into r sets, then some set contains more than
m elements.
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Proof. Let S be a set with |S| > mr. Let S=S;US2U---US;, be
any partition of S. Assume, for a contradiction, that |S;| < m for all
t=1,2,...,r. Then
-
|S| = Z |Si| < mr,
i=1
a contradiction. Hence, for at least one ¢, the set S; contains more
than m elements, i.e., [S;| > m+ 1. O

We see that Theorem 1.4 is a special case of Theorem 1.6 by tak-
ing m = 1. There are other common formulations of the pigeonhole
principle; you will find some of these in the exercises.

Although the pigeonhole principle is such a simple concept, and
seems rather obvious, it is a very powerful result, and it can be used
to prove a wide array of not-so-obvious facts.

Here are some examples.

Example 1.7. For each integer n = 1,2,...,200, let R(n) be the
remainder when n is divided by 7. Then some value of R(n) must
occur at least 29 times. To see this, we can think of the 200 integers
as the pigeons, and the seven possible values of R(n) as the pigeon-
holes. Then, according to Theorem 1.6, since 200 > 28(7), one of the
pigeonholes must contain more than 28 elements.

Example 1.8. We will show that within any sequence of n? 41 inte-
gers there exists a monotonic subsequence of length n+1. (A sequence
{x;}12, is called monotonic if it is either nondecreasing or nonincreas-
ing). Let our sequence be {a; :‘ifl For each i € {1,2,...,n% + 1},
let ¢; be the length of the longest nondecreasing subsequence start-
ing at a;. If ¢; > n + 1 for some i we are done, so we may as-
sume that ¢; < n for 1 < ¢ < n? + 1. Since each of the ¢;’s has
a value between 1 and n, by the pigeonhole principle there exists
Jj€{1,2,...,n} so that n + 1 of the numbers ¢; equal j. Call these
b by, .o b, where 41 < 49 < -+ < d,47. Next, look at the
subsequence a;,,a,,...,a;, . We claim that this is a nonincreas-
ing subsequence. To see this, assume, for a contradiction, that it is
not nonincreasing. Then a;, < a;,,, for some k. Hence, the longest
nondecreasing subsequence starting at a;, would be of length greater

[}

1.2. Ramsey’s Theorem

than j, since there exists a subsequence of length j starting at a;, ,,,
a contradiction.

Next, we give another example for which the pigeonhole principle
may not immediately appear to be applicable.

Example 1.9. Color each point in the zy-plane having integer coor-
dinates either red or blue. We show that there must be a rectangle
with all of its vertices the same color. Consider the linesy =0,y =1,
and y = 2 and their intersections with the lines z =4, i =1,2,...,9.
On each line x = i there are three intersection points colored either
red or blue. Since there are only 2% = 8 different ways to color three
points either red or blue, by the pigeonhole principle two of the ver-
tical lines, say z = j and x = k # j must have the identical coloring
(i.e. the color of (j,y) is the same as the color of (k,y) for y =0,1,2).
Using the pigeonhole principle again, we see that two of the points
(4,0), (4,1), and (j,2) must be the same color, say (j,1) and (j,y2)-
Then the rectangle with vertices (§,71), (4, y2), (k,v1), and (k,y2) is
the desired rectangle.

In the last example, we used colors as the “pigeonholes.” Using
colors to represent the subsets of a partition in this way is often
convenient, and is quite typical in many areas of Ramsey theory.

1.2. Ramsey’s Theorem

Ramsey’s theorem can be considered a refinement of the pigeonhole
principle, where we are not only guaranteed a certain number of el-
ements in a pigeonhole, but we also have a guarantee of a certain
relationship between these elements. It is a theorem that is normally
stated in terms of the mathematical concept known as a graph. We
will define what we mean by a graph very shortly, but before doing
so, we consider the following example, known as the Party problem.

Example 1.10. We will prove the following: at a party of six people,
there must exist either three people who have all met one another or
three people who are mutual strangers (i.e., no two of whom have
met). By the pigeonhole principle, we are guaranteed that for each
person, there are three people that person has met or three people
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that person has never met. We now want to show that there are
three people with a certain relationship between them, namely, three
people who all have met one another, or three people who are mutual
strangers. First, assign to each pair of people one of the colors red or
blue, with a red “line” connecting two people who have met, and a
blue “line” connecting two people who are strangers. Hence, we want
to show that for any coloring of the lines between people using the
colors red and blue, there is either a red triangle or a blue triangle
(with the people as vertices). Next, pick out one person at the party,
say person X. Since there are five other people at the party, by the
pigeonhole principle X either knows at least three people, or is a
stranger to at least three people. We may assume, without loss of
generality, that X knows at least 3 people at the party. Call these
people A, B, and C. So far we know that the lines connecting X to
each of A, B, and C are red. If there exists a red line between any of
A, B, and C then we are done, since, for example, a red line between
A and B would give the red triangle ABX. If the lines connecting A,
B, and C are all blue, then ABC is a blue triangle.

Concerning the Party problem, another question we might ask is
this: is 6 the lowest number of party members for the property we
seek to hold? That is, does there exist a way to have five people at
the party and not have either of the types of “triangles” discussed in
the above example? To see that we cannot have only five people at
the party and expect the same result, place five people in a circle and
assume that each person knows the two people next to him/her, but
no one else (draw a sketch to see that there is no red triangle and no
blue triangle).

The fact that there is a solution to the Party problem is a spe-
cial case of what is known as Ramsey’s theorem. In order to state
Ramsey’s theorem we will use a few definitions from graph theory.

Definition 1.11. A graph G = (V, E) is a set V of points, called
vertices, and a set E of pairs of vertices, called edges.

Definition 1.12. A subgraph G’ = (V' E’) of a graph G = (V,E) is
a graph such that V' C V and E' C F.

1.2. Ramsey’s Theorem 7

Definition 1.13. A complete graph on n vertices, denoted Ky, is a
graph on n vertices, with the property that every pair of vertices is
connected by an edge.

Definition 1.14. An edge-coloring of a graph is an assignment of a
color to each edge of the graph. A graph which has been edge-colored
is called a monochromatic graph if all of its edges are the same color.

We may now express the solution to the Party problem in graph-
theoretical language. It says that for every 2-coloring, using the colors
red and blue, of the edges of K¢ there must be either a red K3 (a
triangle) or a blue K3; and furthermore, that there exists a 2-coloring
of the edges of K5 that fails to have this property.

We now state Ramsey’s theorem for two colors.

Theorem 1.15 (Ramsey’s Theorem for Two Colors). Let k,£ > 2.
There exists a least positive integer R = R(k, ) such that every edge-
coloring of Kr, with the colors red and blue, admits either a red K
subgraph or a blue K; subgraph.

Proof. First note that R(k,2) = k for all kK > 2, and R(2,¢) = ¢ for
all £ > 2 (this is easy). We proceed via induction on the sum k + ¢,
having taken care of the case when k + ¢ = 5. Hence, let k + £ > 6,
with k,¢ > 3. We may assume that both R(k,¢ — 1) and R(k — 1,¢)
exist. We claim that R(k,¢) < R(k — 1,£) + R(k,¢ — 1), which will
prove the theorem.

Let n = R(k — 1,£) + R(k,£¢ — 1) and pick one vertex from K,
call it v. Then there are n — 1 edges from v to the other vertices. Let
A be the number of red edges and B be the number of blue edges
coming out of v. Then, either A > R(k — 1,¢) or B > R(k,£ — 1),
since if A < R(k — 1,¢) and B < R(k,{ —1), then A+ B < n — 2,
contradicting the fact that A + B = n — 1. We may assume, without
loss of generality, that A > R(k — 1,£). Let V be the set of vertices
connected to v by a red edge, so that |V| > R(k — 1,¢). By the
inductive hypothesis, Ky contains either a red Kj_; subgraph or a
blye K, subgraph. If it contains a blue K, subgraph, we are done. If
it contains a red Kj_; subgraph, then by connecting v to each vertex
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of this red subgraph we have a red K}, subgraph (since v is connected
to V by only red edges), and the proof is complete. 0O

The numbers R(k, ¢) are known as the 2-color Ramsey numbers.
The solution to the Party problem tells us that R(3,3) = 6. By
Ramsey’s theorem, we may extend the Party problem in various ways.
For example, we know there exists a number n so that if there were
n people at a party, then there would have to be either a group of
four mutual acquaintances or a group of five mutual strangers. This
number n is the Ramsey number R(4,5).

There are other ways to extend the Party problem. For example,
in Exercise 1.11 we consider the case where people either love, hate,
or are indifferent to, each other. In this situation we want to find
three people who all love one another, three people who all hate one
another, or three people who are all indifferent toward one another.
Exercise 1.11 states that 17 people at the party will suffice (in fact 17
is the least such number with this property, but you cannot conclude
this from Exercise 1.11). This is an example of a 3-color Ramsey
number. More generally, Ramsey’s theorem for two colors can easily
be generalized to r > 3 colors (this is left as Exercise 1.17), in which
case the Ramsey numbers are denoted by R(ki,ka,...,k.). In case
ki =Fkfori=1,...,r, we use the simpler notation R,(k). Thus, for
example, in the “love-hate-indifferent” problem, we have R(3,3,3) =
R3(3) = 17.

The existence of the Ramsey numbers has been known since 1930.
However, they are notoriously difficult to compute; the only known
values are R(3,3) = 6, R(3,4) = 9, R(3,5) = 14, R(3,6) = 18,
R(3,7) = 23, R(3,8) = 28, R(3,9) = 36, R(4,4) = 18, R(4,5) = 25,
and R(3,3,3) = 17. (The fact that R(4,4) = 18 answers the question
posed in Example 1.3.)

Obviously, Ramsey theory is named after Frank Ramsey. How-
ever, his famous theorem is the only result of Ramsey’s in the field
named after him. Unfortunately, Ramsey died of complications due
to jaundice in 1930, a month before his 27" birthday, but not before
he left his mark.
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1.3. Some Notation

In this section we go over some notation that we will frequently use.

We shall denote the set of integers by Z, and the set of positive
integers by ZT. Most of our work will be confined to the set of
integers. Hence, when speaking about an “interval” we will mean a
set of the form {a,a+1,...,b}, where a < b are integers. Usually we
will denote this interval more simply by [a, b].

When dealing with two sets X and Y, we will sometimes use the
set S = X — Y, which we define to be the set of elements in X that
are not in Y. Also, for S a set and a a real number, a + S and aS
will denote {a + s: s € S} and {as : s € S}, respectively.

Sometimes we will find it convenient to use symbols such as 0,1,
or 2 to stand for different “colors” rather than actual color names such
as red or blue. We make this more formal in the following definition.

Definition 1.16. An r-coloring of a set S is a function x : S — C,
where |C| = r.

Typically, we will use C = {0,1,...,r —1} or C = {1,2,...,7}.
We can think of an r-coloring x of a set S as a partition of S into
r subsets S1,955,...,S5,, by associating the subset S; with the set
{reS: x(z)=1i}

The next definition will be used extensively.

Definition 1.17. A coloring x is monochromatic on a set S if x is
constant on S.

Example 1.18. Let x : [1,5] — {0,1} be defined by x(1) = x(2) =
x(3) =1 and x(4) = x(5) = 0. Then x is a 2-coloring of [1,5] that is
monochromatic on {1,2,3} and on {4, 5}.

We will often find it convenient to represent a particular 2-coloring
of an interval as a string of 0’s and 1’s. For example, the coloring in
Example 1.18 could be represented by the string 11100. We may also
abbreviate this coloring by writing 1302. We may extend this nota-
tion to r-colorings for r > 3 by using strings with symbols belonging
to the set {0,1,2,...,r — 1}. For example, define the 3-coloring x on
the interval [1,10] by x(i) =0for 1 <i <5, x(i)=1for 6 <i <9,
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and x(10) = 2. Then we may write x = 0000011112 or, equivalently,
x = 0%142.

Sometimes we will want to describe the magnitude of functions
asymptotically. For this purpose we mention two very commonly used
symbols, called “Big-O” and “little-0.”

Let f(n) and g(n) be functions that are nonzero for all n. We say
that f(n) = O(g(n)) if there exist constants ¢,m > 0, independent

of n, such that 0 < I%’ < c for all n > m. In other words,

< ¢, if the limit exists. We say that f(n) = o(g(n)) if
for all ¢ > 0 there exists a constant m > 0, independent of n, such

£(n) fm)| _
that }g( ) sy | =0
)

If f and g are nonzero functions such that lim,,_, . ﬁ—% exists
and is equal to £, where |£] # oo and £ # 0, then f(n) = O(g(n)). If
£ =0 we have f(n) = o(g(n)). If £ = oo, then we have g(n) = o(f(n))
by taking the reciprocal of the argument of the limit. Intuitively,
if f(n) = O(g(n)) and g(n) = O(f(n)), then f(n) and g(n) have a
similar growth rate; and if f(n) = o(g(n)), then f(n) is insignificant
compared to g(n), for large n.

lim,, |-§§—Z—))

< c for all n > m. In other words, lim,,_, . ‘

If f(n) and g(n) are functions with the same growth rate, i.e., if
ggn)) =1, we may write f(n) ~ g(n).
An example to explain these concepts is in order.
Example 1.19. Let f(n) = % + 5n and g(n) = n%. Then f(n) =
O(g(n)), or, equivalently, f(n) = O(n?). We may also describe f(n)’s
rate of growth by f(n) = '2‘—2(1 + 0(1)). To see this, we have
2 n2 2

lim,,

n n
—(1 1)) = o(1
351+ 0(1) = 55 +oll)z5.

Now, since ;7753 = 42 and hmn_,oo 19/n — 0, we have 5n = o(1) 2;

We may also write f(n) ~ 35 ~ to describe the growth rate of f(n).

We will also use the following functions. For z a real number,
we use [z] to denote the greatest integer n such that n < x (this is
often called the “floor” function). The least integer function of a real
number z, defined as the least integer n such that n > z, is denoted
by [z] (this is often referred to as the “ceiling function.”)
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1.4. Three Classical Theorems

Somewhat surprisingly, Ramsey’s theorem was not the first, nor even
the second, theorem in the area now known as Ramsey theory. The
results that are generally accepted to be the earliest Ramsey-type
theorems are due, in chronological order, to Hilbert, Schur, and van
der Waerden. All of these results, which preceded Ramsey’s theorem,
deal with colorings of the integers, the theme of this book. Interest-
ingly, even though Ramsey’s theorem is a theorem about graphs, we
will see later that it can be used to give some Ramsey-type results
about the integers.

In this section we introduce three classical theorems concerning
Ramsey theory on the integers. We will talk much more about each
of these theorems in later chapters.

We start with a reminder of what an arithmetic progression is.

Definition 1.20. A k-term arithmetic progression is a sequence of
the form a,a +d,a+2d,...,a+ (k — 1)d, where a € Z and d € Z+.

We now state van der Waerden’s theorem, which was proved in
1927.

Theorem 1.21 (Van der Waerden’s Theorem). For all positive in-
tegers k and r, there exists a least positive integer w(k;r) such that
for every r-coloring of [1, w(k; r)] there is a monochromatic arithmetic
progression of length k.

The numbers w(k; ) are known as the van der Waerden numbers.
Let’s look at a simple case. Let k = r = 2. Hence, we want to find the
minimum integer w = w(2;2) so that no matter how we partition the
interval [1,w] = {1,2,...,w} into two subsets (i.e., 2-color [1,w]), we
must end up with at least one of the two subsets containing a pair of
elements a, a+d, where d > 1 (i.e., we must end up with a monochro-
matic 2-term arithmetic progression). Consider a 2-coloring of {1, 2}
where 1 and 2 are assigned different colors. Obviously, under a such
a coloring, {1,2} does not contain a 2-term arithmetic progression
that is monochromatic. Thus, w(2;2) is not equal to 2 (not every
2-coloring of [1,2] yields the desired monochromatic sequence). Does
3 work? That is, does every 2-coloring of [1, 3] yield a monochromatic
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2-term arithmetic progression. The answer is yes, by a simple appli-
cation of the pigeonhole principle, since any 2-element set of positive
integers is a 2-term arithmetic progression. Thus, we have shown that
w(2;2) = 3.

Finding w(2; 2) was rather simple. All the van der Waerden num-
bers w(2;r) are just as easy to find (we leave this as an exercise in
a later chapter). For k > 3, the evaluation of these numbers very
quickly becomes much more difficult. In fact, the only known van
der Waerden numbers are w(3;2) = 9, w(3;3) = 27, w(3;4) = 76,
w(4;2) = 35 and w(5;2) = 178. Besides trying to find exact val-
ues of the van der Waerden numbers, there is another open question
that has been one of the most difficult, and most appealing, problems
in Ramsey theory. Namely, finding a reasonably good estimate of
w(k;7) in terms of k and r. We shall talk more about such questions,
and the progress that has been made on them, in Chapter 2.

Van der Waerden’s theorem has spawned many results in Ramsey
theory. For this reason, and because the notion of an arithmetic
progression is such a natural and simple concept, a large portion of
this book is dedicated to various offshoots, refinements, extensions,
and generalizations of van der Waerden’s theorem.

The next two main results deal with solutions to equations and
systems of equations. Let £ represent a given equation or system of
equations. We call (21, z3,...,Tx) a monochromatic solution to & if

Z1,Z2,...,Z are all the same color and they satisfy &£.

We next theorem we present, proved by Issai Schur in 1916, is
one of the earliest results in Ramsey theory.

Theorem 1.22 (Schur’s Theorem). For any r > 1, there exists a
least positive integer s = s(r) such that, for any r-coloring of [1,s],
there exists a monochromatic solution to x +y = 2.

The numbers s(r) are called the Schur numbers. As a simple
example, we look at s(2). Here we want the least positive integer s so
that whenever [1, s] is 2-colored, there will exist integers z,y, 2z (not
necessarily distinct) satisfying z + y = 2. Notice that s(2) must be
greater than four, because if we take the 2-coloring x of [1,4] defined
by x(1) = x(4) = 0 and x(2) = x(3) = 1, then it is not possible to

' HW‘
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find z, y, and z all of the same color satisfying = +y = z. Meanwhile,
every 2-coloring of [1,5] (there are 25 = 32 of them) does yield such a
monochromatic triple (this is proved in Example 8.5). Thus, s(2) = 5.

As it turns out, the only Schur numbers that are currently known
are s(1) = 2, 5(2) = 5, 5(3) = 14, and s(4) = 45. We will learn much
more about Schur’s theorem in Chapter 8.

The third classical theorem we mention is Rado’s theorem, which
is a generalization of Schur’s theorem. In fact, Richard Rado was a
student of Schur. The idea of Rado’s theorem may be described as
follows. Thinking of Schur’s theorem as a theorem about the homoge-
neous linear equation x +y—z = 0, we ask the following more general
question. Which systems, £, of homogeneous linear equations with
integer coefficients have the following property: for every r > 1, there
exists a least positive integer n = n(L;r) such that every r-coloring
of [1,n] yields a monochromatic solution to £?

In a series of articles published in the 1930’s, Rado completely
answered this question. Since Rado’s theorem, in its most general
form, is a bit complicated to describe, we will postpone stating the
general theorem until Chapter 9, which is devoted to Rado’s theorem.
Instead, we mention here the special case of Rado’s theorem in which
the system consists of only a single equation.

We first need the following definition.

Definition 1.23. For r > 1, a linear equation £ is called r-regular if
there exists n = n(€;r) such that for every r-coloring of [1, 7] there
is a monochromatic solution to £. It is called regular if it is r-regular
for all r > 1.

Example 1.24. Using Definition 1.23, Schur’s theorem can be stated
as “the equation x + y = z is regular.”

- We now state Rado’s theorem for a single equation.

Theorem 1.25 (Rado’s Single Equation Theorem). Let £ represent
the linear equation Y. | ¢;x; = 0, where ¢; € Z — {0} for 1 <i < n.
Then & is regular if and only if some nonempty subset of the ¢;’s sums
to 0.
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Example 1.26. The equation z +y = z, i.e., z +y — 2z = 0, satisfies
the requirements of Theorem 1.25. Hence, as noted before and proved
by Schur, x + y = 2 is regular.

Example 1.27. It follows from Rado’s theorem that the equation
3z1 + 4z + 53 — 224 — x5 = 0 is regular, since the sum of the first,
fourth, and fifth coefficients is 0.

1.5. A Little More Notation

The three classical theorems mentioned above all have a somewhat
similar flavor. That is, they have the following general form: there
exists a positive integer n(r) such that for every r-coloring of [1,n(r)]
there is a monochromatic set belonging to a particular family of sets.
In one case, the family of sets was the k-term arithmetic progressions;
in another case the family consisted of all solutions to a certain equa-
tion; and so on. Throughout this book we will be looking at this type
of problem, and so it will be worthwhile to have a general notation
that can be used for any such problem.

Let F be a certain family of sets, and let k and r be positive in-
tegers. We denote by R(F,k;r) the least positive integer, if it exists,
such that for any r-coloring of [1, R(F,k;r)], there is a monochro-
matic k-term member of F. In the case where no such integer exists,
we say R(F,k;r) = co. Because our discussion will often be confined
to the situation in which the number of colors is two, we often denote
the function R(F, k;2) more simply as R(F, k). If the length of the
sequence is understood (as in Schur’s theorem), we write R(F;r).

For certain Ramsey-type functions we deal with, it will be con-
venient to use a notation other than R(F,k;r). For example, later
in the book we will encounter a type of sequence called a descend-
ing wave, for which we will use the notation DW (k;r) rather than
something like R(DW, k;r) (where DW would represent the family
of all descending waves). Similarly, since the notation w(k;r) is so
standard, we will use w(k; ) instead of R(AP, k;r) and w(k) instead
of R(AP,k), where AP is the family of all arithmetic progressions.
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Finally, we remark that the notation R(k,/) is reserved for the clas-
sical Ramsey numbers defined in Section 1.2 (note the absence of a
family F here).

Throughout this book we will be considering various collections,
F, of sets of integers and, as with the three classical theorems of Sec-
tion 1.4, wanting to know if, for a specified value of r and a particular
set M C Z, every r-coloring of M yields a monochromatic member
of F. For the case in which M is the set of positive integers, we have
the following definition.

Definition 1.28. Let F be a family of finite subsets of Z*1, and let
r > 1. If for every r-coloring of Z* and all k > 1, there is a monochro-
matic k-element member of F, then we say that F is r-reqular. If F
is r-regular for all r, we say that F is regular.

Sometimes we will replace the phrase “for all k > 1, there is
a monochromatic k-element member of F” by “there are arbitrarily
large members of F.”

Example 1.29. Let F = AP, the collection of all arithmetic pro-
gressions. By van der Waerden’s theorem, F is regular since for every
finite coloring of ZT, there exists, for every k > 1, a monochromatic
k-term arithmetic progression.

Whereas Definition 1.28 pertains to all colorings of a set, we will
also want to consider whether or not a particular coloring of a set M
yields a monochromatic member of the collection F. For this we have
the next definition.

Definition 1.30. Let F be a family of subsets of Z and let k be a
positive integer. Let r > 1. An r-coloring of a set M C Z is called
(F, k;r)-valid if there is no monochromatic k-element member of F
contained in M.

When the number of colors is understood, we may simply say that
a coloring is (F, k)-valid. Also, when there is no possible confusion
as to the meaning of F or the value of k, we may simply say that a
coloring is valid.

_ As an example, if F is the family of sets of even numbers, then the
2-coloring of [1, 10] represented by the binary sequence 1110001110 is
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(F,4)-valid since there is no monochromatic 4-term sequence belong-
ing to F (i.e., there do not exists four even numbers that have the
same color).

Let’s consider another example.

Example 1.31. Let F be the family of all subsets of Z*. We will
determine a precise formula for R(F,k;r). First, let x be any r-
coloring of [1,7(k — 1) 4+ 1]. By the generalized pigeonhole principle,
since we are partitioning a set of r(k—1)+1 elements into r sets, there
must be, for some color, more than k— 1 elements of that color. Thus,
under x, there is a monochromatic k-element member of F. Since x is
an arbitrary r-coloring, we have that R(F, k;r) < r(k—1)+1. On the
other hand, there do exist r-colorings of the interval [1,7(k —1)] that
are (F, k)-valid. Namely, assign exactly k¥ —1 members of the interval
to each of the colors. Then no color will have a k-element member of
F. Thus, R(F, k;r) > r(k—1)+1, and hence R(F,k;r) = r(k—1)+1.

The fact that in Example 1.31 the numbers R(F,k;r) always
exist is not very surprising. After all, F is so plentiful that it is easy
to find a monochromatic member. When the family of sets we are
considering is not as “big,” the behavior of the associated Ramsey
function is much less predictable. For certain F we will find that
R(F,k;r) < oo for all k and r, while for others this will only happen
(for all k) provided r does not exceed a certain value. There will even
be cases where R(F,k;r) never exists except for a few small values
of k and 7.

We will encounter many different results in this book, but the
common thread will be an attempt to find answers, to whatever extent
we can, to the following two questions.

1. For which F, k, and r does the function R(F, k;r)
exist?

2. If R(F,k;r) exists, what can we say about its
magnitude?

1.6. Exercises

1.1 A bridge club has 10 members. Every day, four members of
the club get together and play one game of bridge. Prove that

d |
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1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

after two years, there is some particular set of four members
that has played at least four games of bridge together.

Prove that if the numbers 1,2, ..., 12 are randomly positioned
around a circle, then some set of three consecutively posi-
tioned numbers must have a sum of at least 19.

Prove the following versions of the pigeonhole principle.

a) If a1, as,...,ay,, c are real numbers such that Z?zl a; > c,
then there is at least one value of i such that a; > .

b) If a1, as,...,a, are integers, and c is a real number such
that 3.7 ; a; > c, then there is at least one value of i such
that a; > [ﬂ .

With regard to Example 1.8, show that, given a sequence of
only n? numbers, there need not be a monotonic subsequence
of length n + 1.

Let r > 2. Show that there exists a least positive integer
M = M (k;r) so that any r-coloring of M integers admits a
monochromatic monotonic k-term subsequence. Determine
M (k;r). (Note that from Example 1.8, M(k;1) = k% +1.)

Let r > 3. Let x be any r-coloring of the set
S ={(z,y) € R?: x,y € Z}

(the members of S are sometimes called lattice points). Show
that, under x, there must exist a rectangle with all vertices
the same color.

Explain how the Party problem fits the description of Ramsey
theory offered on page 1.

Since R(3,3) = 6, we know that any 2-coloring of K must
admit at least one monochromatic triangle. In fact, any 2-
coloring of Kg must admit at least two monochromatic tri-
angles. Prove this fact.

Show that any 2-coloring of K7 must admit at least four
monochromatic triangles.

Generalize Exercises 1.8 and 1.9 above to K,. (Hint: Let
ri, © = 1,2,...,n, be the number of red edges connected to
vertex 7. Show that the number of monochromatic triangles
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1.11

1.12
1.13

1.14

1.15

1.16

is thus (3) — 2 3" | 7(n — 1 —r;). Minimize this function to
deduce the result.)
Show that any 3-coloring of K77 must admit at least one

monochromatic triangle, via an argument similar to the one
showing R(3,3) < 6, and using the fact that R(3,3) = 6.

Explain why R(k,%) = R(¢, k).

Prove that R(k,f) < R(k—1,£8)+R(k,¢-1), if both R(k—1,¢)
and R(k,£ — 1) are even.

Show that R(k,£) < (k;:f;?) by showing that the recurrence
R(k,%) = R(k — 1,£) + R(k,¢ — 1) is satisfied by a certain

binomial coefficient.

We can determine a lower bound for R(k,k) by using the
probabilistic method (largely due to Erdds). Show that
R(k, k) > - \k/ﬁﬁ for large k via the following steps.

a) Randomly color the edges of K, either red or blue, i.e.,
each edge is colored red with probability % Show that for a
given set of k vertices of K,,, the probability that the complete

graph on these k vertices is monochromatic equals %
2

2
b) Let px be the probability that a monochromatic K} sub-
graph exists in our random coloring. Show that

P < %21“(5) = (:)21-(3),
=1

c) Use (b) to show that if (2)21"(’;) < 1, then R(k, k) > n.
d) Stirling’s formula for the asymptotic behavior of n! says
that n! ~ v2mn (2)". Use Stirling’s formula to finish the
problem.

Consider the following way to color the edges of K,,. Number
the vertices of K, in a counterclockwise fashion from 1 to n.
Next, partition the numbers {1,2,...,n—1} into two subsets.
Call these sets R and B for red and blue. Now, each edge
has two vertices, say i and j. Calculate |j — 4| for that edge.
If |7 — ¢| € R, then color the edge connecting i and j red. If
|7 —14| € B, then color the edge connecting i and j blue. Such
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1.17
1.18
1.19

a coloring is called a difference coloring. Since R(3,4) = 9, we
know that there is an edgewise 2-coloring of Kg with no red
K3 and no blue K4. One such coloring is a difference coloring
defined as follows. Color an edge red if |j —i| € {1,4,7}, and
blue if [j — 4| € {2,3,5,6}. Show that this coloring does
indeed prove that R(3,4) > 8, i.e., that there is no red K3
and no blue Kjy.

Prove Ramsey’s theorem for r colors, where r > 3.
Show that s(3) > 14, where s(r) is the r-color Schur number.

Let r > 1. Show that for any integer a, there exists an integer
M = M(a;r) such that, for any r-coloring of [1, M], there is
a monochromatic solution to z + ay = z. Deduce Schur’s
theorem from this result.

1.7. Research Problems

Note: in this chapter and the next we present some problems which,

suggest

x1.1

although understandable and rather simple to state, are considered
to be extremely difficult to solve. We include them primarily for
illustrative purposes (and because they are intriguing problems). We

that the research problems from Chapters 3 through 10 are

more suitable for beginning research in Ramsey theory.

For n > 3, define g(n) to be the least positive integer with
the following property. Whenever the set of lines through
g(n) points satisfy both (a) no two lines are parallel, and (b)
no three lines intersect in the same point, then the set of
g(n) points contains the vertices of a convex n-gon. Prove or
disprove: g(n) = 2"~2+41. It is known to hold for n = 3,4, 5.
It is also known that the existence of g(n) is equivalent to
Ramsey’s theorem.

References: [42], 90], [103]

*1.2 Prove or disprove the following conjecture proposed by Paul

Erd6s and V. Sés: R(3,n+ 1) — R(3,n) — 0o as n — oo0.
References: [12], [89], [155]

*1.3 Determine lim,_,o, R(n,n)'/™ if it exists. It is known that

if this limit exists, then it is between /2 and 4. (The lower
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bound comes from Exercise 1.15 and the upper bound is de-
duced from Exercise 1.14 using Stirling’s formula, which is

given in Exercise 1.15.)
References: [99], [255], [256]
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proof are in [270]. Schur’s theorem and its original proof can be found
in [247]. Rado’s theorem was proved in the series of papers [215],
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Additional References: Another brief account of the life and work
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history of Ramsey theory is given by Spencer in [258].

Chapter 2

Van der Waerden’s
Theorem

Perhaps the most fundamental Ramsey-type theorem on the integers
is van der Waerden’s theorem concerning arithmetic progressions.
Loosely, it says that for any given coloring of Z*, monochromatic
arithmetic progressions cannot be avoided.

Let’s consider arithmetic progressions of length three. We wish to
find the least positive integer w such that regardless of how the inte-
gers 1,2,...,w are colored, using two colors, there will be a monochro-
matic 3-term arithmetic progression. This number w, denoted by
w(3;2) (or w(3)), is called a van der Waerden number. Using the no-
tation introduced in Chapter 1, we may also denote it by R(AP, 3;2),
where AP is the family of all arithmetic progressions. Before finding
w, we describe the standard methodology for finding the exact value
of any particular Ramsey-type number R(F, k;r). The goal is to show
that some number serves both as a lower bound and an upper bound
for the minimum number we desire.

(a) To establish that a certain value v is a lower
bound for a specific Ramsey-type number R(F, k;r),
it suffices to find some r-coloring of [1,v — 1] that
yields no monochromatic k-element member of F.
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(b) To establish that v serves as an upper bound
for R(F,k;r), it is necessary to show that every r-
coloring of [1,v] yields a monochromatic k-element
member of F.

Back to the determination of w: we will establish that w = 9 by
using the above method to prove that w > 9 and w < 9.

According to (a), to show that w > 9 it suffices to exhibit a
2-coloring of [1, 8] with no monochromatic 3-term arithmetic progres-
sion. One such coloring is the following: color 1, 4, 5, and 8 red, and
color 2, 3, 6, and 7 blue. It is easy to check that this coloring avoids
3-term monochromatic arithmetic progressions.

To show that w < 9, we must show that every 2-coloring of
(1,9] admits a monochromatic 3-term arithmetic progression. As-
sume, for a contradiction, that there exists a 2-coloring of [1,9] with
no monochromatic 3-term arithmetic progression. Using red and blue
as the colors, consider the possible ways in which the integers 3 and
5 may be colored. Can both 3 and 5 be red? If they were, then since
(1,3,5) cannot be monochromatic, 1 must be blue. Likewise, since
neither (3,4,5) nor (3,5,7) can be red, 4 and 7 must be blue. This
situation is not possible because now (1,4,7) is blue. Thus we may
conclude that 3 and 5 cannot both be red. The same argument, with
the colors reversed, shows that 3 and 5 cannot both be blue. Hence, 3
and 5 are of different colors. Similarly, 5 and 7 cannot have the same
color, and 4 and 6 cannot have the same color (explain why).

Without loss of generality, we assume the color of 3 is red. By
the observations above, this leaves
X1 = (red, red, blue, blue, red)
and
X2 = (red, blue, blue, red, red)

as the only possible colorings of (3,4,5,6,7). If x; is the coloring
of (3,4,5,6,7) then, because of (2,3,4), the color of 2 must be blue.
Then, because of (2,5,8), 8 must be red. Because of (1,4,7), 1 is
blue. Finally, because of (1,5,9), 9 is red. From this we have that
(7,8,9) is red, contradicting our assumption. Since 3 is the reverse
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of x1, a symmetric argument will show that x» also leads us to a
contradiction. Thus, every 2-coloring of [1, 9] yields a monochromatic
arithmetic progression of length 3.

Now that we know that w exists (i.e., that w is finite), it is natural
to ask whether the analogous least positive integer exists if we use
more than two colors and/or require longer arithmetic progressions.
The answer, as it turns out, is yes. This fact is known as van der
Waerden’s theorem. We start by presenting what is usually called
the finite version of van der Waerden’s theorem.

Theorem 2.1 (Van der Waerden’s Theorem). Let k,7 > 2 be inte-
gers. There exists a least positive integer w = w(k;r) such that for
all n > w, for every r-coloring of [1,n] there is a monochromatic
arithmetic progression of length k.

Van der Waerden’s theorem is one of the most fundamental results
in the area of Ramsey theory. However, because its proof can be
somewhat difficult to follow, we postpone the proof until later in this
chapter.

To help reinforce what van der Waerden’s theorem says, we con-
sider an application.

Example 2.2. Let a,b, k, and r be fixed positive integers. We use
van der Waerden’s theorem to show that every r-coloring of the set
{a,a+b,a+2b,...a+(w(k;r)—1)b} admits a monochromatic k-term
arithmetic progression. Let

x:{a,a+b,...a+ (wlk;r)—1)b} - {0,1,...,7r =1}

be any 7-coloring, and define x’ : [1,w(k;r)] — {0,1,...,r — 1} by
X' (5) = x(a + (§ — 1)b). By van der Waerden’s theorem, x’ admits a
monochromatic k-term arithmetic progression, say

{c,c+d,...,c+ (k—1)d}.

Hence {a+cb,a+ (c+d)b,...,a+ (c+ (k —1)d)b} is monochromatic
under , by the definition of x’. Rewriting this set, we have

{(a+bc),(a+ bc) + bd, (a+ bc) + 2(bd), ..., (a+bec) + (k—1)(bd)},

the desired monochromatic k-term arithmetic progression.
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As we shall see, there are several other forms of van der Waer-
den’s theorem that, although it is not at all obvious at first glance,
are equivalent to Theorem 2.1 (the finite version). One alternate form
is the statement that under any finite coloring of Z* there exist ar-
bitrarily long monochromatic arithmetic progressions. That this is
equivalent to Theorem 2.1 requires some explanation.

Note that the existence of arbitrarily long monochromatic arith-
metic progressions under a given coloring of Z* does not imply that
infinitely long monochromatic arithmetic progressions exist. What it
does say is that for each finite number k we can find a monochromatic
arithmetic progression of length k. We look at an example.

Example 2.3. Consider the following 2-coloring of Z*, with the col-
ors 0 and 1:

1 .00 111100...011...100...,
1 2

i.e., for j > 0, the interval I; = [29,29%1 — 1] is colored 1 if j is even,
and colored 0 if j is odd. It is clear that for any k, there exists a
monochromatic arithmetic progression of length & (take k consecutive
integers in Ix, which has length 2F). Thus, under this coloring there
are arbitrarily long monochromatic arithmetic progressions.

We next show that there is no monochromatic arithmetic pro-
gression of infinite length. Assume that A = {a,a+d,a+2d,...} is
an infinitely long arithmetic progression. Then there is some n such
that 2" > d and AN I, is not empty. Since d < 2", we know that
AN,y is also not empty. Since the color of I, is different from the
color of I,41, A is not monochromatic.

Now that we have clarified what we mean by arbitrarily long
arithmetic progressions, we next show why the following two state-
ments are equivalent: (a) every finite coloring of Z* admits arbitrarily
long monochromatic arithmetic progressions; and (b) w(k;r) exist for
all k£ and r. This is the subject of the next section.
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2.1. The Compactness Principle

The compactness principle, also known as Rado’s selection principle,
in its full version, is beyond the scope of this book. We will use a sim-
pler version of this principle and refer to it simply as the compactness
principle.

The compactness principle, in very general terms, is a way of
going from the infinite to the finite. It gives us a “finite” Ramsey-
type statement provided the corresponding “infinite” Ramsey-type
statement is true. For example, we may conclude the “finite” version
of van der Waerden’s theorem for two colors:

For all k > 2, there exists a least integer n = w(k)
such that for every 2-coloring of [1,m], m > n, there
is a monochromatic k-term arithmetic progression,

from the “infinite” version:

For every 2-coloring of Z™, there are, for every k > 2,
monochromatic k-term arithmetic progressions.

An alternative way to state the above “infinite” version of van der
Waerden’s theorem (using 2 colors) is to say that every 2-coloring of
7 admits arbitrarily long monochromatic arithmetic progressions.

Before stating the compactness principle, we remark here that
this principle does not give us any bound for the minimum number
in the “finite” version; it only gives us its existence. The proof we
give may seem somewhat familiar, as it is essentially what is known
as Cantor’s diagonal argument, the standard argument used to prove
that the set of real numbers is uncountable.

Theorem 2.4 (The Compactness Principle). Let r > 2 and let F be
a family of finite subsets of ZT. Assume that for every r-coloring of
Z7 there is a monochromatic member of F. Then there exists a least
positive integer n = n(F;r) such that, for every r-coloring of [1,n],
there is a monochromatic member of F.

Proof. Let r > 2 be fixed and assume that every r-coloring of Z*
admits a monochromatic member of F. Assume, for a contradiction,
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that for each n > 1 there is an r-coloring
Xn:[1,n] — {0,1,...,r — 1}

with no monochromatic member of F. We proceed by constructing a
specific r-coloring, x, of Z™.

Among x1(1), x2(1), ... there must be some color that occurs an
infinite number of times. Call this color ¢; and let x(1) = ¢;. Now
let 7, be the collection of all colorings x; with x;(1) = ¢;. Within
the set of colors {x;(2) : x;(2) € 71}, there must be some color c;
that occurs an infinite number of times. Let x(2) = ¢, and let 73 be
the collection of all colorings x; € 7y with x;(2) = c;. Continuing in
this fashion, we can find, for each i > 2, some color ¢; such that the
family of colorings

T, = {x; € Ti-1: x;(4) = &}
is infinite. We define x(i) = ¢; for i = 2,3, .... The resulting coloring
X : Zt — {0,1,...,r — 1} has the property that for every k > 1, Ty
is the collection of colorings x; with x(z) = x;(z) for x = 1,2,... k.
By assumption, x admits a monochromatic member of F, say S.
Let m = max{s : s € S}. By construction, for every 7 € 7,,, we have

S monochromatic under 7. This contradicts our assumption that all
of the x,’s avoid monochromatic members of F. O

It is clear that for m > n, if x is an r-coloring of [1,n| that
yields a monochromatic member of a specific family F, and x’ is any
extension of x to [1,m], then x’ also yields a monochromatic member
of F. Thus, the conclusion of Theorem 2.4 could be replaced by
the stronger-sounding (but equivalent) wording “there exists a least
positive integer n = n(F;r) such that for every m > n and every
r-coloring of [1,m], there is a monochromatic member of F.”

Note also that the converse of Theorem 2.4 is true. This is because
if it is true that n(F;r) exists, then certainly it is the case that every
r-coloring of Z% yields a monochromatic member of F.

By taking F to be the family of all arithmetic progressions (of
all finite lengths), we see, by the compactness principle, that if for
each k, every r-coloring of Z* admits a monochromatic arithmetic
progression of length k, then w(k;r), as defined in Theorem 2.1, exists.
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We remark here that we will often use the compactness principle
or its converse without explicitly stating that we are doing so. Thus,
we may use either the finite or infinite version of a particular Ramsey-
type theorem according to convenience.

2.2. Alternate Forms of van der Waerden’s
Theorem

In the last section we encountered two equivalent forms of van der
Waerden’s theorem (the “finite” and “infinite” versions). There are,
in fact, several equivalent forms of van der Waerden’s theorem. We
state some of these in the following theorem.

Theorem 2.5. The following statements are equivalent.

(i) For k > 2, any 2-coloring of Z* admits a monochromatic
arithmetic progression of length k.

(it) For k > 2, w(k;2) exists.

(iii) For k,r > 2, w(k;r) exists.

(i) Let r > 2. For any r-coloring of Z* and any finite subset
S = {s1,82,...,8,} CZ%, there exist integers a,d > 1 such that
a+dS ={a+sid,a+ s2d,...,a+ s,d} is monochromatic.

(v) For k,r > 2, any r-coloring of Z* admits a monochromatic
arithmetic progression of length k.

(vi) For k > 2, any infinitesetof positive integers, S = {si}i>o0,
for which ¢ = max{|s;y1 — s;| : i > 0} exists, must contain an
arithmetic progression of length k.

Proof. (i) = (ii) by the compactness principle.

Next, we prove (ii) = (iii) by induction on r. Statement (ii) is
the initial case (r = 2) of (iii), so now let r > 3 and assume that
w(k;r — 1) exists for all k. We will show that w(k;r) exists for all
k. Let m = w(w(k;r — 1);2) and let x be an arbitrary r-coloring
of 1, m], where the colors are red, blues, bluey, blues, . .., blue,_;. We
‘prqve w(k; ) < m by showing that x admits a monochromatic k-term
arithmetic progression.
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If we were to view the colors blueq, blues,...,blue,_1 all as an
identical shade of blue (so that we are only able to distinguish between
the colors red and blue), then we would have a 2-coloring of [1,m]
and hence, under this coloring, there is a “monochromatic” arithmetic
progression of length w(k;r—1) > k. If this progression is red then we
are done, so assume that it is “blue.” However, our “blue” progression
actually consists of the r —1 colors {bluey, blues, . .., blue,_1}. Hence,
under x, we have an (r — 1)-coloring of some arithmetic progression
{a,a+4d,...,a+w(k;r —1)d}. By Example 2.2, we are done.

To show that (iii) = (iv), let max(S) = s, and w = w(s, + 1;7).
Under any r-coloring of [1,w] we have a monochromatic arithmetic
progression {a,a + d,a + 2d,...,a + s,d} for some a,d > 1. Since
a + dS is a subset of this monochromatic arithmetic progression, we
are done.

To prove that (iv) = (v), let k be fixed and take S = {1,2,...,k},
so that a +dS = {a+d,a+2d,...,a + kd}. Hence, by (iv), we are
guaranteed that under any r-coloring of ZT there exists a k-term
monochromatic arithmetic progression.

Next, we show that (v) = (vi). Let S and ¢ be defined as in (vi).

Let Ty = S and define the sets T, j = 1,2,...,c— 1, as

j—1

Tj={s+j:s5€8}— UTi,

i=1
i.e., just translate S by j, and make sure that T is disjoint from the
previous T;’s. Since [sj4+1 — 8;| < ¢ for all 4 > 0, Ty, Ts,..., T, is a
partition of Z*. Color each z € Z* with color j if z € T;. This
defines a c-coloring of ZT. By (v), there is an arithmetic progression
{a+d,a+2d,...,a+ kd} C T}, for some j;. Hence,

{(a = 7o) +d,(a—jo) +2d,...,(a—jo) + kd} C Ty =S,

which proves (vi).

We complete the proof by showing that (vi) = (i). Fix k. Con-
sider any 2-coloring of Z* using the colors red and blue. For one of
the colors, say red, there must be an infinite number of positive inte-
gers r1 < ro < rg < --- with that color. If there exists an 7 such that
ri+1—7i > k, then we have k consecutive blue integers, which gives us
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a monochromatic arithmetic progression of length k. If no such i ex-
ists, then for all i > 0, |r;41 — 75| < k (so that max{|r;11 —r| : i > 0}
exists), and, by (vi), we have a red arithmetic progression of length
k. d

It is interesting to note that (ii) and (iii) are equivalent when, a
priori, (ii) seems to be weaker than (iii). In fact, in many instances in
this book, we will find statements which hold for 2 colors that don’t
hold for an arbitrary number of colors. As can be seen from the proof
that (ii) implies (iii), the fact that we are dealing with arithmetic
progressions is vital.

2.3. Computing van der Waerden Numbers

Thus far we have focused on the existence of w(k;r). The next nat-
ural step is to determine, if feasible, the values of w(k;r). Below we
present all known (to date) nontrivial values of w(k;r). (We leave it
as Exercise 2.2 to prove the trivial values w(2;7) =r + 1.)

w(3;2)=9; w(3;3)=27; w(4;2) = 35;
w(3;4) =76; w(5;2) = 178.

So why aren’t more values known? Consider w(3;5), which is
obviously greater than w(3,4) = 76. Say we want to check whether
every 5-coloring of [1,100] admits a monochromatic 3-term arithmetic
progression. Using brute force, there are 5% colorings to consider.
Assuming (incorrectly) that it takes only one computer step to check
a coloring for a monochromatic triple in arithmetic progression, we
may need 5'%° ~ 8x10% computer steps. At a trillion computer steps
per second, if we had a trillion worlds, each with a trillion cities, each
with a trillion computer labs, each with a trillion computers we could
use, it would take 250,000 years to run this many steps. Then, if we
should find success, we would need to check the 5-colorings of [1,99],
since so far we would know only that w(3,5) < 100.

So, we can see that the brute force method is not at all feasible.
However, there are algorithms for finding values of w(k;) that are
somewhat more efficient. We present three such algorithms below.
We encourage the reader to try each of the algorithms, by hand,
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to calculate w(3;2). In the algorithms, we use 1,2,...,r as the colors.
Recall that we say a coloring is valid (in this circumstance) if it admits
no monochromatic k-term arithmetic progression.

In Algorithm 1, g; represents an r-coloring and g; (i) is the color
of ¢ under g;. The final value of n equals w(k;r).

Algorithm 1.

STEP 1: Set n=1, k=1, and g;(1) =1 (at this
point g; is defined only on {1})

STEP 2: Set S={g1,92,--.,9x} and k=S|

STEP 3: Increment n by 1

STEP 4: Set S=0 and j=0

STEP 5: Set ¢ =0 and increment j by 1

STEP 6: Increment i by 1

STEP 7: Set g;(n) =1

STEP 8: If g;:[l,n] — {1,2,...,r} is valid then
set S =SU{g;}

STEP 9: If ¢<r, go to STEP 6

STEP 10: If j <k, go to STEP 5
STEP 11: If S#0, go to STEP 2
STEP 12: STOP and output n

This algorithm is more efficient than brute force because we know
that all colorings in S avoid monochromatic arithmetic progressions
of length k. Furthermore, the set S is built up along the way so as
to weed out those colorings that do contain a k-term monochromatic
arithmetic progression.

Even though Algorithm 1 is more efficient than the brute force
method, its usefulness is limited to only two or three nontrivial (i.e.,
k > 3) values of w(k;r); this is due to memory restrictions, as the
set S tends to have many members before the algorithm starts to
efficiently weed out invalid colorings.

The next algorithm is also more efficient than the brute force
method, without the memory restrictions of Algorithm 1. In Algo-
rithm 2, g(%) represents the color of i. The final value of w equals
w(k;T).
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Algorithm 2.

STEP 1: Set i=1,9(1)=1,w=7r+1

STEP 2: Increment i by 1 and set g(i) =1

STEP 3: If g:[l,i] - {1,2,...r} is valid, go to STEP 2
STEP 4: If g(i)=r, go to STEP 6

STEP 5: Increment g(i) by 1 and then go to STEP 3
STEP 6: If i>w, set w=1

STEP 7: Decrement i by 1

STEP 8: If i>1, go to STEP 4

STEP 9: STOP and output w

Although Algorithm 2 does not have the memory problem of Al-
gorithm 1, it still has the problem of being very time-intensive. It
has been used successfully in finding all the known values of w(k;T).
With the ever-increasing speed of new computers, one would won-
der why we still do not know the exact values of, say, w(6;2) or
w(4;3). Even with these somewhat more efficient algorithms, the
number of steps required as a function of [1,w], the interval being
colored, still grows at an exponential rate. For example, how might
we make a rough comparison between the time it would take to calcu-

‘late w(5;2) = 178, and the time it would take to calculate w(6,2)? It

has been observed that the (admittedly few) known values of w(k;2)
approximate 37"!, so perhaps a reasonable approximation for w(6,2)
is 1080. Even if w(6;2) = 720 (it is known that w(6;2) > 696), the
number of different 2-colorings of [1,720] is 272°, whereas the number
of 2-colorings of [1,178] is 2!78. To get some idea of how the number
of computer steps required to find w(5; 2) would compare to the num-
ber required to find w(6,2), it would not be unreasonable to compare
2720 t0 2178, the ratio of these two numbers is 2542(1). Looking at how
the computing times needed to calculate w(3;2), w(4;2), and w(5;2)
have compared may also help us understand why the calculation of
w(6;2) has, thus far, been out of reach. For example, in one study,
the computing times it took to calculate w(3;2), w(4;2), and w(5;2)
were instantaneous, 3 seconds, and more than a week, respectively.

The third algorithm we present is essentially a refinement of Al-
gorithm 2, employing what we call the “culprit method.” Given a
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coloring x of some interval [1,m] and an integer k > 2, we define
a culprit of a positive integer n to be any integer a + (k — 2)d with
a,d > 1, such that a,a +d,a +2d,...a + (k — 2)d is monochromatic
and a + (k — 1)d = n. In other words, it is the (k — 1) term of an
arithmetic progression whose k" term is n, with the first k — 1 terms
all of the same color. To illustrate how the culprit can be used to cut
down on the number of calculations, we consider an example.

Example 2.6. Assume that we are calculating w(4; 2) (which equals
35) by means of Algorithm 2 . Say that the program is running and
we are at the following point in the computations: w = 30 (this means
that so far we have discovered a valid coloring of [1,29] but not one
of [1,30]); ¢ = 26 and we are about to assign g(i) = 1; the integers
1,2,4,6,9,10,11,13,17,18,20,22,23 all have color 1; and the inte-
gers 3,5,7,8,12,14,15,16,19,21,24,25 all have color 2. According
to Algorithm 2, since 26 cannot be assigned either color to yield a
valid coloring of [1,26], we proceed to STEP 7, and then try various
colors on 23,24, and 25; should that fail, we will go back to 22, etc.
However, the least culprit of 26 with color 1 is 18 (that is, as long
as 2,10, 18 have color 1, we will not be able to assign the color 1 to
the integer 26); and the least culprit of 26 with color 2 is 19 (as long
as 5,12,19 have color 2, we will not be able to assign the color 2 to
the integer 26). Therefore, to try various color assignments on any
of the integers in the set {20,21,22,23,24,25} at this point would
be a waste of time, because we will not find any valid colorings of
[1,26] until we change the way [1,19) is colored. Thus, we would save
time by moving 19 into the set with color 2 at this point, rather than
moving 23 into that set, which is the next move in Algorithm 2.

Algorithm 3 takes advantage of the culprit to give a more efficient
algorithm. We use cul;(¢) to represent the minimum of all culprits of
1 having color j.

2.3. Computing van der Waerden Numbers 33

Algorithm 3.
STEP 1: Set i=1, g(1)=1, w=r+1

STEP 2: Increment 7 by 1 and set g(i) =1

STEP 3: If i >w, set w=1

STEP 4: If g:[1,i4 — {1,2,...,7} is valid, go to STEP 2
STEP 5: If g(i)=r, go to STEP 7

STEP 6: Increment g(i) by 1 and then go to STEP 4
STEP 7: Set i=max{cul;(i):1<j<r}

STEP 8: If g(i)<r, go to STEP 6

STEP 9: Decrement ¢ by 1

STEP 10: If ¢=1, STOP and output w

STEP 11: Go to STEP 8

Algorithm 3 is somewhat more efficient that Algorithm 2 but, it
seems, not efficient enough to allow (at least thus far) the discovery
of new van Waerden numbers.

We conclude this section by considering what are sometimes called
“mixed” van der Waerden numbers and a table of all known (to date)
computed values. Instead of requiring an arithmetic progression of
length k to be of one of the colors (so that k is a constant that is
independent of the color), the mixed van der Waerden numbers allow
the required length to vary with the color. For example, if the col-
ors are red and blue, then w(4) represents the least positive integer
such that, for every 2-coloring of [1,w(4)], there is either a 4-term red
arithmetic progression or a 4-term blue arithmetic progression. What
if we “mix” the lengths so that we want the least positive integer n
such that, for every 2-coloring of [1,n], there is either a 4-term red
arithmetic progression or a 5-term blue arithmetic progression? We
know that w(4) = 35 and w(5) = 178. So we must have 35 <n < 178
(why?). More generally, we have the following as a corollary of van
der Waerden’s theorem. We leave the proof as Exercise 2.4.

Corollary 2.7. Letr > 2, and let k; > 1 for 1 <i < r. Then there
exists a least positive integer w = w(ki, ke, ..., kr;r) such that, for
every r-coloring x : [1,w] — [1,7], there exists, for some i € [1,7], a
k;-term arithmetic progression with color 1.

Let’s consider an example.
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Example 2.8. According to Corollary 2.7, w(3,4,2;3) is the least
positive integer n such that for every 3-coloring (using the colors 1,
2, and 3) of [1,n], there is a 3-term arithmetic progression with color
1 or a 4-term arithmetic progression with color 2 or a 2-term arith-
metic progression with color 3. It is easy to see that w(3,4,2;3) =
w(4,3,2;2) and, in fact, that any re-ordering of the components of
(k1,k2,...,kr) in Corollary 2.7 will have no effect on the value of n.

In Table 2.1 we present all known (to date) mixed van der Waer-
den numbers (including the classical van der Waerden numbers)
w(ky, ka,..., kq;7), where k; > 3 for at least two values of 4. The
table gives, for r = 2, 3,4, each r-tuple (ki, ka,...,k,) with the k;’s
ordered in nonincreasing order (as mentioned in Example 2.8, the
order in which the k;’s appear is irrelevant).

Lr k[ ko (ks (ko] w | [k ko ks ks w]
2[3 ]3] -]|-] 9 3[3(3 ]3] - |27
o4 (3] -|-|18 3[4 (32|21
sl 44| -] -3 3/4 33|51
25 3| -|-| 2 3[4 42|
2[5 (4] -]- |5 3/4 43| - |=a
2055 - |- |17 350532 |32
26 3| - |- |3 3/5 33| |7
264 -]- | 35/5 42| - |7
273 |- |- |46 3/6 (32| -]
2| 74| -] - 109 1[3 (3|22 ]|17
283 |- |- |58 1[3[3[3]2]®0
293 |- |- |7 1(3 (33376
2(10[3 |- |- |97 14322
2[11|3 |- |- |14 1433|260
212 3 N EEG i[4a[2]2 |53
35/3[3 2] -] 14 1532|243

Table 2.1: Mixed van der Waerden numbers

|
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2.4. Bounds on van der Waerden Numbers

Since we have seen that finding exact values for van der Waerden
numbers is an extremely difficult problem, we turn to the problem of
finding bounds on these numbers.

As we will see, there is a wide gap between the best known upper
bounds on w(k) and the best known lower bounds. We begin with
lower bounds.

The best known lower bound on w(k), due to Berlekamp, is pre-
sented in the following theorem. We do not include the proof, which
requires a knowledge of field extensions.

Theorem 2.9. Let p be prime. Then w(p + 1) > p2P.

The person most responsible for the development of Ramsey the-
ory as a branch of mathematics, in fact for the much broader area of
mathematics known as combinatorial number theory, is Paul Erdés.
The extremely insightful Erd6s (also the most prolific mathematician
of the twentieth century) conjectured that limg_, o w—2(,f—) = oo (i.e.,
that w(k) grows significantly faster than 2¥). Whether this conjec-
ture is true is uncertain, although Theorem 2.9 lends credence to it.

Along these lines, we have the following theorem.

Theorem 2.10. Let € > 0. There ezists ko = k() such that for all
k > ko,
2k
w(k) > e

We omit the proof of Theorem 2.10, but will prove Theorem 2.18,
which gives an asymptotic lower bound for w(k). The proof makes use
of a graph-theoretic result due to W.M. Schmidt (Lemma 2.17). The
proof of Theorem 2.18 provides us with a method for obtaining lower
bounds that may be applied to many of the other types of sequences
mentioned in this book (these may be fruitful avenues of research to
explore).

Before stating Schmidt’s lemma, we need to give some definitions.

Definition 2.11. A hypergraph T = (V,£) is a set of vertices V and
a collection £ of subsets of V such that, for every E € &, |E| > 2.
The members of £ are called hyperedges.
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Note that if for every E € £ we have |E| = 2, then the hypergraph
(V,E) reduces to a graph as defined in Definition 1.11.

Example 2.12. Let V = {1,2, 3,4} and consider the collection £ =
{{1,2,4},{3,4},{2,3,4}}. Then (V,€) is a hypergraph with 3 hyper-
edges. If G = {{1,2},{1,3},{4}}, then (V,G) is not a hypergraph.

Definition 2.13. Let I' = (V,£) be a hypergraph. We say that I’
has Property B if there exists V1 C V such that for every E € £ we
have ENVy # 0 and ENV, # E.

We consider an example.

Example 2.14. Let I'y = (V, &) with
V =1{1,2,3,4,5,6,7,8,9}

and
& =1{{1,2,3,9},{1,4,5,6},{3,7,8}}.

Then, by letting Vi = {1, 3}, as in Definition 2.13, we see that I'; has
Property B. Let I'y; = (V, &3), where &; is the collection of all 3-term
arithmetic progressions contained in [1,9]. We show, by contradiction,
that I'y does not have Property B. Assuming I'; does have Property
B, there is a Vo C [1,9] such that VaN E # @ and Vo2 N E # E for
every FE € &. Consider the partition of [1,9] into the two sets V and
V — Va. By the fact that w(3;2) = 9, we know there is some 3-term
arithmetic progression Ey such that either Ey C Vo or Ey CV — Vs,
IfEO - ‘/2, then E()ﬁ‘/Q = Eo, and leg - V—-‘/g, then E()ﬂVQ = @
This contradicts our assumption about V,. Hence I's does not have
Property B.

Definition 2.15. Let I' = (V| £) be a hypergraph. For k£ > 2, denote
by p(k) the minimal number of hyperedges £ = {E1, Ey, ..., Ey )}
such that |F;| =k for 1 <4 < u(k) and I" does not have Property B.

Example 2.16. In Example 2.14 we saw that the set of all 3-term
arithmetic progressions in [1,9] is a hypergraph on {1,2,...,9} not
having Property B. The number of 3-term arithmetic progressions in

[1,9] is
{9;1J . {9;2J+{9;3J +...+{¥J — 16.
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Therefore p(3) < 16.

We now state Schmidt’s lemma, the proof of which we omit.
Lemma 2.17 (Schmidt’s Lemma). For k > 1,

2k

| P —
a )—1+2k—1'

With the help of Lemma 2.17 we are able to obtain the following
lower bound on w(k).

k+1

Theorem 2.18. w(k;2) > V277 (1 — o(1)).

Proof. Let m > w(k). Let £ be the collection of all k-term arith-
metic progressions that are contained in [1,m]. Just as we saw in
Example 2.14 that I'y (for 3-term arithmetic progressions) does not
have Property B, the hypergraph ' = ({1,2,...,m}, £) does not have
Property B (we leave the details to the reader as Exercise 2.9).

To use Schmidt’s lemma, we need to know something about the
size of £. For E = {a,a+d,a+2d,...,a+ (k — 1)d} to belong to &,
we must have d < 2=1. We also must have a < m — (k—1)d. Since
each k-term arithmetic progression is completely determined by the
values of a and d, we have

m—1
k—1

lEl = > (m—(k—1)d)

d=1

- nfas]- 2 o] (2] )
m2
o
Therefore, if m = w(k), then since I' does not have Property B, by
Schmidt’s lemma we have
m? 2k
ok = HB) 2 g

k2k+1
> R
VTR

v

This implies that
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and therefore
w(k) > VE25 (1 — o(1)).
O
We next state two theorems on lower bounds for w(k;r), where
r may be greater than two.
Theorem 2.19. Let p > 5 and q be primes. Then
w(p+1;9) > p(¢" —1) + 1.
Theorem 2.20. For allr > 2, w(k;r) > E%(l + o(1)).

In the following table we present several of the best lower bounds
(known to date), along with all of the known values (to date), for
specific van der Waerden numbers.

[eArl 2 | 38 [ 4 | 5 |
3 9 27 76 7
1 35 | >292 | >1048 | > 2254
5 178 | > 1210 | > 10437 | > 24045
6 || >696 | >8886 | > 90306 | > 93456
7 || > 3703 | > 43855 | > 119839 | 7

Table 2.2: Lower bounds and values for w(k;r)

We now move on to upper bounds for the van der Waerden num-
bers. The main result in this direction is a remarkable theorem due
to Timothy Gowers. In 1998, Gowers received a Fields Medal (the
mathematical equivalent of the Nobel Prize). His work related to
finding an upper bound on the van der Waerden numbers played a
significant part in his winning of this prestigious award.

Before stating Gowers’ result, we give some historical perspective
on the search for an upper bound. First we define some very fast-
growing functions.

For a function f, and n € Z*, denote by f(™ the composition of
f with itself n times (i.e., f™(z) = f(f(...(f(x))...))). Let f1 be

N —

n times

the function f)(k) = 2k, k > 1, and let f» be the function fy(k) = 2,
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k > 1. Notice that fo(k) = l(k)(l). Similarly, define f3(k) = 2(’“)(1);
and, more generally, for ¢ € Z* define the functions

firi(k) = fP (1),

k > 1. As the subscript increases, the growth of these functions
accelerates at a phenomenal rate. For example,

.2

fa(k) =2% .
k 2s

In considering the magnitude of the functions f;(k), for reasons
that are apparent, we will refer to the functions f,(k) and fa(k) as
exp2(k) and tower(k), respectively.

Now consider f;(k). We call this function the wow function due to
its incredible rate of growth, and we denote it by wow(k). To see how
quickly wow(k) grows, consider wow(k) for k = 1,2,3,4. We easily
have wow(1) = 2, wow(2) = 4, and wow(3) = tower(4) = 65536. For
k=4, we have

wow(4) = f4(4) = f3(f3(f3(f3(1)))) = f3(65536) = tower(65536),
p tower of 65536 2’s.

Generalizing from f3(3) and f4(4), we now consider a function
pn Z* known as the Ackermann function. The Ackermann function
Is defined as ack(k) = fi,(k). This function is named after a similar
function derived in 1928 by Wilhelm Ackermann, a high school math
teacher, who received his Ph.D. under the direction of David Hilbert.
This function is perhaps the fastest growing function you will ever

ncounter. To get an idea of how fast it grows, consider wow(5) and
ack(5). We have

wow(5) = tower(tower(65536)),

r which calling it enormous would be an understatement. Mean-
hile, we have

ack(5) = wow(wow(tower(65536))).

iven the incredibly immense size of wow(5), grasping the magni-
ude of wow(tower(65536)), let alone ack(5), is no easy accomplish-
ent. Comparing tower(5) = 2%5536 4 number with 19719 digits,
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to expy(5) = 2° = 32, may give some insight into how wow(5) and
ack(5) compare.

We introduced the above functions to show the enormity of the
historical upper bounds on w(k). It turns out that the original proof
of van der Waerden’s theorem gives

w(k) < ack(k),

which tells us, in particular, that w(4) < tower(65536). Comparing
this to the actual value w(4) = 35 certainly gives some reason to
suspect that this upper bound might not be the best possible.

For many years, the much-revered mathematician Ronald Gra-
ham offered a $1000 prize to anyone who could prove or disprove that
w(k) < tower(k). The idea of offering monetary prizes for what are
considered difficult problems was championed by Paul Erdés. Gra-
ham and Erdés were good friends, and since Erdés’ passing in 1996,
Graham has kept this “prize money” tradition alive by honoring all
of Erdés’ prize problems and adding some of his own.

Since there is a very significant difference in magnitude between
the functions tower(k) and ack(k), showing that w(k) < tower(k)
would seem to be quite a feat — some new method of proof would
need to be used.

In 1987, the eminent logician Saharon Shelah, while not answering
Graham’s question, used an argument fundamentally different from
earlier proofs of van der Waerden’s theorem, to prove that

w(k) < wow(k),

quite an improvement over the previous upper bound of ack(k).

Shelah’s result is one of the most significant results in Ramsey
theory. In fact, although Shelah did not answer Graham’s “prize”
question completely, Graham gave him half of the award money any-
way.

When we consider the magnitude of wow(k), for example that
wow(4) = tower(65536), and compare it to the best lower bounds
known for w(k), it would be reasonable to think that this upper bound
is not the best possible. In fact, Gowers’ amazing result showed that
the bound could be substantially improved. Here is Gowers’ bound.
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Theorem 2.21. For k > 2,
g2k +9

w(k; 2) < 22

Gowers’ bound is of a much smaller magnitude than tower(k),
thereby settling Graham’s question. As a consequence of Gowers’
result, Graham asked in 1998 whether or not w(k) < 2%* and currently
offers $1000 for an answer.

Remark 2.22. Gowers actually proved a more general result than

what we state as Theorem 2.21. Namely, letting f(k;r) = r22k+9, he
showed that
w(k;r) < 22/
Recently, a new upper bound for w(3;r) for » > 5 has been
obtained. We present this result without proof.

Theorem 2.23. Letr > 5. Then
r\3"
1< (3)
w(3;r) < 1
Even with Gowers’ upper bound and the upper bound from Theo-

rem 2.23, the best known upper and lower bounds on van der Waerden
numbers are still nowhere near each other!

2.5. The Erdds and Turan Function

By van der Waerden’s theorem we know that, for n large enough,
whenever [1, n] is partitioned into a finite number of subsets, at least
one of the subsets must contain a k-term arithmetic progression. In
an effort to find out more about the van der Waerden numbers, Erdés
and Turdn defined a function that approaches the problem from what
could be considered the opposite direction. That is, we may ask the
following question: given a positive integer n, what is the maximum
size of a subset of [1,n] that does not contain an arithmetic progres-
sion of length k? Erd6s and Turdn defined the following function.

Definition 2.24. For k > 2 and n > 3, let S be the collection of sets

S C [1,n] such that S does not contain an arithmetic progression of
length k. Then

vg(n) =max{|S|: S € S}.
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The function vy is trivial, since vo(n) = 1 for all n. In the fol-
lowing examples we consider v, (k) for some small values of k and
n.

Example 2.25. Let k = 3 and n = 8. Since w(3) = 9, we know
that there exists a 2-coloring of [1, 8] with no 3-term monochromatic
arithmetic progression. One such coloring is 11001100. Hence, taking
S = {1,2,5,6}, we have v3(8) > 4. Furthermore, there are only
two other colorings, up to renaming the colors, of [1,8] that avoid
monochromatic 3-term arithmetic progressions, each of which has four
integers of each color.

Hence, for any T' C [1,8] with |T'| > 5, if we color the elements
of T with one color and the elements of R = [1,8] — T with the other
color, we are guaranteed to have a monochromatic 3-term arithmetic
progression. If |T| > 6, then (since |R| < 2) that arithmetic progres-
sion resides in T'. This leaves us to consider |T'| = 5 (so that |R| = 3).
If R contains the monochromatic triple, then R is one of the follow-
ing: {1,2,3}, {1,3,5}, {1,4,7}, {2,3,4}, {2,4,6}, {2,5,8}, {3,4,5},
{3,5,7},{4,5,6},{4,6,8},{5,6,7},{6,7,8}. It is easy to check that
for each of these sets, T" also contains a 3-term arithmetic progression.
Hence, v3(8) < 4, and we have established that v53(8) = 4.

Example 2.26. We show here that v3(26) > 9. Since w(3;3) = 27,
there exists a 3-coloring of [1,26] that avoids 3-term monochromatic
arithmetic progressions. Clearly, there is some color ¢ such that at
least nine elements have color ¢. Since there is no 3-term arithmetic
progression with color ¢, v3(26) > 9.

The above examples illustrate the relationship between the Erdés
and Turdn function and the van der Waerden numbers. One impor-
tant reason for studying vk(n) is that having an upper bound on
these numbers would lead to an upper bound on w(k;r). To be more
precise, we have the following theorem.

Theorem 2.27. Let k > 3, r > 2, and assume vi(m) < f(k,m),
with f(k,m) < 7. Then

w(k,r) <rf(k,m)+ 1.

2.6. Proof of van der Waerden’s Theorem 43

Proof. Ifvx(m) < f(k, m), then for any r-coloring of [1, f(k,m)+1],
the most used color, say ¢, would occur more than f(k,m) times.
Since f(k,m) > vg(m), by the definition of vg(m) there must be a
k-term arithmetic progression with color c. O

To end this section, we state the following theorem; its proof is
left to the reader as Exercise 2.13.

Theorem 2.28. Let n,k > 3. Let r(n) be the minimum number
of colors required to color [1,n] so that no monochromatic k-term
arithmetic progression exists. Then

vk(n) > [%_I .

One of the most significant results in Ramsey theory, now known
as Szemerédi’s theorem, involves a conjecture made by Erdés and
Turén in 1936. They conjectured that for every k,

lim ﬂc—(n—)

n—oo n
In 1952, Roth proved their conjecture for k = 3. In 1969, Szemerédi
showed it holds for k£ = 4. Then, using an ingenious and very complex
proof, Szemerédi fully settled the conjecture, establishing its truth, in
1975. Unfortunately his proof, which makes use of van der Waerden’s
theorem, does not yield any useful bounds for w(k).

=0.

2.6. Proof of van der Waerden’s Theorem

For completeness, we restate the finite version of van der Waerden’s
theorem.

Van der Waerden’s Theorem. Let k,7 > 2 be integers. There ex-
ists a least positive integer w = w(k;T) such that for every r-coloring
of [1,w] there is a monochromatic arithmetic progression of length k.

The proof we give of van der Waerden’s theorem is constructed

from two important lemmas. Before presenting these lemmas, we
need some preliminaries.

The following proposition essentially tells us that the guarantee
of a monochromatic arithmetic progression in an interval is unaffected



44 2. Van der Waerden’s Theorem

by translation (adding a constant integer) and/or dilation (multiply-
ing by a positive integer) of the interval.

Proposition 2.29. Let k, r, m, a, and b be positive integers. Every
r-coloring of [1,m] yields a monochromatic k-term arithmetic pro-
gression if and only if every r-coloring of

S={a,a+ba+2b,...,a+ (m—1)b}

yields a monochromatic arithmetic progression.

Remark. The “only if” portion of Proposition 2.29 immediately
implies the result of Example 2.2.

We leave the proof of Proposition 2.29 to the reader as Exercise
2.14.

As an aside, it is worth mentioning that Proposition 2.29 may be
easily extended to other sequences besides arithmetic progressions.
Specifically, the following more general statement may be proved in
essentially the same way. We leave the proof to the reader as Exercise
2.15.

Proposition 2.30. Let F be a collection of sets and let a,b € ZT.
Assume the following: S € F if and only ifa +bS € F. Letr € Z+.
Then every r-coloring of [1,n] yields a monochromatic member of F
if and only if every r-coloring of

a+b0,n—1]={a,a+b,a+2b,...,a+ (n—1)b}

ytelds a monochromatic member of F.

We now give two definitions that are crucial to our proof of van
der Waerden’s theorem.

Definition 2.31. Let r,m,n > 1. Let v be an r-coloring of [1, n+m].
Define x.,m to be the r™-coloring of [1,n| as follows: for j € [1,n],
let x-,m(j) be the m-tuple (v(j +1),v(j +2),...,7(j +m)). We call
X~,m @ coloring derived from v, or a derived coloring.

Note that x.,m of Definition 2.31 is, in fact, an r™-coloring since
there are r™ possible m-tuples (y(j + 1),v(j +2),...,7v(j +m)), for
1 € j < n. Also note that the above definition states that i,j € [1,n]
have the same color under x.,m, precisely when [i + 1,4 + m| and
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[/ + 1,7 + m] are colored in the same fashion under . Consider the
following example.

Example 2.32. Take 7 = 2, m = 3, and n = 18 in Definition 2.31.
Define « : [1,21] — {0,1} by the coloring

011000111100000111111.

To describe the 23-coloring x3 of (1,18] derived from <, we make,
for convenience, the following correspondence between the set of all
3-tuples of two colors, T' = {(4,,k) : 4,5,k € {0,1}} (there are 8 of
them), and the colors 0,1,...,7:

(0,0,0) « 0; (1,0,0) < 1; (0,1,0) < 2; (0,0,1) < 3;
(1L,1,0) =4 (1,0,1) &5 (0,1,1) =6 (1,1,1) 7.

Note that any one-to-one correspondence between T and a set of eight
“colors” would suffice.

Since X+,3(1) corresponds to (v(2),7(3),v(4)) = (1, 1,0), we see
that x,3(1) = 4. Similarly, X~,3(2) corresponds to (1,0,0), so that
X,3(2) = 1. Evaluating the other 16 elements of [1, 18], we find that
the derived coloring under x. 3 is

410367741000367777.

Definition 2.33. We say that a triple (k,t;7) is refined if there
exists a positive integer m = m(k,t;7) such that for every r-coloring
of [1,m], there exist positive integers z, z, Z1,...,2; such that each
of the sets

s—1

T, = {bs +Zciari ic € [l,k]} ,
i=0

0 < s < t, is monochromatic, where

t
bs:Z+(k+1)Zzi.

The above definition may seem rather cumbersome, but it will
make the proof of van der Waerden’s theorem easier to digest. So,
before moving on, let’s look at an example. Consider k = 2 and ¢ = 2
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in Definition 2.33. The sets are

TO - {bO}a

Ty = {by + 0, b1 + 2x0},

Ty = {b2 + x9 + .'1}1,b2 + 2z + T1,ba + o + 221, by + 229 + 21‘1},
where by = 243 Zi s zi for s = 0,1,2. Clearly, T is monochromatic
since it contains only a single point. Hence, in order for (2,2;7) to
be refined, there must exist m = m(2,2;r) such that, under any -
coloring x of [1,m], we have

x(b1 + z0) = x(b1 + 2z0)
and
x(ba+zo+z1) = Xx(b2+270+71) = X(b2+Zo+221) = X (b2+220+221)
for some positive integers z, xg, Z1, T2-

A subtle point of Definition 2.33, perhaps made clear by the above
example, is that, even if (k,t;r) is a refined triple, we do not neces-
sarily have that the T are all monochromatic of the same color, but
rather that each Ty, individually, is monochromatic.

The following remark gives a glimpse as to how Definition 2.33 is
used in the proof of van der Waerden’s theorem.

Remark 2.34. Bytakingcy=c; = - =cs_1=jforj=1,2,...,k
in Definition 2.33, we have the arithmetic progression

{a+jd:j=1,2,...,k} CT,,

where @ = b and d = Zf;& x;.

We are now ready to present the lemmas that, when combined,
will prove van der Waerden’s theorem. Our approach will be proof by
induction, showing that the existence of w(k;r) implies the existence
of w(k + 1;7). In order to do this, we will be using refined triples.

Lemma 2.35. Let k > 1. If w(k;r) exists for allr > 1, then (k,t;7)
is refined for all r,t > 1.

Proof. Let r > 1. The proof is by induction on t, starting with
t = 1. To prove that (k,1;r) is refined, we first show that we may
take m = m(k,1;7) (in Definition 2.33) to be 3w(k;r) + k + 1. Let
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x be an arbitrary r-coloring of [1,3w(k;r) + k + 1]. Since we are
assuming that w(k;r) exists, applying Proposition 2.29, the interval
[w(k; ) +k+2,2w(k; r) + k+ 1] must admit a monochromatic k-term
arithmetic progression S = {a +d,a +2d,...,a + kd}.

Using the notation of Definition 2.33, let z = a — (k+1), 20 =d,
and z1 = 1. This gives To = {a + (k + 1)d} and T} = S, which are
both contained in [1,m] and are both (individually) monochromatic

(To contains only one point), thereby proving that (k, 1;7) is a refined
triple.

Now let ¢t > 1 and assume that (k,t;r) is refined. We will show
that (k,t+1;7) is refined. Let m = m(k, t;7) be as in Definition 2.33
and let n = 2w(k;r™).

We claim that we may take m(k,t+ 1;7) = n + m. Let v be an
r-coloring of [1,n +m]. Let x = x,m be the r™-coloring of [1,n]
derived from <y (see Definition 2.31). By the definition of n, and since
w(k; ™) exists, there must be an arithmetic progression

{a+d,a+2d,...;a+ (k+1)d} C [1,n]

with the first k& terms monochromatic under x,,. By the definition of
X; the k intervals I; = [a+jd+1,a+jd+m], 1 < j < k, have identical
colorings under «y. Since (k, t;7) is refined, there exist 2,20,%1,...,T¢
so that the T;’s (as in Definition 2.33) are monochromatic under .

- Therefore, each I; contains the monochromatic sets

Ss(j) =Ts+ (a+7jd)
={y+a+jd:yeTs}

s—1
= {(bs +a+ jd) +Zcixi i € [l,k]}
i=0
for s = 0,1,...,t (where b, is as in Definition 2.33). Furthermore,
since the intervals have the same coloring under v, S;(u) and S,(v)
must have the same coloring under v for 1 < w,v < k. Hence, by
construction, the set

s—1
Qs = {(bs+a)+zcz'fvi+jd:j,ci € [l,k]}

i=0
is monochromatic under v for each s =0, 1,.. ., ¢.
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We shall provide integers 2’, z§, 2}, ..., Tj,1, which produce
monochromatic sets 7/ (analogous to the T;’s in Definition 2.33), for
s=0,1,...,t+1, to show that (k,¢+ 1;7) is refined. Let

zZ =z+ta,
z, =z for0<i<s—1,
z, =d,
zi =z fors+1<i<t, and
Tiy1 = Ts:
Since for each s = 0,1,...,t we have T, ; = Qs, it follows that, under

~, T! 1 is monochromatic for 0 < s < t. Since Tg = {bo+a+(k+1)d}
consists of a single point (whose value is less than n4m), it is trivially
monochromatic. Thus we have satisfied the conditions required to
prove that (k,t+ 1;7) is refined, thereby proving the lemma. O

Lemma 2.36. If (k,t;r) is refined for all v,t > 1, then w(k + 1;7)
exists for all ™ > 1.

Proof. Let r be given and let x be any r-coloring of Z7F. By assump-
tion, (k,t;r) is refined for, in particular, t = r. Using the notation of
Definition 2.33, there exist z, zg, Z1, . . - , Z» such that each of the sets
Ty, T4, ..., T, is monochromatic under x. By the pigeonhole princi-
ple, two of these sets must be the same color. Let T, and Ty, v < w,
be two such sets. We have

T v—1
T, = {Z+ (k}-l— ].)Z.’I?,,-FZC,,J), 1C € [1,k]}
i=v =0
and
T w—1
Ty = {z+(k+1)Zx,+ Zcixi 1C € [l,k]} .
i=w i=0
Letting a = z + Y.°2g @i + (k + 1) _,, @i, we rewrite these as
w—1 v—1
T, = {a+(k+1) Zzﬁ-Z(ci —1z;:¢; € [1,k]
i=v i=0

and

v—1 w-—1
Ty = {G—ZCB,"F Zci$5 1 ¢ € [l,k]}
1=0 =0
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Taking co =c1 =+ =c¢y—1 = 1 in Ty, we have
w—1
T, = {a+ Zcimi ic € [1,k]} CT,.
i=v

Letting d = Z;”z—vl z;, we have a + (k + 1)d € T, and, from Remark
2.34, {a+d,a+2d,...,a + kd} C T!. Hence, we have found a
monochromatic arithmetic progression of length k+1, thereby proving
the existence of w(k + 1;7). O

We now put the previous two lemmas together to prove van der
‘Waerden’s theorem.

Proof of van der Waerden’s Theorem. Clearly w(1;r) exists for
pll » > 1, since we need only a single point. Lemma 2.35 shows that
(1,%;7) is refined for all ,¢ > 1. This in turn, by Lemma 2.36, gives us
the existence of w(2;r) for all » > 1. Hence, by repeated application
of Lemmas 2.35 and 2.36 we have the existence of w(k;r) for any
given k, for all r > 1. O

2.7. Exercises

2.1 Show that within [1,n] there are "Tz + O(n) arithmetic pro-
gressions.

2.2 Prove that w(2;7) =7+ 1 for all » > 1.

2.3 Show that the following 3-colorings yield no monochromatic
3-term arithmetic progression. Note that w(3;3) = 27, so
that the following colorings are maximal.

a) 00110 01212 20200 10112 02212 1
b) 21001 01221 12210 10012 20020 2

2.4 Show that w(ki, ko, ...,k.;7), i.e., the mixed van der Waer-
den numbers, always exist.

2.5 For each of the following van der Waerden-like functions, ex-
plain why it is reasonable to say that “the function is not
worth studying.”

a) For positive integers k1 and ko, define f(k;,ks) to be the
least positive integer n with the property that, for every 2-
coloring of [1,n}, there is a color i such that there is either
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2.6

2.7

2.8

2.9
2.10

2.11
2.12
2.13

a kj-term arithmetic progression with color i or a kp-term
arithmetic progression with color 1.

b) For positive integers k; and k2, define g(k1, k2) to be the
least positive integer n such that for every 2-coloring (using
the colors red and blue) of [1,n], there is a kj-term arith-
metic progression with color red and a ko-term arithmetic
progression with color blue.

Prove that, for all k > 2, w(k,2;2) = 2k — 1 if k is even, and
w(k,2;r) = 2k if k is odd.
Prove that, for all k& > 2, w(k,2,2;3) = 3k if and only if
k = £1 (mod 6).
We can easily obtain a lower bound for w(k;2) by using the
probabilistic method. Show that w(k;2) > 2¥/2 for large k
via the following steps.
a) Randomly color the integers in 1, n] either red or blue. Let
A be an arbitrary arithmetic progression of length k within
[1,n]. Show that the probability that A is monochromatic is
& =217k,
b) Use Exercise 2.1 to deduce that the probability that a
monochromatic arithmetic progression exists is at most

n2

1 g(n)zl_k _ n? 4 O(n)

< ok+1

c¢) Argue that if i;k&ﬂ < 1 then w(k;2) > n.

d) Conclude that n = 2*/2 satisfies the first inequality in (c)
for k large enough.
Fill in the details of the proof of Theorem 2.18.

Let r = 2". Show that for 3 < n < 12, the bound given by
Theorem 2.23 is better than Gowers’ bound (Remark 2.22),
but that for n > 13, Gowers’ bound is better. (A computer
will be helpful for this exercise.)

Find v3(7) and v3(9).

Exhibit a 2-coloring of [1,14] which shows that v4(14) > 7.
Prove Theorem 2.28.
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2.14 Prove Proposition 2.29 (hint: see Example 2.2).
2.15 Prove Proposition 2.30.

2.8. Research Problems

*2.1 Write a more efficient algorithm for determining w(k;r).

*x2.2

2.3

24

2.5

2.6

| %2.7

References: [25], [261]

Find w(3;5), w(4;3), or w(6;2), or improve the known lower
bounds.
References:[71], [210], [261]

Determine the value of a new “mixed” van der Waerden num-
ber w(ky, ka,..., k.;7) (where at least two of the k;’s are
greater than 2), or obtain a lower bound, by using a com-
puter program.

References: [25], [55], [71], [74]

Find the rate of growth, or improve the known bounds, on
the mixed van der Waerden numbers w(k, ko), as a function
of k, for any fixed ko > 3. Try similar problems using more
than two colors, where all but one of the k;’s (1<i<r)are
fixed.

References: [25], [55], [71],[74]

Investigate the set of maximal length valid colorings for var-
ious van der Waerden (or mixed van der Waerden) numbers.
References: [25], [55], [71], [74], [210], [261]

The first-named author has conjectured the following con-
cerning mixed van der Waerden numbers:

w(k,k) >wk+1,k-1)
>wk+2,k—2)

for all k > 3. Prove or disprove this. Try extending this to
mixed van der Waerden numbers where the number of colors
is greater than two.

References: [25], [55], [71],[74]

Let A = {a1,as,...} be a sequence of positive integers such
that 32, a% = 00. Erd6s conjectured that A must contain
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arbitrarily long arithmetic progressions. Prove or disprove
this.
Reference: [275]
w(k;2)
2

*2.8 Erdés conjectured (in 1961) that limg_,oc —52—~ = 00. Prove

or disprove this.
References: [34], [263]

%2.9 Improve on the known upper bound for w(k;2).
References: [121], [141]

%2.10 Improve on the known lower bounds for w(k;r).
Reference: [127]

%2.11 Find the asymptotic value of w(3;r).
Reference: [141]

%2.12 Improve on the known upper bound for w(4;r).
References: [121], [141]

%2.13 Find an upper bound on vi(n) for general k and n.
References: [229], [264], [265]

2.9. References

§2.1. The statement and proof of the full version of the compactness
principle can be found in [127].

§2.2. Theorem 2.5 is taken primarily from [123, p. 1000], with state-
ment (iv) from [72] and statement (vi) originally from [56]. More
proofs of the equivalence of different forms of van der Waerden’s the-
orem are given in [205] and [209], the latter of which also contains
several corollaries of the theorem.

82.3. The algorithms, and information about the computer time
needed to find some exact values, may be found in [25] and [261].
The references for the values (except w(3,3;2) = 9) given in Table
2.1 are as follows:

w(4,3;2), w(4,4;2), w(5,3;2), w(5,4;2), w(6,3;2), w7,3;2),
and w(3,3, 3; 3) are from [71]; w(5;2) = 178 is from [261];

w(6,4;2), w(8,3;2), w(9,3;2), w(10,3;2), w(4,3,3;3), and
w(3,3,3,3;4) are from [25];
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w(ll, 3; 2), w(12, 3;2), w(4, 4, 3;3), w(5,3,3;3), and
w(4,3,3,2;4) are from [74]; w(7,4;2) is from [24];

and the remaining values are from [55].

The mixed van der Waerden numbers such that all but one entry
equals 2 are investigated in [74]. Bounds on numbers very similar to
.the mixed van der Waerden numbers can be found in [137].

§2.4. Theorem 2.9 is from [34]. Theorem 2.10 is from [263]. Erdés
and Rado [95] showed, in 1952, that

w(k;r) >t — e\ /(k+ 1)In(k + 1).
A series of improvements (but not as strong as Theorem 2.10) were
subsequently made in [191], [246], and [5]. The bound

krk
w(k;r) > m,

'which is sometimes better than that of Theorem 2.9, was proven by
Everts [105]. Other results concerning Property B are found in [4],
8], [7], 8], [9], [20], [46], [85], [86], [87], [104], [107], and [150].
The function p(k) (Definition 2.15) was defined by Erdés and Hajnal
[93]. Schmidt’s lemma is proven in [245], and later in [99], which
Also includes a simpler proof of a weaker bound. Erdés [86] gives an
upper bound for p(k). The proof of Theorem 2.18 is from [99]. The
proof of Theorem 2.19 can be easily derived from a similar proof in
127, p. 96]. Theorem 2.20 is an application of the Lovdsz Local
emma [94]. For a clear proof of the Lovdsz Local Lemma see [255].
For a proof of Theorem 2.20 see [127]. The lower bounds of Table 2.2
pre from [210]. The given development of the tower, wow, and ack
;;lnctions can be found in [127]. Gowers’ results (Theorem 2.21 and
emark 2.22) can be found in [121]. Theorem 2.23 is from [141].

§2.5. The Erdés and Turdn function is defined in [102]. A proof
pf Roth’s 1952 result can be found in [229]. Szemerédi’s 1969 result
pnd proof can be found in [264]. A proof of the conjecture of Erdés
and Turdn by Szemerédi is found in [265]. Furstenburg [112] gives a

roof of this result using ergodic theory. A shorter proof is given in
r267]. Bounds on v3(n) are found in [26], [192], and [227]. Rankin
[219] obtains a lower bound on vg(n) for ¥ > 3. Some relatively
rarly results on the Erdds and Turdn function may be found in [230]
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and [231]. Pomerance [204] and Riddell [221] consider analogues of
Szemerédi’s theorem in the set of lattice points in the plane (points
having both coordinates in Z).

§2.6. For a brief history of van der Waerden’s theorem, see [68],
which contains many references. The original proof of van der Waer-
den’s theorem, which was referred to as Baudet’s conjecture before
it became a theorem, can be found in [270], with a recounting of its
discovery in [271]. The proof presented here (namely, Lemmas 2.35
and 2.36) is derived from [17] and is similar to the one found in [127].
The shortest proof (to date) is found in [126]. A topological proof
can be found in [116], while an algebraic proof can be found in [30].
Other proofs can be found in [78], [189], [2086], [249], and [266].

§2.7. The colorings given in Exercise 2.3 can be found in [71]. Exer-
cise 2.9 uses what is known as the probabilistic method, which is the
subject of a book by Erdés and Spencer [99].

§2.8. Wréblewski [275] proved the following result: there exists a
set of positive integers {z; < Zz < ---} with no 3-term arithmetic
progression such that Zz_l = > 3.00849 (which may help to explain
why Research Problem 2.7 is considered difficult).

Additional References: For biographies of Paul Erdds, see [148]
and [243]. An algorithm that gives partitions of Z* into an infi-
nite number of subsets, none of which contain a 3-term arithmetic
progression, is discussed in [118]. Earlier related work is covered in
(119]. In [259], Spencer showed (among other things) that for each
k > 1, there exists a set S of positive integers so that for every finite
coloring of S, there is a monochromatic k-term arithmetic progres-
sion, but such that S is “sparse” enough that it itself does not contain
any (k + 1)-term arithmetic progressions. An alternate proof, using
a direct construction, is given in [198].

Chapter 3

Supersets of AP

As we discussed in Chapter 1, we can define a function analogous to
the van der Waerden function w(k; ) by substituting for AP (the set
of arithmetic progressions) some other set of sequences. That is, if F
is some specific collection of sequences, denote by R(F, k;r) the least
positive integer m (if it exists) such that every r-coloring of [1,m)]
yields a monochromatic k-term member of F.

Of course, there is no guarantee that R(F,k;r) exists, unless we
choose the collection F wisely. As a simple example, let r = 2 and let
J be the family of all sequences of positive integers that begin with
the pattern 4,7 + 1 for some 3. In order for R(F,2;2) to exist, there
must exist a number n = R(F,2;2) such that for every 2-coloring of
[1,7n], there is a monochromatic pair 4,7 + 1. This is not true since,
for example, the coloring of ZT where all odd numbers are colored
blue and all even numbers are colored red does not yield such a pair.

Let us assume that F is some collection of sequences such that
R(F,k;2) exists for all k. If G is a family of sequences such that
J C G, then since we are assured of finding k-term monochromatic
members of F in [1, R(F, k; 2)], we are also assured of finding k-term
monochromatic members of G in [1, R(F, k;2)]. In fact, if G is larger
than F, then it may happen that we do not have to go out as far as
the integer R(F, k;2) in order to guarantee a monochromatic k-term
member of G. Summarizing, we have the following fact.
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Theorem 3.1. Let F be a collection of sequences and let k be a pos-
itive integer such that R(F,k;2) emists. If F C G, then R(G,k;2)
exists and R(G,k;2) < R(F,k;2).

Before proceeding, we remind the reader that we may denote
R(F, k;2) more simply as R(F, k).

As we saw in Chapter 2, R(AP, k) exists for all k; these are just
the van der Waerden numbers w(k). We noted in Chapter 2 that the
determination of the rate of growth of w(k) is a very difficult problem.
Can we alter the problem somewhat so as to make a solution easier to
obtain? Theorem 3.1 suggests a method: replace AP with a different
(appropriately chosen) collection G such that AP C G.

If SCT,T is called a superset of S.

In this chapter we will look at several different choices of G such
that G is a superset of AP, and study the corresponding function
R(G,k). In some cases we will see that there are interesting rela-
tionships between R(G, k) and w(k). The supersets of AP that we
present here are by no means exhaustive, and we encourage the reader
to consider other choices of G.

3.1. Quasi-progressions

An arithmetic progression {a,a+d,a+2d, ...} can be thought of as
an increasing sequence of positive integers such that the gap between
each adjacent pair of integers is the constant d. One way of general-
izing the notion of an arithmetic progression is to allow a little more
variance in this gap. For example, we can require only that the gaps
be either d or d + 1 for some positive integer d; or, that the gaps
belong to the set {d,d+ 1,d + 2} for some d € Z*. This prompts the
next definition.

Definition 3.2. Let k > 2 and n > 0. A k-term quasi-progression
of diameter n is a sequence of positive integers {x1, 2, ..., Tk} such
that there exists a positive integer d with the property that

d<zi—xz;1 <d+n

fori=2,3,...,k.
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We call the integer d of Definition 3.2 a low-difference for the
quasi-progression X = {z1,2,...,2x}; and, when helpful to the dis-
cussion, we will say that X is a (k, n, d)-progression.

Example 3.3. Let A be any arithmetic progression with gap d. Then
A is a quasi-progression of diameter 0. Note that A may also be
considered a quasi-progression with diameter 1 (since all gaps belong
to {d,d + 1} for some d). Any l-element or 2-element sequence may
be considered to have diameter 0.

Example 3.4. Let B = {1,3,5,8}. We see that B is a 4-term
quasi-progression with diameter 1 and low-difference 2; hence it is
a (4,1, 2)-progression. Note that B may also be considered a (4, 2, 2)-
progression since all of the differences x; — x;_; belong to the set
{2,3,4}. Moreover, B is a (4,n,2)-progression for all n > 1. Lastly,
note that B is a (4,2, 1)-progression since all of the gaps belong to
{1,2,3} - in fact, it is a (4, n, 1)-progression for each n > 2.

We see from Examples 3.3 and 3.4 that the diameter n and low-
difference d of a quasi-progression are not unique, but that the pos-
sible values for the low-difference depend on the choice of diameter.
In particular, any quasi-progression of diameter n > 0 is also a quasi-
progression of diameter m for all m > n. Obviously, for each n > 0,
the set of quasi-progressions of diameter n is a superset of AP.

Although for a given sequence there are many choices for n and
d, it will ordinarily be most advantageous for us to use the minimum
value of n that works, and then to choose the minimum value for
d corresponding to this n. Hence, we usually think of progression
A of Example 3.3 as having low-difference d and diameter 0; and of
progression B of Example 3.4 as having low-difference 2 and diameter
1.

We next mention a convenient notation for the function analogous
to w(k), where we are concerned with quasi-progressions rather than
arithmetic progressions.

Notation. For positive integers n and k, denote by Qn(k) the least
positive integer m such that for every 2-coloring of [1,m] there is a
monochromatic k-term quasi-progression of diameter n.
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In the following theorem we list some rather obvious properties
of @Qn(k). We state these without proof and ask the reader to verify
them.

Theorem 3.5. Letn >0 and k > 2.
(i) Qn(k) exists.
(i) Qo(k) = w(k).
(iti) Qo(k) = Q1 (k) > Q2(k) > --- .

Our goal is to find out as much as we can about the magnitude of
the function @Q,(k). We would hope that, for n > 1, a “reasonable”
upper bound for @, (k) is more easily obtainable than has been the
case for the van der Waerden numbers. From Theorem 3.5(iii), we
see that the larger the value of n, the more likely that we will be able
to obtain a “not-so-big” upper bound on the function Q,, (k).

We first look at the easiest case (where the diameter is at least
k —1). In this case we are able to give the exact value of @, (k).

We first give a lower bound for @, (k) that holds for all n > 1
and all k > 2.

Theorem 3.6. Let k > 2 and n > 1. Then Q,(k) > 2k — 1.

Proof. Consider the 2-coloring x : [1,2k — 2] — {0,1} defined by
x([1,k —1]) = 1 and x([k,2k — 2]) = 0. This coloring admits
no monochromatic k-element set. In particular, it yields no k-term
monochromatic quasi-progression of diameter n. Therefore, we have

Qn(k) > 2k — 1. O

We next show that the lower bound given in Theorem 3.6 also
serves as an upper bound when n = k — 1.

Theorem 3.7. Qi—1(k) <2k —1 forallk > 2.

Proof. Let x be an arbitrary 2-coloring of [1, 2k — 1]. Clearly there is
some k-element set X = {z; <19 < -+ < xi} that is monochromatic
under x. If for some j, 2 < j < k, we have ZT; —Tj—1 > k, then
k
T — X =Z(:ci—xi_1) >k+(k-—2)=2k§—2,
i=2
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which is not possible. Thus, X is a monochromatic (k,k — 1,1)-
progression, since 1 < x; —x;—1 < k for 2 <1 < k. This shows that
Qr-1(k) <2k - 1. O

Note that by Theorems 3.5(iii), 3.6, and 3.7 we have the following
corollary.

Corollary 3.8. Forallk >2 and alln >k — 1, Q,(k) =2k — 1.

As we alluded to earlier, it would be most desirable to obtain
results in which the diameters are as small as possible. Although no
“nice” upper bound is known for the function @ (k), we look next at
a lower bound for this function.

Theorem 3.9. Q1(k) >2(k—1)2+1 fork > 2.

Proof. Define the 2-coloring x of [1,2(k — 1)?] by the string

00...011...100...011...1...00...011...1,
k=1 k-1 k-1 k-1 k-1 k-1

where each of the (2k —2)-element blocks 00...011...1 appears k—1

k-1 k-1
' times. To prove the theorem, it suffices to show that under this color-

ing there is no k-term monochromatic quasi-progression of diameter
1.

By way of contradiction, let m = 2(k — 1)2, and assume that
X = {z1,z2,...,21} C [1,m] is a quasi-progression of diameter 1
that is monochromatic under x. By the symmetry of x, without
any loss of generality, we may assume that x(X) = 1. Since each
monochromatic block of color 1 has k — 1 elements, there is some 3,
2 <1 < k, where z; and z;_; belong to two different such blocks. For
this ¢, we have z; — z;_1 > k. Since X has diameter 1, this implies
that X has a low-difference of at least k — 1. Thus, each of the blocks
of £ — 1 consecutive 1’s contains no more than one member of X.
Hence, X must have length at most k — 1, a contradiction. O

In the following theorem, we use a generalization of the coloring
used in the proof of Theorem 3.9 to obtain a lower bound for Qx—;(k)
in ‘terms of 7 and k.
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Theorem 3.10. Let 1 <i <k and let m =1+ [552|. Then

31 Qo) >2 Q%J (k= 1—im) +i(k — 1)) 41

Before presenting the proof, first notice that this is indeed a
generalization of Theorem 3.9, since if : = k — 1, we have m = 1,
and thus Theorem 3.10 gives Qi (k) > 2((k — 1)(0) + (k — 1)?) + 1.
At the other extreme, if we take ¢ = 1, then m = k — 1, so that
Qr-1(k) >2((k—1—(k—1))+k—1) + 1, giving us Theorem 3.6.

Proof of Theorem 3.10. Let s =2 (| =L |(k—1—im) +i(k — 1)).
Define the 2-coloring x of [1, s] by the string

ly(Ok-—llk-—lok—llk—l . Ok—llk_l)oy,

where within the parentheses each of the blocks 0¥~11%~1 occurs
E=1| times, and where y = i (k — 1 — m|%=1]). Note that this is, in
fact, a string of length s. To establish (3.1) it is sufficient to show that,
under x, [1,s] contains no monochromatic k-term quasi-progression

of diameter k — 1. We proceed by contradiction.

—

Assume that X = {z1,2,...,25} C [1,s] is a quasi-progression
of diameter k —i that is monochromatic under y. By the symmetry of
X, we may assume that x(X) = 1. Note that since m [%J >k—m
why?),

—~~

v —ilE-1-m|E2))
<i(k—1-(k—m))

—ils2
<k-2

Hence, there is no block of more than k — 1 consecutive 1’s. Thus, for
some j € {2,3,...,k}, we have z; — z;_1 > k, which implies that X
cannot have a low-difference that is less than 1.

Since the low-difference of X is at least ¢, the first block of 1’s
(having length y), contains at most ¥ = k — 1 — m | 221 | members
of X. Similarly, in any block of k¥ — 1 consecutive 1’s, there are at
most 1+ [%J = m members of X. There are [%J blocks of k — 1

consecutive 1’s, so that, accounting for all blocks of 1’s, we see that
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X has at most
k-1 —
k—l—m[—J +m[k——1J k-1
m m
elements, a contradiction. O

Computing some actual values of Ramsey-type functions can be
quite helpful in forming conjectures about the magnitude (or rate of
growth) of the functions. As we saw in Chapter 2, for the classical
van der Waerden numbers w(k; r), the computations can be quite pro-
hibitive. In dealing with supersets of AP, however, we often find the
computations much more reasonable. In fact, in some circumstances
we have enough computed data to help us form “educated” conjec-
tures. Such is the situation with certain special cases of Theorem
3.10. For these cases, computer-generated values of Qx_;(k) suggest
that, whenever ¢ < %, the right-hand side of (3.1) is the precise value
of Qx—i(k) (see Table 3.1 at the end of this section). We single out
these special cases in the following corollary.

Cordllary 3.11. Let1<i<k-1.
(i) If k = 0 (mod i), then Qr—;(k)
(1) If k = 1 (mod1), then Qr—;(k)

> 2tk — 4i + 3.

> 2ik — 2+ 1.

Proof. We will prove (ii), and leave the proof of (i) to the reader as
Exercise 3.2. Letting k = ¢i + 1, then using the notation of Theorem
3.10, we have m = 1+ |¥=1| = ¢, and |51 = i. Therefore, (3.1)
becomes

Qu=i(k) 2 2(t(k = 1 —it) +i(k = 1)) + 1= 2i(k — 1) + 1.
O

We see that Corollary 3.11(ii) implies Theorem 3.9, simply by
letting i = k£ — 1. Also notice that by letting i = 1 in Corollary
3.11(i), we get that Qx_1(k) > 2k — 1, as given by Theorem 3.6.
So far, ¢ = 1 is the only case we have presented for which we have a
precise formula for Qi_;(k). In the next theorem, we give the formula
for the only other nontrivial value of i for which an exact formula for
Qk—i(k) is known.
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Theorem 3.12. Let k > 2. Then

| 4k -5 ifk is even,
Qr—2(k) = { 4k —3 i k is odd.

Proof. Letting ¢ = 2 in Corollary 3.11, we obtain Qx_2(k) > 4k — 5
when k is even, and Qx—2(k) > 4k — 3 when k is odd. Hence we need
only establish these as upper bounds for Qx—2(k).

To obtain the upper bounds, let x : Z+ — {0,1} be any 2-
coloring. We will show that if k is even then there is a monochromatic
k-term quasi-progression with diameter k — 2 in 1,4k — 5|, and that
if k is odd then there exists such a progression in [1,4k — 3].

First note that the upper bound obviously works for k = 2, since
Qo(2) = w(2) = 3. So we may assume that k > 3. Notice that
from the proof of Theorem 3.7, [1,2k — 3] contains a monochromatic
(k — 1,k — 2,1)-progression {z1 < z2 < --+ < zx_1}, say of color
1. Now if x_; + j has color 1 for some j € {1,2,...,k — 1}, then
[1,4k — 5] will contain the k-term monochromatic quasi-progression
{z1,22,...,2k—1} U{xk—1 +j}, having diameter k — 2, so in this case
we are done. Thus, we may assume that [zx_; +1,z5_1 + k — 1] has
color 0.

If there is some integer b with color 0 that satisfies
ZTp—1—(k—2) <b <z,

then {b}U[zx_1+1, zk_1+k—1] forms a monochromatic (k,k—2,1)-
progression, and we are done. Hence, we may further assume that
X([zk—1 — (k — 2),2x—1 — 1]) = 1. For ease of notation, we let

a=zr_1—(k—2),
so that x([a,a+k—2]) = 1.

Note that a < k — 1, since zx_1 < 2k — 3. Hence we may assume
that x(x) = 0 for all z < a, for otherwise for some zg < a the set
{z0}U[a, a+k—2] would be a monochromatic k-term quasi-progression
with diameter k—2 (having color 1), and we would be done. Likewise,
we assume that all of [a + k — 1,a + 2k — 3] has color 0 (why?), and
hence that all of [@ + 2k — 2, a + 3k — 4] has color 1. Finally, we may
assume that [a + 3k — 3, a + 4k — 5] has color 0.
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To complete the proof, we consider three cases. In each case we
find a monochromatic quasi-progression with the desired properties.

Case 1. k is even. In this case, the set
k—2 3k—4
21:0<1 < —— 1 k—1<1<
{a+z <i< 2 }U{a+2z k—1<:< 5 }

is monochromatic of color 1, has length k, and (since a < k — 1) is
contained in [1,4k — 5]. It obviously is a quasi-progression having
diameter k — 2 and low-difference 2.

Case 2. k is odd and a = 1. If x(4k — 3) = 0, then the interval
[8k — 2,4k — 3] is a monochromatic k-term quasi-progression with
diameter k—2. If, on the other hand, x(4k—3) = 1, then the sequence
{1,4,6,8,...,k — 1,2k — 1,2k + 2,2k + 4,2k +6,...,3k — 3,4k — 3}
is a k-term quasi-progression with color 1, having diameter k — 2.
Case 3. kisoddand 2<a<k—1. Let

Ar={a—-1-2:0<i<|%] -1},
Ay={a+k-1}U{a+k+2,a+k+4,...,a+2k —5,a+ 2k — 3},
As={a+3k—3+2i:0<i<|%2|}

Then A; U Ay U Az is contained in [1,4k — 3] and forms a k-term

quasi-progression of diameter k — 2. We leave the details as Exercise
3.3. O

We next turn our attention to the problem of finding upper
bounds for @, (k).

The main result we have on upper bounds for Q,, (k) relies on the
following lemma. The proof of the lemma, is fairly complicated, and
we choose not to include it here.

Lemma 3.13. For3 < j < %, let E(n,j) be the least positive integer
such that for every 2-coloring of [1, E(n, j)| there is a monochromatic
(n+ j — 1,n,£)-progression for some £ < j — 1. Then

(3.2) E(n,j+1) < E(n,j) +2XMn+j - 1),

where A = [’E—J,C_L{"JQ-‘ + 1.
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With the help of Lemma 3.13, we are now able to obtain a bound
on Qn(k), provided k does not exceed 3.

Theorem 3.14. Let 3 <t < % Then

1 4
(3.3) Qn(n+1t) < %t“ + §t3 + (n + 2)t* + 8nt.
Proof. First, we note that by the definition of E(n,j) we have
Qn(n+t) < E(n,t+1). To complete the theorem, we will show that
E(n,t+1) is bounded above by the right-hand side of (3.3). Applying
(3.2) t — 2 times, we obtain

E(n,t+1)§E(n,3)+22t:(n+r—1) (P—E&’J—ﬂ +1)
r=3 T

¢
-3
<E(n3)+2Y (n+r-1) (%— +2)
r=3 I‘ T J
i nr+r2—3r
<FE 2 -){—)F-+2).
<E(n,3)+ ;(n+r )< i + )
By the proof of Theorem 3.12, for every 2-coloring of [1,4(n + 2) — 3]
there is a monochromatic (n + 2)-term quasi-progression of diameter
n and low-difference at most 2. Thus, F(n,3) < 4n + 5. This gives
t
E(n,t+1) 54n+5+42(n+r— 1)

r=3
t—2

Hence,

E(n,t+1) <4n+ 5+ 4nt + 22

2 t—2 5 )
Z § 2n+2 244n—1) 4+ 2n2-2)).
+n( (r® +r°(2n+2) + r(n°+4n—1) + 2n°—2)

r=1

Simplifying, we get

4 2 _ _ -
E(n,t+1)§4n+5+-2-(E—+gnt3+(n tdn - D= 2))
n\4 3 2
2
(3.4) +~ (2(t — 1)(n® — 1) + 2n°t + nt?).

L
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To complete the proof, we note that since 3 <t < 3,

2 2t
18442+ 20+ 2 <& 4ot 814 o
n n n

(which may be shown in a straightforward manner by induction on
n). Hence,

1 1
4n+5+ (-1 -2)(n+4-~)+4(E-1)(n- ) < nt? + 4nt,

which implies that the right hand side of (3.4) is not greater than
g; + 33+ nt? + 8nt + 2t2. Since E(n,t + 1) is bounded above by this
expression, the proof is complete. O

As mentioned before, we seek an upper bound on @, (k) for the
smallest possible value of n. The best result that Theorem 3.14 pro-
vides in this regard is for the case in which n is two-thirds of the value
of k. We single out this bound in the next corollary, which is a direct
consequence of Theorem 3.14; its proof is left as Exercise 3.4.

Corollary 3.15.

43
Qr%] (k) < é—ézka(l + 0(1)).

We note that Theorem 3.10 gives a quadratic lower bound for
Q2 (k), namely 2k%(1 + o(1)), while the upper bound of Corollary
3.15 is a cubic. It would be interesting to know the actual rate of
growth for this Ramsey-type function.

We end this section with a table. For a given pair (k,7) the
corresponding entry in the table is the value (or the best known lower
bound) for Qx—_;(k). We only include those pairs where i > 3, since
we have presented exact formulas for 1 =1 and i = 2.
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(kNi[8[4] 5 [ 6 [ 7 [ 8 |
4 19 - - - - -
5 29 | 33 - - - -
6 27 149 | 67 - - -
7 37165 | 73 | >124 - -
8 39 |51 93 ? > 190 -
9 45| 65| > 115 ? ? > 287
10 95 | 67| 83 ? ? ?
11 57175 | 101 ? ? ?
12 63 | 83 | > 103 ? ? ?
13 73|97 | > 108 ? ? ?
14 75199 | > 119 ? ? ?
15 81| 7 | >133 ? ? ?
16 91 | ? ? ? ? ?
17 93| 7 ? ? ? ?

Table 3.1: Values and lower bounds for Q;_;(k)

3.2. Generalized Quasi-progressions

We now direct our attention to a type of sequence that generalizes
the notion of a quasi-progression. The idea of this generalization is
that we allow the “diameter” to vary with the terms of the sequence.
Specifically, we give the following definition.

Definition 3.16. Let 0 : {2,3,...} — [0,00) be a function. A k-
term generalized quasi-progression with diameter function 6(or a GQs-
progression) is a sequence {1, %, ..., Tk} such that, for some positive
integer d, we have d < z; —z;_; < d+6(i) forall i =2,3,... k.

We see that generalized quasi-progressions have “diameters” that
may vary, and that a quasi-progression of diameter n may be consid-
ered a generalized quasi-progression, where § is the constant function
n. As we did with quasi-progressions, we will refer to d as the low-
difference of the progression.

Analogous to the notation Q,(k), we use the following nota-
tion for the Ramsey-type function associated with generalized quasi-
progressions.
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otation. Let 6 : {2,3,...} — [0, 00) be a function and k a positive
nteger. Denote by GQs(k) the least positive integer such that for
very 2-coloring of [1, GQ;(k)] there is a monochromatic k-term GQs-
r'ogression.

xample 3.17. Let § be the function defined as the constant func-
gion 6(z) = 1 for all 2. Then in this case GQs(k) has the same
eaning as Q1(k). Likewise, if § is the zero function, then GQs(k)
u‘simply the classical van der Waerden function w(k). Moreover, for
gy constant function é§ = ¢ with ¢ > 0, GQs(k) coincides with Q. (k).

When § = 6(z) is a specified function of z, it is often convenient
to use the notation GQs(5). For example if §(z) = z2, then we may
efer to a GQs-progression as a GQ,2-progression and denote the
Pssociated Ramsey-type function by GQ2 (k).

| xample 3.18. Let ¢ be the function §(z) = z—1for allz > 2. Then
Z1,%2,...,Zk} is a GQ,_1-progression provided there is a positive
pteger d such that z; — 2,1 € [d,d +i—1] for 2 < i < k. For

xample, {1,3,6,7,10,16} is a GQ,_1-progression where d = 1, and
4,6,8,10,16} is a GQ,_1-progression where d = 2. Thus, unlike
quasi-progression, where the gaps between consecutive members
f the progression (even an infinite progression) must belong to an
nterval [d, d +n] of fixed length (since n is fixed), the set of allowable
aps in a GQ,_1-progression can grow as the terms of the sequence
increase (so that if the progression is infinite, there is no upper bound
r,)n the entire set of possible gaps).

It is clear that the smaller the values of the function § are, the
loser to the classical van der Waerden numbers the function GQs(k)
E. Moreover, it is easy to see that §;(z) < d2(z), for all z, implies
Qs, (k) > GQs, (k). For some functions 4, it is not difficult to obtain
upper bounds for GQs(k). Finding an upper bound for GQ,_;(k),
he function discussed in Example 3.18, is left as Exercise 3.5. In
he next theorem, we give an upper bound on GQ,—_2(k). Our proof
akes use of some known values of GQ,_2(k) (these and other values

f GQg(z) (k) are given in Table 3.2 at the end of this section).
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Theorem 3.19. Let k > 2 and my = 1+2(k—1)2+2 35, (5 —1).
Then every 2-coloring of [1, mk] has a monochromatic k-term GQz—2-
progression with low-difference d < 2(k —1). In particular, for k > 5,
GQqza(k) < 2k% — 8k —13.

Proof. The second claim of the theorem follows from the first via a
straightforward computation, which we leave as Exercise 3.6.

To prove the first claim, we note the following values are known:
GQz-2(2) = 3, GQy—2(3) = 9, and GQ-2(4) = 19. It is obvious
from these values that for k = 2, 3,4 it is also true that any k-term
GQ_o-progression has a low-difference not exceeding 2(k—1). Hence
the theorem is true for k = 2, 3,4.

We shall complete the proof by induction on k. To this end,
assume that k > 4 is an integer for which the statement is true, and
let x : [1,mk11] — {0,1} be any 2-coloring. Therefore, there exists a
monochromatic GQ,—s-progression X = {r; < 22 < --- < 2} with
low-difference d < 2(k — 1) and xp < my. Without loss of generality,
let x(X)=1.

For 0 <t <2k—1,let Ay = [z +d+kt,zx +d+kt+k—1], and
let Agy = {x), + d + 2k?}. Notice that

k-1
Te+d+2k2 < 1+2(k—1)+2) j(i—1)+2k* +2(k-1)
j=4

k
142k +2) (i — 1)
=4

= Mk+1.
Hence, A; C [1,mp41] for 0 < ¢ < 2k. Consider
Ao =[zr+d,z+d+k—1].

If any y € Ap has color 1, then X U {y} forms a monochromatic
GQ—2-progression of low-difference d, and we are done (the difference
between zj and y does not exceed d + (k + 1) — 2). Hence, we may
assume that all members of Ay have color 0. From this we may assume
that all members of A; = [z +d+k, zx +d + 2k — 1] have color 1 (or
else, for some z € A1, the set Ag U {z} is a monochromatic (k + 1)-
term sequence where the gap between the largest two terms lies in the
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interval [1, k], thus forming a GQ,_a-progression with low-difference
1). Using this same argument, we may assume that all of A2 has color
0. Continuing in this way, we are left with the situation in which all
members of A; have color 1 for t odd, and color 0 for t even. However,
this gives us the monochromatic set {xy +d + 2tk : 0 < t < k} (it
has color 0), which is a (k + 1)-term GQ,_»-progression (actually an
arithmetic progression) with low-difference 2k, which completes the
proof. a

Theorem 3.19 gives a cubic polynomial in the variable k as an up-
per bound for GQ,—2(k). In Exercise 3.5, you are asked to establish
a quadratic upper bound for GQ,_;(k). We might conjecture (al-
though these two results offer quite limited evidence) that for large
enough k, GQz_m(k) is bounded above by a polynomial of degree
m + 1. Noting that GQ_r(k) has the same meaning as w(k), the
truth of a conjecture of this type could have exciting ramifications for
the van der Waerden numbers themselves.

There are other ways in which we could allow the “diameters”
to grow. As one example, we could insist that the first few terms of
the progression (say the first three terms) form an arithmetic pro-
gression, and then allow the diameters to increase as the terms of
the progression increase. Such variations on topics covered in this
book can be the seeds of interesting and meaningful research projects
(and, we may hope, research projects that inspire further exploration
by others).

We end this section with a table of known values of GQ () (k)
for some particular functions f(z). Notice that the classical 2-color
van der Waerden numbers lie along a diagonal in the table.

[f@\k[3]4[ 5[ 6 [7[8[9]10]
z 6]10] 14 | 20 |27 34 |44 52
v—1 9|19 33 | 52 |74 100
-2 |9]22|38] 60 |77
z—3 935|590 |>88] 7| 7
z—4 935|178 7

Table 3.2: Values and lower bounds for GQy ;) (k)

2| o] | e~
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3.3. Descending Waves

In this section we consider another type of sequence that generalizes
the notion of an arithmetic progression, called a descending wave. We
begin with the definition.

Definition 3.20. For k£ > 3, an increasing sequence of positive inte-
gers {x1,2,..., 21} is a descending wave if z; — z;—1 < i1 — T4_o
for i =3,4,... k.

As examples, the sequence {1,4,6,8,9} is a 5-term descending
wave, while {1,5,10} fails to be a descending wave. We will denote
by DW (k) the least positive integer such that for every 2-coloring
of [1, DW (k)] there is a monochromatic k-term descending wave. It
is obvious that every arithmetic progression is a descending wave,
and therefore, by van der Waerden’s theorem, DW (k) exists for all
k. There does not appear to be any obvious implication between
the property of being a descending wave and that of being a quasi-
progression. Clearly, not every quasi-progression of diameter n > 1 is
a descending wave; and conversely, for any given n > 1, it is easy to
find a descending wave of length k > 3 that is not a quasi-progression
of diameter n. For example, if n = 2, then {1,8,12} is a descending
wave, but is not a quasi-progression of diameter 2. Although here
we will confine the discussion of descending waves to the existence
and magnitude of the function DW (k), we mention that it is known
that any infinite set of positive integers that contains arbitrarily long
quasi-progressions of diameter d, for some fixed d, must also contain
arbitrarily long descending waves.

We are able to give both upper and lower bounds for DW (k). We
see from the bounds given by Theorems 3.21 and 3.24 (below) that
DW (k) grows like a polynomial of degree three.

We start with a simple upper bound.

Theorem 3.21. For allk >3, DW(k) < & — & 41,

Proof. Let n = ’—“23 - %2 + 1. We will show that for any 2-coloring
X : [1,n] — {0,1} there is a monochromatic k-term descending wave.
Assume, without loss of generality, that x(1) = 0. If there exist k

!
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consecutive integers of color 1, we are done. So, assume that no k
consecutive integers of color 1 exist under Xx- Let zp =0and z; = 1
and define, for ¢ > 1,

Zi+1 = min {Z/ YT 2T -z, X(y) = 0}'

We leave it to the reader in Exercise 3.9 to show that T1,22,...,Zk
is a monochromatic k-term descending wave and that z; < n. O

The best known upper bound is slightly better than that provided
by Theorem 3.21. We state this result, without proof, as Theorem
3.22.

Theorem 3.22. For all k > 3, DW (k) < kS — 3k + 3.

Turning to lower bounds, we have the following result.

Theorem 3.23. For allk >3, DW (k) > k% — k + 1.

' Proof. Let k£ > 3 and let x be the 2-coloring of [1, k2 — k| defined by
the string

00...011...100... ol
00...011...1--- 00 11 0 1
k-1 k-1 k—2 k—2 2 2 1 1

We will show that there is no k-term descending wave with color 0.
The proof that there is also none with color 1 is similar and is left as
Exercise 3.10. Assume, for a contradiction, that

X={z1<z2<- - <23}

is a descending wave with color 0.

Notice that x includes exactly k—1 different blocks of consecutive
0’s — call these blocks By, By, ..., Bi_1, where |Bi| = k —i. By the
pigeonhole principle, some block contains more than one member of
X. Let ¢ be the least integer such that |[B; N X| > 2. Let

X'=XN(BiUByU---UBy).
Since for ¢ < t, B; contains at most one member of X , we have

X'|<(@t-1)+k—-t=Fk-1
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Hence, X' = {21 <z < - < x,} with 21,7, € Byand r < k — 1.
Therefore,

xr+1_x7‘2k-t+1>xr_mr—l7

contradicting our assumption that X is a descending wave. O

We now state, without proof, the best known lower bound, which
shows, in part, that the asymptotic rate of growth of DW (k) is that
of a cubic polynomial.

Theorem 3.24. For all k > 3, there exists a positive constant ¢ such
that DW (k) > ck3.

3.4. Semi-progressions

Recall that a quasi-progression of diameter n is a sequence {z;}¥_;
such that, for some d € Z*, we have z;—x;_; € [d,d+n] for 2 <i < k.
We might think of this as a “loosening” of the property of being
an arithmetic progression, by allowing the gaps between consecutive
terms “some slack.” Another way to generalize the notion of an arith-
metic progression is to allow the gaps to vary by multiples of some d,
rather than by additions to d. With this idea in mind, we give the
following definition.

Definition 3.25. For k,m € Z*, a k-term semi-progression of scope
m is a sequence of positive integers {z1,,...,zx} such that, for
some d € Z*, z; —x;—1 € {d,2d,...,md} for all 4, 2 < i < k.

We shall use the notation S P, (k) for the corresponding Ramsey-
type function. That is, we denote by SP,,(k) the least positive integer
such that for every 2-coloring of [1, SP,, (k)] there is a monochromatic
k-term semi-progression of scope m. Since for each positive integer m,
any arithmetic progression is also a semi-progression of scope m, the
collection of semi-progressions of scope m is a superset of AP. Hence,
SP,,(k) exists for all m and k. In fact, the following observation is
an immediate consequence of the definition of a semi-progression.

Proposition 3.26. For all k > 1, w(k) = SPy(k) > SPy(k) > --- .
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One of the motivations for studying the Ramsey properties of
supersets of AP is the potential for gaining more information about
w(k). In this regard, the functions SP,, (k) may be a more relevant
extension of the the van der Waerden numbers than are the func-
tions @m (k). Our reason for saying this has to do with the following
definition.

Definition 3.27. For m,k € Z", define T',,,(k) to be the least posi-
tive integer s such that for every s-element set S = {x1,z2,...,2s}
with z; —x;-1 € {1,2,...,m} for 2 <i < s, there is a k-term arith-
metic progression in S.

To illustrate this definition, we look at some examples.

Example 3.28. Let us find I';(3). We want the least s such that
whenever X = {z1,z,...,%s} is a sequence with z; — z;—1 € {1,2}
for each i, then X will contain a 3-term arithmetic progression. Does
s = 3 work? No — the set {1,2,4} is a 3-term sequence, with the
property that the gaps between consecutive terms belong to {1,2},
yet there is no 3-term arithmetic progression. Does s = 4 work? No
— consider {1,2,4,5}, whose gaps all lie in {1, 2}, but which also fails
to have a 3-term arithmetic progression. As it turns out, I'2(3) = 5.
To prove this, by a simple translation, it is sufficient to consider all
5-term increasing sequences whose first element is 1, and where each
of the four gaps is either 1 or 2. There are then only 2¢ = 16 possible
sequences to check. We leave it to the reader to check that each of
these sixteen sequences contains some 3-term arithmetic progression.

Example 3.29. Consider I';(k). Here we want to look at sets of
consecutive integers, and ask for the size of such sets that would
guarantee a k-term arithmetic progression. It is easy to see that
we have T'; (k) = k, since any set of consecutive integers is itself an
arithmetic progression.

The above examples prompt an obvious question: does T, (k)
always exist? This question is answered, in the affirmative, by the
following proposition. :

Proposition 3.30. T'.(k) < w(k;r) for all k,r € Z7.
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Proof. Let w = w(k;r) and let X = {z; : 1 <3 < w} be a sequence
of positive integers with 1 < z; —z;_1 < r fori = 2,3,...,w. We
wish to show that X contains a k-term arithmetic progression. As
noted in Example 3.28, we may assume z; = 1.

,7} defined by
x(y) = j if and only if j = min{z; —y:z; > y,z; € X}.

Consider the coloring x : [1,w] — {1,2,...

To see that x is an r-coloring, note that no consecutive elements of X
differ by more than r. Hence, since x is an 7-coloring of [1,w], by the
definition of w(k;r) there is a monochromatic arithmetic progression
A={a+nd:0<n<k-1}

Say the color of A is jg. This tells us that for each a + nd € A,
0 <n < k-1, there is some z;, € X such that z;, — (a + nd) = jo.
That is, {z;, :0<n<k-1}={(jo+a)+nd:0<n<k-1} so
that X contains a k-term arithmetic progression, as desired. O

Now that we have established the existence of I, (k), we are able
to explain the significance of the function SP,, (k) as it relates to the
search for an upper bound on w(k). The explanation is simply this:

Proposition 3.31. For all k,m >0, w(k) < SP, (Tim(k)).

This inequality holds because any 2-coloring of [1, SP,, (T'y,(k))]
must contain a monochromatic semi-progression of scope m having
I, (k) terms. By the definition of I'y,, among these I',, (k) terms
there must be a k-term arithmetic progression.

We next present some results concerning the magnitude of the
function SP,, (k). We begin with a simple formula for SP,,(k) when
k < m (we leave the proof as Exercise 3.11).

Theorem 3.32. If k < m, then SP,,(k) =2k — 1.

As made evident by Proposition 3.26, the lower the value of m,
the more significant (and probably the more difficult to obtain) any
upper bounds on SP,,(k) will be. In the following theorem we give a
nice upper bound for SP,,(k), but only provided m is more than half
the value of k.

Theorem 3.33. Letm > 2. Assumem < k < 2m. Letc= [Qﬁ]
Then SP,,(k) < 2c(k —1) +1.
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Proof. Let £ = 2¢(k —1) + 1 and let x : [1,£] — {0,1} be any 2-
coloring. We will show that under x there is a monochromatic k-term
semi-progression of scope m. It is clear that among the 2(k — 1) + 1
elements of [1,¢] that are congruent to 1 modulo ¢, there is a set A
with |A| > k such that A is monochromatic. Assume x(A) = 1, and
let X = {2, <23 <--- < x4} consist of the k smallest members of
A.

Let di = z; —x;_y for 2 < i < k. If d; < cm for i € [2,k], then
since, by the definition of A, d; € {c,2c, ..., mc} for each i, X is the
desired semi-progression of scope m. Thus, we may assume that there
exists j € {2,3,...,k} such that dj = cs with s > m + 1.

Now let S = {z;_14+¢i:1<i<s—1}. Then x(S) = 0 and
|S| > m. We consider two cases.

Case 1. ¢ > 3. Notice that if z;_; <m—candz; > ¢—(m—c)+1,
then since xx — x1 < £ — 1, this would imply that

Zd<

1#.7

—(£-2m+2c+1)=2m—2c-2,

which would contradict the fact that 2z di > c(k —2) (since ¢ > 2
and m < k). Hence, either z;_y > m —corz; <€ - (m—c)+ 1.
We shall cover the case in which Zj_1 > m — c; the case in which
z; < £— (m —c)+ 1 may be done by a symmetric argument.

So, assume that x;_1 > m — c and let
B={b#1l(modc):z;_1 —m+c<b<uz;}.

For every b € B, there is some t € S so that |t —b| < max{c,m} = m.
Hence, if there is a set By C B such that |Bo| = k—m and x(By) = 0,
then S U By is a monochromatic semi-progression of scope m with
length at least k, and we are done (it is a semi-progression of scope m
since the gaps between adjacent members all belong to {1,2,...,m}).
Thus, we may assume that at most k — m — 1 members of B have
color 0. Let Y = {y1 < y2 < --- < yn} be those members of B having
color 1. To finish the proof of Case 1, we will show that Y provides us
with the monochromatic semi-progression we are seeking by showing
that the following two statements are true:
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(3.5) Yi—Yic1 <m for 2<i<n
and
(3.6) n > k.

For convenience, let 7 = k — m. To prove (3.5), first list the
elements of B in increasing order: b; < by < ---. Notice that for any
two elements, b, and by, of B,

g
bh+g_bh§9+[:-l-

Hence, because |[B — Y| < k—m — 1 = r — 1, between any two
consecutive y;’s there are at most 7 — 1 elements from B — Y. Thus,
for all i we have that for some h, y; —y;_1 < bhtr — by, and therefore

r re
3. i — Yim1 < = .
(3.7) Yi — Yio1 T+L_1] [0_1]
Also, we note that ¢ > s implies that
(3.8) [ re ] <m.
c—1

By (3.7) and (3.8), we see that (3.5) is true.

To establish (3.6), we first observe that |B| > (c — 1)(m + [21.
Since |B - Y| < r — 1, (3.6) will follow if we can prove that

(3.9) (c—2ym+ (c— 1) [%]Hzm«.

Since m > r, (3.9) is obviously true for ¢ > 4. To finish Case 1, we
will establish (3.9) for ¢ = 3.

Using (3.8),
m 3r [30]
it > il 2
m+2[3-‘+1 > [2]+2[3]+1
3r r
> z
> T+2[f]+1
> 2r,

which completes the proof of Case 1.
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Case 2. ¢=2. Wehave zy —z; <¢—1=4(k—1) and 3m > 2k.
Therefore, if ¢ # j, then

(3.10) Ty — Ty <M,
for otherwise we would have
Tk —21 = Xj—ZTj-1+ Z(I, — xi_l)
i#]
> 2m+1)+ (m+1)+2(k-3)
= 3m+2k-3
> 4k - 3.

Let B' = {z;_1+2i+1:0<i<s—1}. Clearly, for every b € B’,
there is a t € S such that |t — b| < 1, so that, as in Case 1 for the set
B, we may assume that at most k —m — 1 = r — 1 members of B’
have color 0. Let Y = {y1 < yo <--- <yu} ={b€ B': x(b) = 1}.
Sowu > s—(r—1). If for some i € {2,3,...,u} we have y; —y;_1 > 2r,
then

Tj—Tj—1>2r+2(s—r—1)+2=2s,
a contradiction. Thus, for each i € {2,3,...,u},
(311) Yi —Yi—1 S 2r.
By the same reasoning, the following hold:

(3.12) ZTj — Yy < 2r,

(3.13) Y1 —xj—1 < 2r.

By (3.10)-(3.13) and the fact that m > 2r (since 3m > 2k), X UY
is a semi-progression of scope m. Since X UY is monochromatic and
has at least k terms, the proof is complete. O

It is interesting to note that the proof of Theorem 3.33 actually
gives a stronger result. Namely, it shows that for every 2-coloring of
[1,2¢(k — 1) 4 1] (where c, k, and m are as in Theorem 3.33), there is
a monochromatic sequence {z1, 3, ...,z } such that either

z;—x-1 €{1,2,...,m}fori=23,... k;

or
T — i1 € {c,2¢c,...,mc} fori =2,3,... k.
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That is, the value of d, from the definition of a semi-progression of
scope m, belongs to the set {1,c}. It would be interesting to try to
find similar results where {1, c} is replaced by some other set.

Example 3.34. For a given m, the “best” (i.e., the largest) value of
k for which Theorem 3.33 provides an upper bound is k& = 2m — 1.
For this case, the theorem gives

SPn(2m —1) < 2¢(2m —2) + 1 = 4(m? —m) + 1.

Theorem 3.32 gives the somewhat trivial result SP,,(m)=2m-1.
Precise formulae for Ramsey-type functions in less trivial cases are
desirable, but typically somewhat difficult to come by. In the case of
the function SP,,(k), letting k = m + 1, an exact formula is known,
which we now present.

Theorem 3.35. Let m > 2. Then

dm+1 if m is even,

SPn(m +1) = { 4m—1 if m is odd.

Proof. First note that setting k = m + 1 in Theorem 3.33 yields
SPp(m+1) < 4m+1. We next establish that SP,,(m+1) < 4m—1 if
m is odd. To do this, let m > 3 be odd and let x : [1,4m—1] — {0,1}
be any 2-coloring. From Proposition 2.30, it follows from Theorem
3.32 that in the interval [m + 1,3m — 1] there is a monochromatic set
X ={z1,20,...,2m} with &, —z;_; € {1,2,...,m} for 2 < i < m.
We may assume that x(X) = 1. We shall consider two cases.

Case 1. z; —z;—1 > 1 for some ¢ € {2,3,...,m}. Let j be the
least value of i such that z; — z;_y > 1. If x(z;—1 + 1) = 1, then
XU{z;j_1+1} forms an (m+1)-term monochromatic semi-progression
of scope m, and we are done. So we shall assume that x(z;_1+1) = 0.
Similarly, we may assume that each of ; — 1,21 —2,..., 21 — m has
color 0. Then the set

A=[zy—m,z; —1U{z;_1 + 1} C [1,4m — 1]
is monochromatic. Also, since
(Zj—14+1)=(z1-1) =35 <m,

A is a semi-progression of scope m.
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Case 2. x; —z;.1 = 1for all i € {2,3,...,m}. If any member of
Y = [z1 —m,z1 —1]U [z + 1, T, + m] has color 1, then clearly we
have a monochromatic (m + 1)-term semi-progression of scope m in
[1,4m — 1]. So we may assume that x(Y) = 0. Now let

B={z1 - (2i-1):1<i <Y Yl + (21— 1):1<i < =LY

Then B consists of m + 1 elements, has color 0 (since it is a subset of
Y), and each pair of consecutive elements of B has gap 2 or m + 1.
Hence, since m + 1 is even and m + 1 < 2m, B is a monochromatic
(m + 1)-term semi-progression of scope m.

We have thus far established that 4m — 1 and 4m + 1 serve as
upper bounds for their respective cases. To complete the proof of the
theorem, we need to show that they also serve as lower bounds. To do
so we shall exhibit, for m odd, a 2-coloring of [1,4m — 2| that avoids
(m + 1)-term monochromatic semi-progressions of scope m; and, for
m even, a 2-coloring of [1,4m] that avoids such progressions.

Consider m odd. Color [1,4m — 2] with the coloring o defined by
the string

11...100...011...100...0.
D e

m—1 m m m—1

Let C = {z1 < 22 < -+ < z;} be a maximum length monochromatic
semi-progression of scope m. By the symmetry of o, we may assume
a(C) = 1. Let d = min{z; —x;_1 : 2 <4 < ¢}. Ifd = 1, then
z; — xi—1 < m for each i. For this case, it is evident from the way o
is defined that ¢ < m. If d > 2, then each of the two blocks of 1’s in
the representation of a contains at most 3 members of C, so again
¢ < m. Hence, in all cases, o admits no monochromatic (m + 1)-term
semi-progressions of scope m.

Now assume m is even. Essentially the same reasoning as that
used in the case of m odd shows that the coloring of [1,4m] defined
by the string

11...100...011...100...0

has no monochromatic (m+1)-term semi-progression of scope m. We
leave the details to the reader as Exercise 3.12. O
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We now derive a lower bound for SP,, (k) that holds for all m
and k.

Theorem 3.36. Let k > 2 and m > 1. Let A(k,m) = [%W
Then

SP(k) > 2(k — 1) ([ch'ﬁ)l - 1) +1.

Before giving the proof of Theorem 3.36, we note that for m fixed,
the theorem gives us the asymptotic lower bound

SPa(k) > ZK(1+o(1):

Proof of Theorem 3.36. Let k and m be given, let A = A(k, m),
and let n = 2(k — 1) ([£] —1). To prove the theorem we exhibit
a specific coloring of [1,n] that avoids monochromatic k-term semi-
progressions of scope m. We define this coloring by a string of 1’s and
0’s as follows. Let A represent a block of k—1 consecutive 1’s and B a
block of k — 1 consecutive 0’s. Color [1,n] with ABAB ... AB, where
A and B each occur [£] — 1 times (so there is a total of 2 ([§] — 1)
blocks).

Assume, for a contradiction, that X = {z1,z2,..., 2} is a mono-
chromatic semi-progression of scope m that is contained in [1,n]. Let
d € Z* be such that z; — z;_1 € {d,2d,...,md} for i = 2,3,...,k.
Since each of the blocks A and B has length k£ — 1, and since X is
monochromatic, there is some ¢ such that z; —z;_; > k. This implies
that d > [%1 , and hence each block contains at most [k—;l] < A mem-
bers of X. Thus, for each color, there are no more than A (Pj—] — 1)
members of X having that color. Since A ([£] —1) < k-1 (this is
true for any positive integers k, A), we have a contradiction, and the
proof is complete. O

We conclude this section with a table of values and bounds of
SP,,(k) for small m and k, preceded by an exact formula for SP,,(k)
under the restriction that & < 37"‘ A proof is outlined in Exercise
3.13.

Theorem 3.37. Let m+2 <k < 37’” Then SP,,(k) = 4k — 3.
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[(m\kJ[2[3[4[5[6] 7 ] 8 [ 9 [10 11|
1 3[9fss[178] 72 [ 7 ? ? ? ?
2 3[/9[17]33 |55]>87|>125|>177] ? ?
3 3|5 11|19 [31] 71 [ 97 |[>117] ? ?
4 3]s 717 [21] 35 | 44 65 |>75|>84
5 3|5/ 7] 9 [19] 25 | 33 49 | 56 |>69
6 3[s5] 7] 9 11] 25 | 29 33 | 55 | 61
7 3579 11| 13| 27 33 | 37 | 47
8 3579 |11] 13 ] 15 33 | 37 | 41

Table 3.3: Values and lower bounds for SP,, (k)

3.5. Iterated Polynomials

By the n*" iteration of the function f(x), we mean the composite func-
tion f(f(...(f(x))...)), often denoted f(™ (z). One way of thinking
———

n times

of an arithmetic progression S = {a,a +d,a + 2d,...,a + (k — 1)d}

! is as a sequence that results from (k — 1) iterations of the function

f(z) = 2+ d; that is, S = {a, f(a), f@(a),..., f*Y(a)}. Looking
at arithmetic progressions in this fashion leads us to some natural
ways of forming supersets of AP.

We begin with a definition.

Definition 3.38. A p,-sequence is an increasing sequence of pos-
itive integers {z1,2,...,Zr} such that there exists a polynomial
p(x) of degree n, with integer coefficients, so that p(z;) = z;41 for
i=1,2,...,k— 1.

We shall call the polynomial p in Definition 3.38 a p,-function
and say that p(z) generates {z1,z2,..., 2k}

It will be convenient to adopt the following notation.
Notation. Denote by P, i the family of all p,-sequences of length k,
and by P, the family of all p,-sequences (regardless of their length),
i.e., Pn = UZO=1 Pn,k~

Thus, for example, the sequence {1,3,7,15} is a member of P; 4

because it is generated by p(z) = 2z + 1, a polynomial of degree
one. Of course, it is also a member of P;. Similarly, each arithmetic
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progression belongs to Pj, since for some d it is generated by z + d;
that iS, AP - Pl.

One easy way to produce p,-sequences is to begin with any posi-
tive integer a, and any polynomial p with integer coefficients, and list
the consecutive iterates of a by p; as long as this list is increasing, we
have found a p,-sequence. As one example, let p(z) = x? — 2z + 3
and a = 1. Since p is increasing on the interval [1,00), then for each
positive integer 4, {1,2,3,6,27,...,p(¥(1)} is a py-sequence and is a
member of P ;4.

We shall give an explicit upper bound, in terms of k, for the
Ramsey-type function R(AP U Py_s,k;?2) (i.e., we will want every 2-
coloring to produce a monochromatic k-term sequence that is either
a pr—2-sequence or is an arithmetic progression). We will also show
(in Theorem 3.51, below) that if this bound could be improved to
a certain other (somewhat slower growing) function of k, then w(k)
would be bounded above by a similar function.

We will sometimes want to consider the family of polynomials
having degree not exceeding a specified number n. For this reason,
we introduce the following notation:

n n
Sp = U P;, and S, = U P .
i=1 i=1
Thus, for example, S35 consists of all 5-term increasing sequences of
positive integers that can be obtained by the iteration of some linear,

quadratic, or cubic polynomial having integer coefficients.

Before getting to the main results on p,-sequences, we need some
lemmas. The first is a rather interesting fact in its own right: if X
is an increasing k-term sequence that is generated by a polynomial
with integer coefficients, then there exists a polynomial with integer
coefficients and degree not exceeding k — 2 that also generates X; i.e.,
every k-term sequence that is a member of P, for some n is also a
member of Si_s.

Lemma 3.39. Let k> 3. Then |2, Pix = Sk—a-

Proof. By the definition of Sk_2, we need only show that for all
k > 3 and n > 1, every k-term p,-sequence is a member of Sk—2,k-
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Let X = {z1,z2,...,2%} be generated by the polynomial f(z) =
Z?=0 a;z*, with a; € Z for each i and a, # 0. To complete the proof

we must show that there exist integers bg, b1, ..., by_o € Z satisfying
the system
bo+ bz +--- + bk_ga:’f'2 =1I,
bo+ b1z 4+ +br_ozi? = g4
(3.14) | .
bo+bizp—1+ -+ bk_zl'l,::% = I.

We see that (3.14) is a system of k — 1 equations in the k — 1
variables by, ...,br_2. The determinant of the coefficient matrix is
the well-known Vandermonde determinant, known to équal

H (Tm — Tp).

1<t<m<k—1

Since the z;’s are distinct, this determinant is nonzero. By Cramer’s

rule, system (3.14) has the unique solution (bf,b},...,b;_,), where

foreach j,0<j <k -2,

b = D,
- k)
(xm - xf)
1<e<m<k—1

where D; is the determinant of the matrix

- - _
1 =, 1 zy T L. zh?

j—1 J+1 k—2
1 op1 ... 23y Tk Tyl .. Tp_y

The proof is completed by showing that each b’ is an integer. The
proof of this fact requires a bit of abstract algebra, and is left to the
exercises (see Exercise 3.16). O

Remark 3.40. It is worth noting from the above proof that for every
sequence of positive integers generated by a polynomial with integer
coefficients, there exists a unique polynomial of degree at most k — 2
that generates the sequence.
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The next lemma provides a useful characterization of the p;-
sequences.

Lemma 3.41. A sequence is a pi-sequence of length k > 3 if and
only if it has the form

k-2
{t,t+d,t+d+ad,t+d+ad+a2d,... ,t+d2a’}
=0
for some positive integers t,d, a.

Proof. Let S be a set of the described form. It is easy to see that the
function f(z) = ax +t(1—a)d generates S. Hence S is a p1-sequence.

Conversely, assume that X = {z1,%2,...,2x} is an increasing
sequence of positive integers for which there exist a,b € Z such that
the function f(x) = ax + b generates X. Let t = x; and d = z2 — 2.
Then, since ax; + b = x5 and axy + b = x3,

T3 — I _x3—t—d
(3.15) a1 P .

Therefore 9 =t +d and z3 =t + d(1 + a).. Now assume that n > 3
and that for j € {n — 1,n}, z; =t + dzg;g a'. We shall complete
the proof via induction on n by showing that xn41 =t+d z;:ol a*.

Note that

Tn41 — Tp
Ipn — Tp-1

n—2
Tp+1 — <t + dz ai)

1=0

n—2 n—3 :
(t + dz ai) - (t + dZ ai>
=0 =0
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Therefore,

n—2 n—3 n—2
Tpt1 = a(dZai—dZd) +t+d2ai

=0 =0 =0

n—2
= ada""? +t+dZai
i=0
n—1
= t+d Z at,
i=0
and the proof is complete. O

According to Lemma 3.41, every p;-sequence is completely deter-
mined by its first three terms. Extending this idea to an arbitrary
3-term sequence, we can pose the following “riddle”: if x, y, and z are
the first three numbers of a sequence, what is the the fourth number?
Mathematically, the idea is very elementary. Using (3.15), letting
a= ;—:g and b = y —az, we have a method for getting from one num-
ber in the sequence to the next: multiply by a and then add b. For
example, given the sequence —é, —%, g, then by taking a = —4 and
b= —%, we may answer the riddle by saying that the fourth number
is (—4)2 — I = —3. This solution to the riddle works for any three

numbers x,y, z (even complex numbers) provided x # y.

The following two technical lemmas concerning the growth of
iterated polynomials are stated without proof.

Lemma 3.42. Let {z; < 73 < -+ < zx} be a pr_o-sequence, gener-
ated by the py_o-function g(z). Then

k—1
9(xx) < @ + [ (@ — 2.
i=1
Example 3.43. The sequence {1,2,3,6} is generated by the po-
function f(z) = 22 — 2z + 3. Hence, f(6) < 6+3-4-5 = 126 (in fact,
f(6) = 27).

Lemma 3.44. Letk > 3 and let {x1,72,...,Tk} € Sk—2 be generated
by the py-function g(z) of degree n < k—2. Then for each nonnegative
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integer j, the sequence
k-1
{z1,22,..., 2k, g(zK) +J H(mk —z;)}
i=1
belongs to Sy—1 and is generated by the function h(z) = Zi.:ll b;x?,
where b_1 = j. Furthermore, all members of Sx_1 may be obtained
from members of Sk—o in this way.

Remark 3.45. Note that, using the notation of Lemma 3.44, the
lemma tells us that for j > 1, the sequence

k1
{z1,22, . 2k, (k) + 5 [ [ (@e — zi-1)}

=1

belongs to Py_1.

To help clarify what Lemma 3.44 is saying, we consider two ex-
amples.

Example 3.46. Using the notation of Lemma 3.44, if j = 0, then
{z1,23,..., 2k, g(zk)} is generated by g(z), so it is, of course, a mem-
ber of Sx_2 (and hence of Sx_1, where we may take h(z) = g(z), with
bi—1 =0).

Example 3.47. Consider {1,2,3}, a p;-sequence generated by the
polynomial g(z) = z + 1. Lemma 3.44 tells us that each sequence
{1,2,3,4 + 25}, where j > 0, is a member of S5, and, for j>1,is
generated by a po-function whose leading coefficient is j. For instance,
according to Example 3.43, {1, 2,3, 6} is generated by the p,-function
22—2x+3. In turn, we can build 5-term Pp3-sequences from {1, 2, 3,6}:
each sequence {1,2,3,6,27 + j(5-4-3)}, j > 1, is a member of P;,
generated by a cubic polynomial with leading coefficient j. Of more
significance, perhaps, is what the last sentence of the lemma says:
that every ps-sequence of length 5 may be found in this way — by
starting with the 4-term members of S5.

Remark 3.48. Extending the previous example, notice that if X =
{z1,22,...,z} is any member of Sx_, — AP whose first k — 1 terms
form an arithmetic progression {r; +id : 0 < 3 < k — 2}, then
X is generated by a member of Py_s, ie., j # 0. Furthermore,
T = z1+(k—1)d+5(d)(2d) - - - (k—2)d) = z1+(k—1)d+jd*2(k-2)!.
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We now are able to give an upper bound for R(AP U Py_,).

(k—2)!

Theorem 3.49. For allk > 5, R(APU Py,_o,k) <k = .

Proof. The inequality holds for k = 5, since it is known that
R(AP U P3,5) = 85 (see Table 3.4 at the end of this section). We
proceed by induction on k, letting k > 6 and assuming the theo-
rem is true for k — 1. Let x be any 2-coloring of [1,k*~2"2] using
the colors red and blue. By the induction hypothesis there exists
a monochromatic (k — 1)-term sequence X € AP U P,_3 contained
in [1,(k — 1)*=3Y2] Say X = {2, < 25 < --- < 2%_1} has color
red. By Remark 3.40, there is a unique polynomial f € Sk_5 that
generates X. Hence, by Remark 3.45, for each j = 1,2, ...k,

k—2
(3.16) {21,202, cesT—1, f(@e—1) + 5 H(l‘k—l - wi)} € Py_o.

=1

For ease of notation, let us denote Hfz_f (zk—1 — x;) by II. Now
let A= {f(zr-1)+i0:1<j<k}={y1 <y2<-- <y} Wewish
to show that each member of A belongs to [1, k(*=2)/2], To show this,
note that by Lemma, 3.42,

Yo < Tpor+ (k4 DI < zp_g + (k+ 1)zk~2
(3.17) < (k=1)E32 4 (k4 1)(k — 1)*=2/2,

That the expression (3.17) does not exceed k(=22 will follow
if
(k _ 1)(Ic—3)!/2 k ) 1 )
W= < (I =(14+—7
=z tEHD < {7 T EDD
This last inequality does indeed hold, since

(k—2)1/2
) < — )
(3.18) k+2_<1+k_1>

We leave the justification for (3.18) to the reader (hint: consider the
binomial expansion of the right-hand side of the inequality). Thus,
we have established that A C [1,k(k=2)"/2],
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We consider two possibilities. If every member of A has color blue,
then A is a monochromatic arithmetic progression. Otherwise, some
member y,, of A has color red, in which case, by (3.16), X U {y,,} is
a red pr—o-sequence. In either case we have a monochromatic k-term
member of AP U Py_5 that lies in [1,k*~2"/2]. This completes the
proof. O

The upper bound given by Theorem 3.49, although it may be
an interesting result, seems to involve a much larger collection of
sequences than does AP; therefore, there is no obvious reason to
think that having an upper bound on APU Pj_5 could help us to find
a reasonable upper bound on w(k) = R(AP, k). However, in the next
theorem we show that if we were able to establish a certain improved
upper bound on R(AP U Py_s, k), then we would also have a similar
bound for w(k).

We first prove the following lemma.

Lemma 3.50. Let k > 7. If {x1,zo,.
T > ok-1

..y Zp} € Sk—2 — AP, then

Proof. Let {z1,z2,...,2x} € Sg—2 — AP, and let j be the largest
integer such that {1, x2,...,2;} is an arithmetic progression (clearly,
2<j<k-1).

If j = k — 1, then by Remark 3.48, x > k + (k — 2)! > 2k—1 If
j < k=1, then by Lemma 3.44, z;41 > xj+(z;—z;_1)+[ [/} (z;— ).
Now, x;_1,%;,T;j4+1 is a pi-sequence and hence is generated by the
polynomial f(z) = ax + b, where

a Ti41 — T
ZTj; —Tj-1
j—1
et | e G D))
- Tj—Tj-1
j-2
= 1+ H(xj - ;)
i=1
> 1+(G -1
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Since {zj_1,%;,%j41,Zj+2} € S2, by Lemma 3.44 ;.2 > f(x;41)
and hence, by Lemma 3.41,

Tipe >+ 14+ G -+ (14 G- 1H%

Applying this same argument to each of the triples {z¢, Zs41,Tes2},
j—1<£¢<k-—3, we obtain

k—j
ze >+ [1+ (G- DY

i=1

That this last expression is no less than 271 is left as Exercise 3.18,
which completes the proof. O

Theorem 3.51. Let 7, = 2¥=2 + [[F2}(28=3 — 2¢1). Ifk > 7 and
R(APUP;_o,k) <7t—1, thenw(k—1) <1, —2 = 2k*=4k(1 4 0(1)).

Proof. To prove the result, we will show that, for all & > 7, if
X ={z; < x3 < --- < zx} is any k-term pi_s-sequence such that
{z1,22,...,2x—1} is not an arithmetic progression, then z, > 7.
From this it follows by Lemma 3.44 that all k-term members of
AP U P;_5 that are contained in [1,7, — 1] are formed by adding
i Hf:_f (xx_1 —x;) to the k** term of some arithmetic progression, for
some nonnegative integer j. Hence, by the hypothesis, it follows that
w(k — 1) < 7, — 2, which is the desired conclusion.

Thus, we shall show that whenever X is a k-term pj_2-sequence
whose first £ — 1 terms do not form an arithmetic progression, then
Zr > Ti. For the case of k = 7, we ask the reader to prove this by
inspection of all 7-term members of APU Ps, with the help of Lemma
3.44. Now let k > 8. If {z1, T2, ..., Zk—1} is generated by the function
g(z) = 2z, then z_; > 272 so that 2 > 7, by Lemma 3.44.

If {x1,2,...,%k_1} is generated by a function other than 2z,
then by Lemma 3.50, there is a least integer j < k — 1 such that
z; > 2771, Also, by Lemmas 3.44 and 3.50, if ¢ < j, then

- i—1
.’Ek_1—$iz2k 2—22 .

If j < i < k—2, then since z; —x;_; > 2971 —2/72 = 2972 and since
{Zi—1,Ti, T;4+1} is a p1-sequence, but not an arithmetic progression,
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Tit1 — &; > 2(x; — x;—1), and again we have
k-3

Tp—1—T; > Z ot = gk—2 _ 9i-1,
r=i—1
Now let h be the pi_s-function that generates {z1,z2,...,Zx—_1}.

Then by Lemma 3.50, h(xx_1) > 2*¥~1. Since X is a pi_o-sequence
(but not a py_3-sequence), we know by Lemma 3.44 that

k—2
ok > h(zpo1) + [[(@ro1 —2) > 7,
i=1
completing the proof. O

Other results that are similar to Theorem 3.51 have been found,
where obtaining a seemingly mild improvement over the known bound
on the Ramsey function corresponding to the superset of AP will lead
to a like bound on w(k). References to such work are mentioned in
Section 3.9.

We may also consider Ramsey functions involving iterated poly-
nomials where the number of colors, r, is greater than two. As one
example, the next theorem gives an upper bound for R(P;, 3;r) (hence
an upper bound for R(S1,3;7)).

Theorem 3.52. R(P1,3;7) < rlr? +7r forr > 2.

Proof. Direct calculation gives R(P,3;2) = 7, so that the theorem
holds for r = 2. Now assume r > 3, and let x be any r-coloring of
[1,7r?2 +r+1]. Fori=0,1,...,r%, define M; = [r}i + 1,7l +r +1].
Clearly, each M; contains a pair a; < b;, such that x(a;) = x(b;).
For each 4, 0 < i < r2, let h(i) be the ordered pair (a; — 7!, x(3)).
Note that there are a total of only 72 possible ordered pairs (the
set of possible ordered pairs is the same for all ). Thus, by the
pigeonhole principle, there exist ¢ < j such that k(i) = h(j). Since
a; =a,~+r!(j—i) and b; —a; <7,

a; =a; + /\(b,’ - a,-),

where A > 2. Thus, by Lemma 3.41, {a;,b;,a;} is a pi-sequence.
Since {a;, b;,a;} is monochromatic, and since a; < b; < rlj + 7+ 1,
the theorem is proved. O
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We end this section with a table. Note that by Lemma, 3.39, there
is no need to include values of R(S,, k;r) for which n > k — 1.

[ n [ k | T ” R(Sy, k;7) | R(APUPn,k;r)—l
1132 7 7
1142 23 ?
2142 20 21
1152 76 76 — 177
2152 72 ?
3152 67 85
41612 68 — 612 192 - 612
1133 14 14
11413 >T71 ?
21413 > >71
1134 24 24
113]|5 38 38

Table 3.4: Values and bounds of R(S,,k;r)
and R(APU P, k;r)

3.6. Arithmetic Progressions as Recurrence
Solutions

By a linear recurrence relation of order n, we mean an equation of
the form

[X

Tk = C1Tk—1 + C2Tk—2 + - + CnTk—n,
where the c¢;’s are given constants. Solving such a system means
finding a closed formula for zj that holds for all k. As a simple
example, consider the following recurrence of order one: z; = 3x_1,
k > 1. A “general” solution is zx = 3*z,. To get a “particular”
solution, it suffices to know the initial value zg.

An arithmetic progression may be thought of as the solution to
the recurrence

(319) T = 2:L'k-1 — Tk-2-

To get a particular solution, it is sufficient to be given two initial
values. For example, if z; = 1 and zo = 3, then z3 = 2z5 — 2, = 5,
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x4 = 7, etc. This is simply another way of looking at the fact that
arithmetic progressions {zi,z3,...} are completely determined by
knowing x; and xs, since ry — Tx—1 = Tp_1 — Ti—2 for all k.

Thus we see that the family AP may be considered a special
subfamily of the family of those sets that occur as solutions to some
linear recurrence. There are many ways that we can generalize (3.19).
One way is the following. For k > 3, consider the family of those
sets {z1,Z2,...,Tx} With 1 < x5, having the property that there
exists a set {a; > 2 : 3 < ¢ < k} such that for i = 3,4,...,k,
Z; = a;%;—1 + (1 — a;)x;—2. Let us call this collection of sets R;. We
see that every arithmetic progression belongs to Ry (let a; = 2 for
every ). As another example, let us consider the 6-term sequence
obtained by letting a3 = 2, ay = 3, a5 = 2, ag = 7, 21 = 1, and
r9 = 3. Then we have z3 = 223 — 21, T4 = 323 — 229, x5 = 224 — T3,
and zg = Tz5 — 614, yielding the sequence {1,3,5,9,13,37}, a 6-term
member of R;.

It is not hard to obtain an upper bound on the Ramsey-type
function R(R;y, k). We do so in the following theorem.

Theorem 3.53. Let k > 3. Then R(Ry,k) < & (k+1)\.

Proof. We may calculate directly that R(R;,3) = 7, so that the
result is true for £ = 3. Proceeding by induction, assume that k > 4,
and that R(Ry, k — 1) < Lk!. Let my = 2—1(]6 + 1)! and consider an
arbitrary 2-coloring x : [1, mi] — {0, 1}. By the induction hypothesis,
in [1, mk_1] there is a monochromatic (k—1)-term member of R;. Say
X = {z1,22,...,2x—1} is such a sequence and that y(X) = 0. For
1<i<k, lety; =xk-1+i(zk—1 —xk—2). Notice that, for each i, the
set {z1,22,...,%k—1,¥:} is a k-term member of R; (where, according
to the notation used in the definition of Ry, a; =i + 1). Also notice
that every y; is no greater than my, since

M1+ k(mg—1 — Tk—2) < (k+ 1)mgp_1 = my.

To complete the proof, we consider two possibilities. If some
vi,» J € {1,2,...,k}, has color 0, then X U {y,} is a monochromatic
member of R; that is contained in [1,my]. Otherwise {y1,¥2,...,yx}
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is a monochromatic arithmetic progression (hence a member of R;)
contained in [1,mg], and the proof is complete. O

There are many other generalizations of (3.19) that may be con-
sidered. For example, instead of having b; = 1 — a;, we can simply re-
quire that b, = —1 for all i. Some examples are given in the exercises.
We encourage the reader to experiment with other generalizations —
it seems likely that there are some interesting ones that have yet to
be explored.

3.7. Exercises

3.1 a) Find all 3-term quasi-progressions with diameter 1 that are
contained in [1,6]. How many are contained in [1,10]? How
many are contained in [1,m]?

b) How many 3-term quasi-progressions with diameter k are
contained in [1,m]?

3.2 Prove Corollary 3.11(i).
3.3 Complete the details of Case 3 in the proof of Theorem 3.12.
3.4 Prove Corollary 3.15.

3.5 Show that E(kzﬂ is an upper bound for GQy—1(k) (see Ex-
ample 3.18).

3.6 Show that the last sentence in the statement of Theorem 3.19
follows from the previous sentence.

3.7 Calculate DW (3) and DW (4).

3.8 How many descending waves of length three are cdﬁtained in
(1,10)? in [1,m]? .

3.9 Finish the proof of Theorem 3.21
3.10 Finish the proof of Theorem 3.23.
3.11 Prove Theorem 3.32.

3.12 Complete the proof of Theorem 3.35 by showing that for m
even, the string 11...100...011...100...0 avoids mono-

m m m m
chromatic (m + 1)-term semi-progressions of scope m.

3.13 This exercise provides the outline for a proof of Theorem 3.37.
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3.14

3.15

3.16

3.17

3.19

a) Assume m + 2 < k < 3. Show that if k is even, then

the 2-coloring 1100...011...100...011...1 avoids mono-
N N S~ N~
k-2 k-2 k-2 k-2

chromatic k-term semi-progressions of scope m. Hence, for k&
even, SP, (k) > 4k - 3.

b) Use Theorem 3.36 to show that the lower bound of (a) also
holds for k odd. ‘
c¢) Use the results of (a) and (b), along with Theorem 3.33,
to prove Theorem 3.37, i.e., that SP,,(k) = 4k — 3.

For i an integer, 0 < i < k — 2, let A(k,m,i) = [T(I’%T] )

Prove that
k
t-1) qA(k,m,z’)] - 1) th

a) Find specific values of m, k, and ¢ for which the lower
bound on SP,,(k) given by Exercise 3.14 is better (greater)
than that given by Theorem 3.36.

b) Find specific values of m and k for which the lower bound
provided by Theorem 3.37 is better than any obtainable by
Exercise 3.14.

SPp(k) > 2(k -

Complete the proof of Lemma 3.39 by showing that each b;
is an integer. (May require abstract algebra.)

Let d >1. Use Lemma 3.41 to show that X = {z1,z2,...,zx}
is a member of P, if and only if dX = {dz,,dz,,...,dzs} is
a member of P;.
Complete the proof of Lemma 3.50 by proving that, for
2<j<k—-2and k>7,

k—j

FHY L+ G =D 22kt

i=1
(Hint: verify that the inequality holds whenever j = 2 and use
n! > (2)™ to show that it is true for j > 7 then, show that it
holds for each pair (3, k) in the set {(3,7), (4,7), (5,7), (6,8)},
and then use induction on k (where j is ﬁxed).)

Define a C-sequence to be a sequence of distinct (but not
necessarily increasing) positive integers {z1, 3, ...,zx} such
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3.20

3.21

3.22

that there exists a function f(z) = az+b, witha € Z*, b € Z,
where for each i = 2,3,... k, f(z;—1) = z;. Obviously, every
p1-sequence is a C-sequence. Prove that a sequence S is a
C-sequence if and only if

S = {t+d,t+d+ad,t+d+ad+a2d,...,t+dZai}

for some t,a,d € Z, where t,a > 1 and d # 0.

Define an E-sequence of length k to be an increasing sequence
of positive integers generated by a function p(z) = az + b,
where a > 1 and b > 0 are integers. It is clear that every
arithmetic progression is an E-sequence, and that every E-
sequence is a pj-sequence. Prove that (z1,xs,x3) is an E-
sequence if and only if it has the form {z,z + d,z + d + ad},
where a < 4 2+ 1.

Denote by N(AP, k,m) the number of different k-term arith-
metic progressions contained in [1,m]. Define N(Py,k,m)
and N(C,k,m) analogously, replacing the family of arith-
metic progressions with p;-sequences and C-sequences, re-
spectively (see Exercise 3.19). Prove that

N(C,k,m) = 2N (Py,k,m) — N(AP,k,m).
Define a D-sequence to be any sequence of distinct posi-
tive integers of the form {t, f(t), f®(¢),..., f*=1(t)}, where
f(z) = az+b, a,b € Z. It is clear that every C-sequence (see
Exercise 3.19) is a D-sequence.
a) Prove that every D-sequence of length three is also a C-
sequence.
b) Prove that a set of size k > 4 is a D-sequence but not a
C-sequence if and only if it has the form

k-2
{t,t+d,t+d—ad,t+d—ad+a2d,...,t+d2(—1)"ai},

=0

where a,d € Z, a > 2, and d # 0.
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3.1

3.2

3.3

¢) Using Exercise 3.21’s notation, prove that for all k>4,

J s

N(D,k,m) = N(C,k,m) +2)_ Y (m—d*2d),

a=2d=1
where j is the greatest integer such that a*=2 < m—1 and
s= |zt
Define Rs to be the same as R; (as in Theorem 3.53), except
instead of using the recurrence x; = a;%;~1 — b;z;—2, where
b; = 1 — a;, we now use the recurrence ; = a;Ti—1 — T;—2
for all . Notice that Ry is a superset of AP. Prove that
R(R2,k) < %(k + 1)! for k > 3.
As in Exercise 3.23, define R3 to differ from R; only in that
we require that a; = 2 and b; < —1 for all . Find an upper
bound on R(R3, k).

3.8. Research Problems

Let By(k) be the least positive integer with the following
property: for every 2-coloring of [1, Bz(k)], there is a mono-
chromatic sequence {x1,s2,...,Zk} such that z; —x;—1 €
{d1,d2}, 2 < i < k, for some dy,ds € Zt. Write a computer
program to calculate Bz (k). Try to get bounds for Ba(k).
References: [58], [163], [167]

Repeat Research Problem 3.1 above, except consider B, (k),
the Ramsey-type function for those sequences such that for
some m-element set D = {d;,ds,...,dn}, the gaps must be-
long to D. Try to determine relationships that exist between
B, (k) and the Ramsey-type functions discussed in this chap-
ter. Write a computer program to calculate specific values of
B,,(k). Try to obtain bounds for By, (k).

References: [58], [163], [167]

It has been conjectured that Qr—;(k) = 2ik —4i + 3 if k #
1(modi) and k > 2i > 2. Prove or disprove this conjec-
ture. As a special case, determine if Qx/o(k) = k* — 2k + 3,
for k even. Table 3.1 provides some known values of this
function. One possible approach to solving this problem may
come from the following conjecture (based on some known
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e

3.4

3.5

computer output): if £ = 0(modi) and k > i, then the only
valid coloring of maximal length (i.e., of length 2k —4k+2) is
the coloring A; B...B A, where A; is a string of 1’s having
i-1

length k£ — 4, A is a string of 0’s having length k — 4, and
B=00...011...1.

S~ N———

k-1 k-1

References: [58], [167]

It has been conjectured that Q_;(k) =2tk —2i+1ifk=1
(mod %) and k > 2i > 1. Prove or disprove this conjecture.
Some specific values are given in Table 3.1. As in Research
Problem 3.3, computer output suggests a rather regular pat-
tern in the valid colorings of maximal length.

References: [58], [167]

Denote by r/ a string of length 7j consisting of j monochro-
matic blocks, each of length r, where the colors of the blocks
alternate. For example, 3* represents the string 000111000111
or the string 111000111000, and 2° represents a string such
as 1100110011. Prove or disprove the following conjecture:
Whenever k£ > 2¢ and k = 2 (mod ¢), the coloring represented
by (k—2)""1(k—1)?(k—2)*"! is a maximal valid coloring. A
proof of this would support the conjecture of Research Prob-
lem 3.3.

References: [58], [167]

* 3.6 Determine a relationship between w(k) and Q; (k) asymptot-

3.7

ically (i.e., what happens to the ratio as k — co?).
References: [58], [167]

It was mentioned after the proof of Theorem 3.33 that its
proof establishes an upper bound for the Ramsey function
associated with semi-progressions of scope m, where the value
of d (as in the definition of semi-progression) is restricted to
the set D = {1, c}. Try replacing the set D with various other
sets, and attempt to find upper bounds. Perhaps a more
general result can be obtained, where the case of D = {1,c}
would be one special case.

Reference: [163]
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—

3.8 Obtain an upper bound on GQ.—3(k). In particular, can we
bound it above by a polynomial of degree four? Attempt to
generalize this to GQ,—¢(k).

References: [82], [170]

3.9 Denote by SP,,(k;r) the least positive integer M such that
for every r-coloring of [1, M] there will be a monochromatic
k-term semi-progression of scope m. As in the case of two
colors, it is clear that w(k;r) < SP,(I'y(k);r). Study the
function SP,,(k;r) for values of r greater than two.
Reference: [163]

3.10 In Table 3.3, we observe that for m € {3,4,5,6},

3.15 Improve on Theorem 3.14 by obtaining an upper bound on
Qn(n +t) when t is a number that is greater than 3
Reference: [163]

* 3.16 Attempt to find the precise rate of growth of DW (k); i.e.,
find a such that DW (k) = ak3(1 + o(1)).
References: [15], [58], [179]

3.17 Find bounds on DW (k;r) for r > 3.
References: [15], [58], [179]

3.18 Improve upon Table 3.4 (either by adding new entries, or by
improving any of the bounds).
References: [131], [171], [172]

3.19 Find an upper bound for R(C,k;r) (see Exercise 3.19). In
particular, find an upper bound for R(C,3;r) that is less
than that of Theorem 3.52. Also, the following are known:
R(C,3;2) = 5, R(C,4;2) = 20, R(C,3;3) = 13, R(C, 3;4) =
17, R(C,4;3) > 28 and R(C,5;2) > 53. Find more of these
values; in particular, find R(C, 5; 2).

References: [131], [161], [162], [169], [171], [172], [177]

3.20 Referring to Exercise 3.20, find upper and/or lower bounds
for the Ramsey-type function R(E, k;2) associated with k-
term E-sequences. Find a lower bound for R(E,3;r) (it is
obvious that w(k;r) > R(E, k;r) > R(P1,k;r)). It is known
that R(E,3;2) = 9, R(E,4;2) = 35, R(E,3;3) = 26, and
62 < R(FE, 5;2) < 177. Find more exact values; in particular,
find R(E, 5;2).

References: [131], [161], [162], [169], [171], [172], [177]

3.21 Repeat Research Problem 3.19, using D in place of C (see
Exercise 3.22). Also, the following values and bounds are
known: R(D,3;2) = 5, R(D,4;2) = 19, R(D,3;3) = 13,
R(D,3;4) = 17, R(D,4;3) > 28, and 52 < R(D, 5;2) < 177.
Find more exact values; in particular, find R(D, 5;2).
References: [131], [161], [162], [169], [171], [172], [177]

3.22 Look for other ways to define supersets of AP, and attempt
to obtain non-trivial upper and/or lower bounds on the cor-
responding Ramsey-type function.

SP,(2m) =6(2m — 1) +¢,

where € = 1 or 2. Determine if SP,,(2m) = 12m(1 + o(1)).
Reference: [163]

3.11 We see from Table 3.3 that, for the pairs (m, k) = (2,5) and
(m,k) = (4,9), SPy(k) = 8(k — 1) + 1. Determine if this
is true for the pair (m,k) = (6,13) or, more generally, for
(m, k) = (24,45 + 1).

Reference: [163]

3.12 Let us say a set of positive integers S has property QP if,
for some fixed n, S contains a k-term quasi-progression of
diameter n for every k > 1 (that, is S contains arbitrarily
long quasi-progressions of diameter n).

a) Determine if the set of squares {i? : i = 1,2,...} has
property QP.

b) It is known that there are infinitely many 4-term quasi-
progressions of diameter 1 among the set of squares. Deter-
mine if there exist any such progressions of length five. Is so,
how many?

References: [58], [61], [167]

3.13 Improve on the lower bound given by Theorem 3.9.
Reference: [163]

3.14 As in Theorem 3.12, obtain an exact formula for Qr_3(k).
Reference: [163]
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3.23 Calculate values and attempt to get bounds on any function
analogous to the Erdds and Turdn function, but where the
family AP is replaced by one of the families discussed in this
chapter. If any bound is obtained, use it to try to get a bound
on the corresponding Ramsey-type function.

3.9. References

§3.1. The bounds on quasi-progressions are from [167], which also in-
cludes a proof of Lemma 3.13, as well as a table of computer-generated
data. Brown, Erdés, and Freedman [58] study the question of which
sets contain arbitrarily long quasi-progressions, and the relationship
between this property and several other properties, including that of
containing arbitrarily long descending waves. They also prove the
equivalence of two properties, one a conjecture of Erdds’ (a Ramsey-
type statement involving infinite reciprocal sums; see Research Prob-
lem 2.3) and the other involving quasi-progressions. Other results
on infinite reciprocal sums can be found in [59] and [73]. Brown,
Freedman, and Shiue [61] consider the problem of finding quasi-
progressions that are contained in the set of squares.

83.2. The notion of generalized quasi-progressions is introduced in
[170], which contains a proof of Theorem 3.19, some related results,
and Table 3.2. Functions similar to GQs(k) are considered in [82].

§3.3. Proofs of Theorems 3.21 and 3.24 may be found in [15]. A
proof of Theorem 3.22 can be found in [58]. Some results concern-
ing the notion of an ascending wave (the gaps increase rather than
decrease) are also discussed in [15] and [58]. We can generalize de-
scending waves to DW (k,¢), the least positive integer d such that
(1,d] contains either an ascending wave of length k or a descending
wave of length £. See work by Erdds and Szekeres [101] and Lef-
mann [179] for more information. The fact that any infinite set of
positive integers that contains arbitrary long quasi-progressions must
also contain arbitrarily long descending waves is given in [58], where
it is also shown that the reverse implication is false.

§3.4. The proof of Proposition 3.30 is from [195], which also has
other related results. Rabung provides another proof of the existence

3.9. References 101

—

of I, (k) [209]. Further results on I',,, (k) are given in [63]. Theorems
3.32, 3.33, and 3.35-3.37 are from [163].

§3.5. Lemmas 3.42 and 3.44 are from [162]. A slightly weaker re-
sult than that of Theorem 3.49 appears in [131], which also contains
proofs of Lemma 3.50 and Theorem 3.51. In [168], results like Theo-
rem 3.51 are given for certain families of sequences that are properly
contained in AP U Pj_3. Theorem 3.52 is from [161]. Other results
involving Ramsey functions based on polynomial iteration appear in
[172]. The values and bounds in Table 3.4 are from [131], [171],
and [172]. Some properties on the growth of iterated polynomials,
irrespective of Ramsey theory, are explored in [177]. Work on pj,-
sequences involving more than two colors is considered in [169] and
[171].

§3.6. Theorem 3.53 and related work may be found in [166].

§3.7. Exercise 3.5 is from [170]. Exercise 3.14 is proven in [163].
Exercises 3.19-3.22 are taken from [162]. Exercises 3.23 and 3.24 are

1 from [166].



Chapter 4

Subsets of AP

In Chapter 3 we considered functions analogous to w(k;r) by re-
placing AP, the collection of arithmetic progressions, with certain
collections F such that AP C F. The existence of the corresponding
van der Waerden-type functions R(F, k; ) was guaranteed by van der
Waerden’s theorem, since each arithmetic progression is a member of
F. The purpose of this chapter is to consider the reverse situation,
F C AP. Thus, we wish to restrict, in some way, the allowable
arithmetic progressions.

We note that if F is a proper subset of AP, then van der Waer-
den’s theorem does not guarantee the existence of R(F, k;r) for all k
and r. In fact, any positive result we can uncover about such a func-
tion can be considered a strengthening of van der Waerden’s theorem.
For example, if R(F,k;r) < m for some F C AP, then w(k;r) < m.

As a start, we show that for certain choices of F, k, and r it is
relatively easy to conclude that R(F, k;r) does not exist. We begin
with some examples.

Example 4.1. Let F be the collection of all arithmetic progressions
{a,a+d,a+2d,...} such that @ > 1 and d € {1,2}. To show that
R(F,k) does not exist, it is enough for us to find a 2-coloring of
the positive integers that does not yield any k-term monochromatic
members of F. Consider the coloring x : Z* — {0, 1} represented by
the sequence 11001100.... It is easy to see that there do not exist

103
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more than two consecutive numbers with the same color, nor do there
exist z,z + 2 of the same color. Hence, R(F,3) does not exist and
therefore R(F, k) does not exist if k£ > 3.

Example 4.2. Let F be the family of all arithmetic progressions
{a,a+d,a +2d,...} such that a = 2! for some i > 0. Consider the
2-coloring of Z* defined by coloring all the powers of 2 red, and all
other positive integers blue. Then obviously there is no blue member
of F. Also, if X = {z,y, 2z} is red, where z < y < z, then X cannot be
an arithmetic progression. This is due to the fact that for all £ > 0,
Zf:o 2t = 2k+1 _ 1 so that z —y > y — 2. Hence, R(F, k) does not
exist for k > 3.

Examples 4.1 and 4.2 may not be very surprising, since the col-
lection F consists of a rather small part of AP. The next example
uses a much larger collection F.

Example 4.3. Let F be the collection of arithmetic progressions
whose gaps are odd. Then the coloring of the positive integers defined
by coloring the even numbers red and the odd numbers blue yields no
monochromatic 2-term member of F. Thus, R(F,2) does not exist.

There are many ways that one may choose a subcollection of
AP. Examples 4.1 and 4.3 illustrate one natural way, which is to
require that the gap d of the arithmetic progressions belong to some
prescribed set of positive integers. This type of subcollection of AP
has been the subject of several recent research articles, and many
interesting problems remain unanswered. For this reason, we devote
most of this chapter to the idea of placing certain restrictions on the
gaps that the desired arithmetic progressions may have.

Before proceeding, we introduce the following notation and lan-
guage.
Notation. For D a set of positive integers, denote by Ap the col-
lection of all arithmetic progressions whose gaps belong to D. We
will refer to D as the gap set. We refer to an element of Ap as a
D-a.p.. Also, if d is a positive integer, by a d-a.p. we shall mean an
arithmetic progression whose gap is d.
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We begin the study of the Ramsey properties of sets of type Ap
by considering the case in which D is a finite set.

4.1. Finite Gap Sets

Example 4.1 hints that, for D finite, Ap may not be regular (see
Definition 1.28). Indeed, the following theorem shows that this is
true, even when only two colors are used.

Theorem 4.4. For D a finite set of positive integers, there is a k
large enough so that R(Ap, k;2) does not exist.

Proof. Let n = max{d : d € D}. Define the 2-coloring of Z* by the
string

11...100...011...100...0....
S N N N —

n n n n

To prove the theorem, we will show that under this coloring there
is no monochromatic (n + 1)-term arithmetic progression whose gap
belongs to D. Obviously, any arithmetic progression with gap n al-
ternates color, so there cannot exist even a 2-term monochromatic
arithmetic progression with gap n.

Now assume X is an arithmetic progression with gap less than n.
Then X cannot have more than n consecutive elements of the same
color. Hence R(Ap,n + 1;2) does not exist. O

The proof of Theorem 4.4 shows that R(Ap, k; 2) does not exist
if n = max{d : d € D}. However, it does not say that n + 1 is the
minimum value of k such that R(Ap,k;2) does not exist. So what
is the minimum value? The answer seems to depend not only on the
size of D, but also on the specific elements of D.

For example, the third van der Waerden number, w(3), is known
to equal 9. Obviously, any 3-term arithmetic progression that is con-
tained in [1,9] will have as its gap an element of D = {1,2,3,4}.
Hence, for this choice of D, R(Ap,3) = w(3) = 9. On the other
hand, if E = {1,3,5,7}, then (as discussed in Example 4.3) the col-
oring 101010... avoids 2-term arithmetic progressions with gaps in
E; hence R(Ag,2) = co.
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For D such that |D| < 3, much is known about R(Ap,k;2). In
particular, a complete answer is known if | D| = 1 or 2. We summarize
these results in the next three theorems.

Theorem 4.5. If |D| =1, then R(Ap,2;2) = oo

Proof. Let D = {d}. Define a 2-coloring x of Z* as follows. First,
color [1,d] in any way. Then, for all x > d, define x(x) such that
x(z) # x(z — d). Then x is a 2-coloring of Z* that does not have
any 2-term monochromatic arithmetic progressions with gap d. This
proves the theorem. O

The next theorem makes use of Lemma 4.6, below, for which we
remind the reader of the following notation.

Notation. For D a set of positive integers and ¢ a real number, we
write tD to denote {td : d € D}.

Lemma 4.6. Let D be a set of positive integers, and let k,t > 1.
Then R(Asp, k;7) = t[R(Ap, k;7) — 1] + 1 (if R(Ap, k;7r) = oo, then
R(Atp,k;r) = 00).

Proof. Let m = R(Ap,k;r), and assume m < oo. To show that
R(A¢p, k;r) < t(m—1)+1, let x be any r-coloring of [1,t(m—1)+1].
Define x’ on [1,m] as follows:

X' () = x(t(x — 1) +1).

By the definition of m, for some d € D, within [1,m] there is a
d-a.p., {z; : 1 < ¢ < k}, that is monochromatic under x’. Then
{t(z; —1)+1:1 < i < k} is monochromatic under x and is a k-term
td-a.p. Thus, R(Atp,k;r) <t(m—1)+1.

To obtain the reverse inequality, note that by the definition of m,
there exists an r-coloring ¢ of [1,m — 1] that avoids monochromatic
k-term arithmetic progressions whose gaps belong to D. Define ¢’ on
[1,t(m — 1)] as follows:

#'[t(G — 1)+ 1,tj] = ¢(j) for each j =1,2,...,m — 1.

Then ¢’ avoids monochromatic k-term arithmetic progressions whose
gaps belong to tD. Hence, R(A:p, k;r) > t(m —1) + 1.
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It is easy to check that this same line of reasoning takes care of
the cases when R(Ap, k;r) = oo. O

We now consider 2-element gap sets.

Theorem 4.7. Let D = {a,b}, let g = ged(a,b), and let k > 2. Ife

and & o are not both odd and if k = 2, then R(Ap,k) =a+b—g+ 1
Otherwise, R(Ap, k) = oo.

Proof. We first observe that it is sufficient to prove the theorem for
the situation in which g = 1. To see this, assume that the statement
of the theorem is true for all 2-element sets whose greatest common
divisor equals one. Now let D = {a,b} and let o’ = % and b’ = & not
both be odd. Then ged(a’,b’) = 1 and therefore by Lemma 4.6 we
have

R(A{a,b}a 2) = g[R(A{a’,b’}v 2) _1]+1 = g(al+b,—1)+1 =a+b—g+1.
If both @’ and b’ are odd, then by our assumption, R(A{ar 1},2) = 00,
so that by Lemma 4.6, R(A{q},2) = co.

We begin with the case in which R(Ap, k) is finite. We prove
R(Ap,2) < a+ b by contradiction. Thus, we assume that a and b
are not both odd, that k = 2, and that there exists a 2-coloring x of
[1,a+b] that yields no monochromatic 2-term arithmetic progression
whose gap belongs to {a, b}.

Let & represent addition modulo a + b. Then for all 5 € [1,a + b]
we have |i @ a —i| € {a,b}. Hence, by our assumption,

(4.1) x(i) # x(i @ a) for all i € [1,a + b).
Now,

1®(a+b~-1)a = (1-a) (mod (a+b))

so that

(4.2) 1®(a+b—1)a=(b+1) (mod (a+b)).

Also, since a 4 b — 1 is even, by repeated use of (4.1) we have
(4.3) x(1® (a+b-1)a) = x(1).

Combining (4.2) and (4.3), we have x(b+ 1) = x(1), contradicting
our assumption about .
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To prove R(Ap,2) > a+ b, we give a 2-coloring of [1,a + b — 1]
that yields no 2-term monochromatic D-a.p. Since ged(a,a+b) =1,
for each i € [1,a + b — 1] there exists a unique j € [1,a + b — 1] such
that i = ja (mod (a+b)). Hence the coloring x of [1,a+b—1] defined
by

(0) 1 if i =ea(mod (a+ b)) with e even,
1) =
X 0 if ¢ =wua(mod (a+ b)) with u odd

is a well-defined 2-coloring of [1,a + b — 1].

Now, assume that y, z are both in [1,a + b — 1] with 2 = y + a.
If y = ja (mod (a + b)), then z = (5 + 1)a (mod (a + b)), so that, by
the way x is defined, x(y) # x(z). Also, if y,z € [1,a + b — 1] with
z=1y+b, then

(4.4) y =z ®a(mod(a+1b)),

so that y = ta(mod (a+b)) where ¢t € [2,a+b—1] (check that ¢ # 1).
So, from (4.4) and the definition of x, we have x(y) # x(z). Hence
X is R(Ap,2)-valid on [1,a + b — 1], which completes the proof that
R(Ap,2) =a+b.

We now do the cases in which R(Ap, k) is infinite. The case in
which a and b are both odd is covered by Example 4.3. Now assume
one of a and b is even (they cannot both be even). It remains only to
show that R(A(qp},3) = co. We may assume that a is even.

To complete the proof, we shall exhibit a 2-coloring 7 of Z* that
has period 2a and that has no monochromatic 3-term arithmetic pro-
gression with gap in D.

If b=1i(mod 2a) with a <7< 2a, then, by the periodicity of v, if
X = {z,z+b, x+2b} were monochromatic under +, then for any ¢t > 0
with 2ta > b, the set {z+4ta, z+2ta+b, +2b} would be a monochro-
matic arithmetic progression with gap 2ta — b = —i (mod 2a). Hence,
it is sufficient for us to consider only those b such that b = i (mod 2a),
where 1 < 4 < a. Also, since v has period 2a, and since b is odd
(why?), we may assume 1 < b < a.

We consider the following two cases, and define the coloring ~y
(with period 2a) according to the case. In each case we let B; denote
the interval [(j — 1)a + 1, ja] for j > 1.

4.1. Finite Gap Sets 109

Case 1. 1 <b < 3. For each i < a, let v(¢) = 1 if ¢ is odd, and
v(3) = 0 if 7 is even; and for each i > a, let (i) # v(i—a). Then there
is no 2-term monochromatic a-a.p., and « has period 2a. If {z,z + b}
is monochromatic with 2 € Bj, then by the way 7 is defined, since b is
odd, z+b € Bj4. Since z+b < Jja+§, we have x+2b € Bj 41, so that
(x4 2b) # v(x + b). Thus there is no 3-term monochromatic b-a.p.
in Z*, and v has no monochromatic 3-term arithmetic progressions
with gap in D.

Case 2. § < b < a. Define v as follows. For every j, let v(B;) = 1 for
¢ odd, and y(Bg) = 0 for £ even. Clearly, there is no monochromatic
2-term a-a.p. Also, if {x,z 4 b} is monochromatic, with z € Bj, then
z+b must belong to B;. Thus, z+2b € B, (or else 2b < a), so that
vy(x + 2b) # v(z). So v yields no monochromatic 3-term arithmetic
progressions with gap in D. O

If we look over the proof of Theorem 4.7, we see that we have
proved something stronger than R(Ayq3),3) = oco: in certain cases in
which | D| = {a, b}, it is possible to 2-color the positive integers so that
there are neither monochromatic 2-term a-a.p.’s nor monochromatic
3-term b-a.p.’s. In fact, it is possible to prove several results about
this type of “mixed” van der Waerden-type function. You will find
some interesting results on this in the exercises of this chapter.

The last proof was rather long for a situation in which the struc-
ture seems quite uncomplicated and small. If we up the ante to
|D| = 3, then, as you may have guessed, we do not have a theorem
akin to Theorem 4.7 — but we can say something.

Theorem 4.8. Let |D| =3. Then R(Ap,4) = co.

Proof. Let D = {a,b,c} and assume a < b < ¢. The proof splits
naturally into two cases.

Case 1. 2b < c. In this case let ¥ be the 2-coloring of Z* defined
recursively as follows:
(i) x@)=1for1<i<a,

(if) x(é) # x(¢ — a) for a <1 < b,
(i) x(¢) # x(i = b) for b < i < c,
(iv) x(?) # x(i — c) for i > c.
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Note that x has period 2c. We will show that under x there is
no monochromatic 4-term arithmetic progression whose gap belongs
to D.

Let j = [£]. For 1 < i < j, let B; = [(i — 1)b+ 1,ib], and
let Bj = [(j —1)b+ 1,c]. Clearly, in each B;, 1 < i < j, there is
no monochromatic 2-term a-a.p. Therefore there is no 3-term a-a.p.
in [1,¢]. Notice that there are no monochromatic 2-term a-a.p.’s in
[1,2a), and therefore, for each nonnegative integer k, there also cannot
be any in [kc + 1, kc + 2a]. Thus, in Z* there is no monochromatic
4-term a-a.p. By the same reasoning, there is no monochromatic 3-
term b-a.p. in Z* (check this). Finally, it is clear from (iv) that there
is no monochromatic 2-term c-a.p.

Case 2. 2b > c. Let x’ be the following 2-coloring of Z* (note that
X' has period 4c):
i) x¥@) =1for1 <i<a,
(ii) x'(%) # x'(¢ — a) for a < i < b,
(iif) x'(?) # x'(i — b) for b < i < 2c,
(iv) x'(?) # x'(i — 2¢) for i > 2c.

Let d = 2c. Then in the same way that we used 2b < c in Case 1,
we may use 2b < d to show that under x’ there is no monochromatic 4-
term a-a.p., no monochromatic 3-term b-a.p., and no monochromatic
2-term d-a.p. (we leave the details as Exercise 4.3). Since there is
no monochromatic 2-term d-a.p., there cannot be a monochromatic
3-term c-a.p.

In each case, we have given a coloring of Z* that yields no

monochromatic 4-term arithmetic progression whose gap belongs to
D, proving the theorem. O

Based on the results obtained above, let us denote by m(n) the
least positive integer m such that whenever D is a set of positive
integers with |D| = n we have R(Ap, m) = oco. The above theorems
show that m(1) = 2, m(2) = 3, and 3 < m(3) < 4. It would be nice
to know more about the function m(k) (see Section 4.4 for some open
problems).
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4.2. Infinite Gap Sets

Van der Waerden’s theorem says that for all k and r, R(Az+, k;7)
exists (is finite). If we can find a proper subset D of Z* such that
R(Ap, k;r) exists for all k and r, then we have strengthened van der
Waerden’s theorem. In the previous section we learned that no finite
D will work. For infinite D, the answer is not so simple.

It is not hard to find certain sets D that strengthen van der
Waerden’s theorem. For example, by the next theorem we see that
we may take D to be the set of all multiples of a fixed positive integer
m. The theorem follows immediately from Lemma 4.6 by taking D
(of Lemma 4.6) to be Z*.

Theorem 4.9. Let m be a fized integer with m > 2. Then for all
positive integers k and r,

R(mZ*, k;r) = m(w(k;r) — 1) + 1.

The following corollary is an easy consequence of Theorem 4.9.
We leave its proof as Exercise 4.7.

Corollary 4.10. Let F be a finite set of positive integers. Then
R(Z* — F,k;r) < oo.

We next consider a special case of Corollary 4.10 in which the
results are quite interesting.

For c a positive integer, denote by w’'(c, k;r) the least positive
integer w’ such that for every r-coloring of [1,w’] there is a monochro-
matic k-term arithmetic progression whose gap is at least c¢. Notice
that if ¢ = 1, then w'(c, k;r) coincides with the classical van der
Waerden number w(k;r). We also see that w'(c, k;r) = R(Ap, k;7),
where D = {¢,c+ 1,c¢+2,...}, and by Corollary 4.10 we know that
this number always exists. Let us take a closer look at the numbers
w' (e, k;r).

For arithmetic progressions of length three, we have the following
theorem, which is a generalization of the fact that w(3) = 9.

Theorem 4.11. Let c be a positive integer. Then w'(c,3) = 8¢ + 1.
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Proof. Since w(3) = 9, by Proposition 2.29, any 2-coloring of
{1,14¢,1+2¢,...,1+8c}

must have a monochromatic arithmetic progression of length three.
Obviously, its gap is at least c. This shows that w'(c,3) < 8c + 1.

To show that 8¢ + 1 is also a lower bound, consider the coloring
of [1,8¢| represented by the string A; By A2 Bs, where A; = 1°¢ and
B; =0%fori=1,2.

We shall show, by contradiction, that under this coloring there
is no monochromatic 3-term arithmetic progression whose gap is at
least c. Assume there is such an arithmetic progression, P = {z,y, 2}
with ¢ < y < z. By the symmetry of the coloring, we may assume
that P has color 1. Since z — z > 2c, one of the A;’s must contain
two members of P, and the other A; must contain one member of
P. Without any loss of generality, say z,y € A; and z € Ay. Then
z —y > 2c, contradicting the fact that y — 2 < 2c. This shows that
w’(c,3) > 8c + 1, completing the proof. O

We can use the same idea by which we obtained the lower bound
in Theorem 4.11 to prove the following more general fact that has the
lower bound of Theorem 4.11 as a special case.

Before stating the theorem, we mention some convenient nota-

tion.
Notation. For positive integers c, k, and r with k,r > 2, let A(c, k, )
denote the r-coloring A : [1,cr(k —1)2] — {0,1,...,r — 1} defined by
the string (BB ... Br—1)*"1, where for each i =0,1,...,r — 1, B;
is a string of i’s having length c(k — 1), and where there are k — 1
copies of the block (ByBj ...Br_1).

Example 4.12. The coloring A(3,5,2) is the coloring of [1,72] rep-
resented by the string (0'2112)4 = 012112012112012112012112,
Theorem 4.13. For allc>1 and k,r > 2,

w (e, kyr) > er(k— 1) + 1.
Proof. To prove this, it suffices to show that, under A(c, k, r), there

is no k-term monochromatic arithmetic progression whose gap is at
least c. We leave the details as Exercise 4.8. O

4.2. Infinite Gap Sets 113

When dealing with the functions w’(c, k; ), the following modi-
fication of the terminology used for valid colorings will be useful.

Definition 4.14. An r-coloring that admits no monochromatic k-
term arithmetic progressions with gap at least ¢ is called a (¢, k;r)-
valid coloring. For r = 2, we call the coloring (¢, k)-valid.

Theorem 4.13 gives a lower bound for w’(c, k;r). Of course, find-
ing an upper bound would be much more significant, as it would
provide an upper bound for the classical van der Waerden numbers
w(k;r) (letting ¢ = 1). This is one of the main reasons for investi-
gating families F that are subsets of AP. One possible approach to
finding an upper bound on w’(c, k;r) would be to first find a fairly
simple description of all maximal length (c, k)-valid colorings. Some
conjectures along these lines have been formulated (see Sections 4.4
and 4.5). For the case of k = 3 and r = 2, it turns out that for each
¢ > 2, the maximal length valid colorings are quite simple to describe
— in fact, as we shall see in the next theorem, there is only one!

Notice that if x is any valid r-coloring of the interval [a, b], then
the r-coloring X’ obtained from x by merely renaming the colors is
still valid. Hence, when counting valid colorings we will not consider
such pairs x and X’ to be distinct colorings, unless otherwise stated.

It is well known that there are three distinct 2-colorings of [1, 8] for
which there is no 3-term monochromatic arithmetic progression, i.e.,
which are (1,3)-valid. These are represented by 11001100, 10011001,
and 10100101 (the reader should verify this).

Note that the first of these colorings is the coloring A(1, 3, 2).

Theorem 4.17 below shows that for ¢ > 2, A(c, 3,2) is the only
maximal length (¢, 3)-valid 2-coloring of [1,8c].

We shall need the following two lemmas.

Lemma 4.15. Letc,k,m € Z*, and let x be a (c, k)-valid 2-coloring
of [1,mc]. Leti € {1,2,...,c} and let x* be the 2-coloring of [1,m)
defined by x*(j) = x((j — V)e+1) for each j =1,2,...,m. Then x*
is (1, k)-valid on [1,m)].
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Proof. Assume x* is not (1, k)-valid on [1,m]. Then under x* there
is a monochromatic arithmetic progression

{z,z+d,....,z+ (k- 1)d} C [1,m)].

Now consider the set S = {(x — 1+ jd)c+i:j =0,1,...,k— 1},
an arithmetic progression contained in [1,mc]. It follows from the
definition of x* that S is monochromatic under x. Also, the gap of S
is ed > ¢, contradicting the assumed validity of . O

In the next two proofs we will be using the (AP,3)-valid 2-
colorings (i.e., the (1, 3)-valid 2-colorings) of [1, 8], including ones that
can be obtained from another coloring by interchanging the names of
the two colors. Hence, there are six such colorings, which we denote
as follows:

o = 11001100, 7 = 10011001, © = 10100101,
o’ =00110011, 7/ =01100110, ' = 01011010.

Lemma 4.16. Let ¢ > 3, and assume that x : [1,8¢] — {0,1} is a
(¢, 3)-valid 2-coloring with x(c) = 1. Then A = {c,2c,...,8¢} must
have the color pattern o = 11001100.

Proof. Define x* on [1, 8] by x*(j) = x(jc). By Lemma 4.15 (taking
i = c in its statement), x* is (1,3)-valid on [1,8]. Hence, because
x(c) = 1, as noted before, x* has one of the color patterns o, T, OF 4.
Thus A has one of these three color patterns. To complete the proof,
we shall show that it is impossible for A to have color pattern 7 or .

We consider two cases.

Case 1. cisodd. Let B = {l,c+1,2c+1,...,7c+ 1}. By Lemma
4.15, the function X’ defined on [1,8] by x’(j) = x(( — 1)c + 1) has
one of the six color patterns o, o/, 7, 7/, u, 1. Hence, under y, B
has one of these six color patterns.

Let us first assume that A has color pattern 7; we will reach a
contradiction.

If B has either coloring o or 4/, then we have x(c+1) = x(8¢) = 1.
Hence, x (3¢ + 1) = 0, for otherwise {e+1,%c+ £,8¢} would be a
monochromatic arithmetic progression with gap at least ¢, which is
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not possible. This implies that {2c + 1, 2¢ + 3, 7¢} is monochromatic
under ¥, a contradiction.

If B has one of the colorings ¢’ or 7, then x(4c) = x(7c+1) =1.
Hence, x(c — 1) = 0. It follows that {c — 1,3¢,5c + 1} has color 0, a
contradiction.

The remaining possibilities for coloring B are 7’ and p. For each
of these cases, x(2¢ + 1) = x(5¢) = 1, so that x(8¢c — 1) = 0. This
implies that {4c+ 1, 6c,8¢c — 1} is monochromatic under x and its gap
is at least ¢; again a contradiction.

To complete Case 1, now assume that A has color pattern pu.

If B has any of the color patterns o, 7/, or u, then x(3c) =

x(5c+ 1) = 1. Therefore, we must have y(c — 1) = 0 (by the validity
of x). This implies that {¢ — 1,2¢, 3¢ + 1} is monochromatic, which
is not possible. If B has either of the color patterns ¢’ or u/, then
x(c) = x(6c + 1) = 1, which implies that x (¢ + 1) = 0; but then
{2¢,Zc+ 1,5¢+ 1} has color 0, a contradiction. Finally, if B has
color pattern 7, then since x(3c¢) = x(4c + 1) = 1, we must have
X(2¢ — 1) = 0; but then {2¢ — 1,4c¢,6¢c + 1} is monochromatic, again
a contradiction.
Case 2. cis even. This case has a very similar proof to that of Case
1, the main difference being that instead of using the set B, we use
C ={2,¢+2,2¢+2,...,7c+2}. We shall work out two of the subcases
and leave the other subcases as Exercise 4.9.

Subcase i. A has color pattern 7 and C has color pattern o. In
this case, x(c +2) = x(8¢) = 1, so that x($c+ 1) = 0. This then
implies that {2c+ 2, %c+1,7c} must be monochromatic, which is
not possible.

Subcase ii. A has color pattern 7 and C has one of the color patterns
o’ or 7. In this case, x(4c) = x(7c+2) = 1, and therefore x(c—2) =0
(by assumption, ¢ — 2 > 1). Thus, all members of {¢ — 2, 3¢, 5¢ + 2}
have color 0, a contradiction. O

We are now ready to prove the theorem which shows that for all
¢ > 2, X, 3,2) is the only (¢, 3)-valid coloring of [1, 8.
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Theorem 4.17. Let ¢ > 2, and assume that x is a (c, 3)-valid 2-
coloring of [1,8¢c] with x(1) = 1. Then x = A(c,3,2).

Proof. We can show that the theorem is true for ¢ = 2 directly by
checking that A(2,3,2) = 1111000011110000 is the only (2, 3)-valid
2-coloring of [1,16] (we leave this to the reader as Exercise 4.10).

Now let ¢ > 3 and let x be any (c, 3)-valid 2-coloring of [1,8¢]
such that x(c) = 1. To complete the proof, it is sufficient to show
that for each i = 1,2,...,c,

(4.5) A;={(j —1)c+i:1<j <8} has color scheme 11001100.

We know from Lemma 4.16 that (4.5) is true for ¢ = ¢, so let
us assume that ¢ € {1,2,...,¢— 1}. Let x; be the coloring of [1, 8]
defined by x;(j) = x((j — 1)e +¢). By Lemma 4.15, x; is (1, 3)-valid
on [1,8]. Therefore x; has one of the color patterns o, o/, 7, 7/, p, p'.
Hence, we will complete the proof if we can show that A; does not
have any of the color patterns ¢’, 7, 7/, , or /. We shall do this by
contradiction.

First, assume A; has one of the color patterns o', 7, or u. Then
x(c+1i) = x(3¢) =0, so x(bc — i) = 1. Hence, {5¢ — i,6¢,Tc + i} is
monochromatic, contradicting the (c, 3)-validity of x.

Next, assume A; has the color pattern 7/. Then x(2¢ + i) =
x(5¢) = 1, implying that x(8¢—14) = 0. This gives the monochromatic
arithmetic progression {4, 4c, 8¢ — i}, a contradiction.

Finally, assume A; has the pattern p/. In this case, x(i) =
X(4c) = 0, which implies that {3¢ + i,5¢, 7c — i} is monochromatic,
again impossible. O

In the above discussion, for some constant ¢, the gaps in the
arithmetic progressions are required to be no less than ¢. We can
generalize this type of restriction if, instead of choosing ¢ to be the
same constant for all arithmetic progressions, the value of this mini-
mum gap size is dependent on the particular arithmetic progression.
Specifically, given a function f : Z* — R*, define w'(f(z),k;r) to
be the least positive integer w’, if it exists, such that for every r-
coloring of [1,w'] there is a monochromatic k-term arithmetic pro-
gression {a,a+d,...,a+(k—1)d} with d > f(a). Hence, the function

4.2. Infinite Gap Sets 117

—

w' (¢, k; r) represents the special case of w’(f(x), k;r) in which f is the
constant function c.

Example 4.18. Let f(z) = z2. Here we are interested in the collec-
tion of arithmetic progressions that consists of all those whose first
term is 1, those whose first term is 2 with gap at least 4, those whose
first term is 3 with gap at least 9, etc. Hence, for w'(f(x),3;7) we
would not consider progressions such as {2,3,4}, {2,4,6}, {2,5,8},
and {3,11, 19}, but would consider those such as {2, 6,10}, {2,7,12},
{3,12,21}, {3,13,23}, and {4, 20, 36}.

Definition 4.19. Let f be a function defined on the positive integers.
If X = {a,a+d,...,a+(k—1)d} is an arithmetic progression such that
d > f(a), we shall call X an f-a.p. Further, if an r-coloring avoids
monochromatic k-term f-a.p.’s, we will say that it is (f, k;r)-valid,
or just (f, k)-valid if r = 2.

The existence of w'(c, k;r) is a direct consequence of van der
Waerden’s theorem. As we can see, for many choices of f(x), there is
a much greater restriction placed on the arithmetic progressions than

“there is if we are only requiring that the gap be at least c. Hence, as

you might guess, the existence of w’(f(x), k;r) is not as easy to show.
In fact, as we shall see, for many functions f(x) it does not exist.

For 2-term arithmetic progressions, the question of the existence
of w'(f(z),k;r) is relatively easy to answer. According to the next
theorem, not only does it always exist, but we are able to give a precise
formula for its value. For the purpose of keeping the statement of the
theorem as simple as possible, we will assume that f is integer-valued;
however, it is easy to see that w'(f(z),2;r) will still exist in the more
general case.

Before stating the theorem we remind the reader of the following
notation.
Notation. If ¢ is a function, we denote by ¢(")(z) the n*® iterate of
g (or the composition of g with itself n times). That is,

9P () = g(g(x)), 9@ (x) = g(g(g(x))), etc.

Also, we define g (a) to equal a (that is, g(*) is the identity function).
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Theorem 4.20. Let f : ZT — Z% be a nondecreasing function. Let
9(z) = f(2) + 2. Then w'(f(z),2;r) = g (1).

Before delving into the proof, we look at why the existence of
w'(f(x),2;r) is not surprising. Obviously, for any r-coloring of Z*,
some color must occur an infinite number of times. Hence, if integer
z is colored with this color, then clearly there is another integer y of
the same color such that y — z > f(z) for any function f.

Proof of Theorem 4.20. To show that g(")(1) is an upper bound,
let x be any r-coloring of [1,¢(™(1)). Applying the pigeonhole prin-
ciple, we see that there exist two members of the (r + 1)-element set
{1,9(1), 9@ (1),..., g (1)} that have the same color. Say

x(gP (1)) = x(g9 (1)),
where 0 < i < j < r. Since

(4.6)  ¢9(1) - g (1) 2 g (1) - gD (1) = £(gP (1)),

{g@(1),¢9(1)} is a 2-term monochromatic f-a.p. This proves the
upper bound.

To show that g(™)(1) is also a lower bound for w'(f(z),2;r), we
give a 2-coloring of [1,¢(")(1) — 1] that has no monochromatic pair
{a,a + d} with d > f(a). Note that by (4.6), for each i = 1,2,...,r,
the interval A; = [g(*"V(1),¢)(1) — 1] is not empty. Now define
X(A;) =i for each ¢ = 1,2,...,7. By (4.6), no two members of 4,
differ by more than f(g(*=")(1))—1. Since f is nondecreasing, for each
i there does not exist {a,a + d} € A; with d > f(a). This completes
the proof. O

We now consider the existence of w’(f(z),3;2) when f is a func-
tion from Z* to R*. The next theorem shows that w'(f(z),3;2)
always exists.

Theorem 4.21. For any function f : Z+ — RY, w'(f(x),3;2) < oco.

Proof. Obviously, if the theorem is true for a function f; and if
fi(z) > fa(x) for all z € ZT, then the theorem is also true for fs.
Hence, there is no loss of generality if we assume that f is a nonde-
creasing function.
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We will show that for every 2-coloring of Z* there is a monochro-
matic 3-term arithmetic progression of the desired type. The theorem
then follows by the Compactness Principle (see Section 2.1).

Let x be a 2-coloring of Z*. We can think of x as a sequence of
0’s and 1’s: x = x(1)x(2)x(3).... We consider two cases.
Case 1. X does not include infinitely many copies of the pattern 001
or the pattern 110 (i.e., there do not exist infinitely many ¢ such that
x(t) = x(t + 1) and x(t) # x(t + 2)). In this case, there is some n so
that x(n)x(n + 1)x(n+2)... is one of the infinite binary sequences
000 ..., 111 ..., 0r 101010 ... . For each of these three possibilities,
there is obviously a 3-term arithmetic progression whose first term is
n and whose gap is at least f(n).

Case 2. One of the patterns 001 or 110 occurs infinitely often. With-
out loss of generality, say there are infinitely many occurrences of
001. Let x(a) = 0, x(a+1) = 0, and x(a +2) = 1 be one of
these occurrences. Then there exists another occurrence, x(b) = 0,
x(b+1) =0, and x(b+ 2) = 1, where b — a > f(a + 2) (otherwise
there would not be infinitely many occurrences of 001). Let d = b—a.
So {a,a+1,a+d,a+ d+ 1} has color 0, and {a +2,a +d + 2} has
color 1.

If x(a+2d+2) =1, then {a +2,a+d+2,a+2d + 2} is a
monochromatic arithmetic progression with gap d > f(a + 2). If
x(a+2d+2) =0, then {a,a+d+1,a+2d+ 2} is a monochromatic
arithmetic progression with gap d +1 > f(a +2) > f(a).

In both cases we have produced the desired type of arithmetic
progression. O

The following theorem, which also tells us that w'(f(z), 3;2) ex-
ists, is more useful than Theorem 4.21 because it provides more in-
formation about the magnitude of w'(f(x),3;2). We do not include
the proof.

Theorem 4.22. Let f : ZT — RT be a nondecreasing function. Let
B=1+4[L1]. Then

W (f(2),3:2) < [4f‘(g+ 4 [f_(f_)D 1 {f(QB)] 5 13} |
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Theorem 4.22 gives an upper bound for w’'(f(z),3;2). The next
theorem provides a lower bound. To keep the notation simpler, we
assume f : ZT — Z%, although a more general result can be obtained
by the same method of proof.

Theorem 4.23. Let f : Zt — Z* be a nondecreasing function with
f(n) >n for allm e Z*. Let h =2f(1) + 1. Then

w'(f(x),3;2) > 8f(h) +2h+2—1t,

where t is the largest integer such that f(t) +t <4f(h)+h+1.

Proof. Let m = 8f(h) + 2h + 1 —t. To prove the theorem we shall
give a 2-coloring of [1,m] under which there is no monochromatic
3-term f-a.p.

We begin by partitioning [1, m] into the following four intervals:

5L =[1,h-1],

I = [h,2f(h) + h — 1],

Iy = [2£(h) + b, 4F (h) + ],
Iy = [4f(h)+ h+1,m].

Now define the 2-coloring x on [1,m] as follows: let x(I; Ul3) =1
and x(I, U Iy) =0.

Assume that there is a monochromatic 3-term arithmetic progres-
sion P = {a,b,c} withd =b—a =c—b > f(a). Since x(a) = x(b), we
have the following six cases, each of which leads to a contradiction.
Case 1. a,be€ I;. Then d < h — 2, and therefore c=b+d < 2h — 3.
Also, since d > f(1), we have ¢ > 1+ 2f(1) = h. Thus, ¢ € I3, which
contradicts the fact that P is monochromatic.

Case 2. a € I; and b € I3. In this case d > 2f(h) + 1, and therefore
¢ > 4f(h) + h+ 1. This implies x(c) = 0, a contradiction.

Case 3. a,b € I3. Then ¢ > a+ 2f(a) > 3a > 6f(h) + 3h, and
therefore x(c) = 0, so P is not monochromatic.

Case 4. a,b € I. In this case we have d < 2f(h) — 1, and hence
c<b+2f(h)—1<4f(h)+h—2. Also, ¢ > a+2f(a) > h+2f(h).
So ¢ € I3, a contradiction.
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Case 5. a € I3, b € Iy. Then d > 4f(h) + h + 1 — a, which implies
¢ > 8f(h) +2h + 2 — a. Thus, from the definition of m, it must be
the case that a >t + 1. Hence, by the meaning of t,
¢ 2a+2f(a)

>t+142f(t+1)

>4f(h)+h+1+ f(t+1)

>8f(h)+2h+2—(t+1)=m,
which is not possible.
Case 6. a,b € Iy. Then ¢ > a + 2f(a) > 3a > m, which is not
possible. O

Example 4.24. It is not hard to compute bounds based on The-
orems 4.22 and 4.23 for the function f(z) = x + ¢, where c is a
nonnegative integer. If ¢ is odd, we obtain

$(43c+49) < w'(z +¢,3;2) < 64c+ 61.

Similar bounds may be obtained if ¢ is even; we leave this as Exercise
4.11.

By the next theorem, we can improve upon the upper bound that
is supplied by Theorem 4.22 for w’(z+c¢, 3;2). The proof makes use of
the fact that w'(z, 3;2) = 24; this and some other computer-generated
values are presented in the following table.

[fx) [[v'(f(=),3;2)) ]

T 24
r+1 46
T+2 67
T+ 3 89
x+4 110
z+5 132
2x 77
2z +1 114

Table 4.1: Values of w'(f(z),3;2)

Interestingly, every one of these values agrees exactly with the
lower bound given by Theorem 4.23.
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Theorem 4.25. Let ¢ be a nonnegative integer. Then
4
;c+24+6 <w'(z+¢,3;2) < 23¢+ 24,
where § = 0 if ¢ is even and § = 3 if c is odd.

Proof. The lower bound follows immediately from Example 4.24.
For the upper bound, let x be any 2-coloring of [1,23c+24]. Let x’ be
the 2-coloring of [1,24] defined by x’(i) = x((c+1)(i—1)+1). Since, as
noted above, w'(x, 3;2) = 24, under y’ there exists a monochromatic
arithmetic progression {a,a + d,a + 2d} with d > a. Therefore

{e+D(@a-1)+1,(c+)(a+d—-1)+1,(c+1)(a+2d— 1) +1}
is an arithmetic progression that is monochromatic under X with a
gap that is no less than (¢ + 1)a = (c+ 1)(a — 1) + 1 + ¢. Hence, it

is a monochromatic f-a.p. where f(x) = x + ¢, which establishes the
upper bound. O

We know from Theorem 4.21 that w'(f(x), 3;2) always exists. In
contrast, w'(f(x),4;2) does not always exist; in fact, it only exists if
f is a rather slowly growing function. The situation is similar when
more than two colors are used, even for 3-term arithmetic progres-
sions. The details are found in the following theorem.

Theorem 4.26. For k>3 and r > 2, let
V2 -1
k-1
If k>4 orr >3, then w'(cx, k;r) does not exist.

C =

Proof. Assume k > 4 orr > 3 and let b = "V2. To prove the
theorem, we give an r-coloring of Z* for which there does not exist a
monochromatic arithmetic progression {a + jd:0 < j < k — 1} with
d > ca.

Let x : Z* — {0,1,...r — 1} be defined as follows. Whenever
€ € B; = [b",b**" — 1], where i is a nonnegative integer, let x(z) = 7
where i =7(mod r) and 0 <7< r — 1.

Let us assume that {a,a+d,...,a+ (k — 1)d} is monochromatic

under x. We will complete the proof by showing that d must be less
than ca. Let n be such that b < a+d < b**!. Then since d < bl
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we know that a + 2d < 2b™*! = p"*+". Since x(a + 2d) = x(a + d),
the only B; that a + 2d can belong to is By,.

Now let us look at a + 3d. Since a + 2d € B,,, we have
a+3d=(a+2d)+d< 26" =p"1T.

Since x(a + 3d) = x(a + d), this implies b < a+d < a+ 3d < b"+1,
so that a + 3d € B,,.

We see that by applying this same line of reasoning, we will obtain
a+4d,a+5d,...,a+ (k—1)d € B,. Since

V*<a+d<a+(k-1)d <™,

we have
bn+l__bn
d<————k_2
Thus,
b—-1 b
n o__ n S N n—(r—l)'
a>b"—d>b (1 k—2>—2 b

Since x(a) = x(a + d), it follows that a € B,,.

We have shown that b* < a < a+ (k — 1)d < b"*?, so that
bn+1 —_pn
d< ————— =cb" < ca.
< 1 cb” <
Thus, we have shown that there is no monochromatic k-term arith-
metic progression {a + jd : 0 < j < k — 1} whose gap is at least ca,
thereby proving the theorem. O

For the case in which r = 2, the following theorem, which we offer
without proof, improves upon Theorem 4.26.

Theorem 4.27. Let k > 4. Then

’ x
LS
v <k2—4k+3’ ’ )

does not exist.

Theorems 4.11, 4.13, 4.17, 4.20-4.23, 4.26 and 4.27 deal with
van der Waerden-type problems in which the set of allowable gaps is
restricted by insisting that the gaps exceed a certain value. In par-
ticular, in Theorems 4.11, 4.13, and 4.17 we restricted the allowable
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gaps to belong to sets of the form D = {c,c+1,¢+2,...} for a fixed
positive integer ¢, and found, among other things, that in this case
the associated van der Waerden-type numbers always exist. There
are, of course, other ways to restrict the set of allowable gaps and ask
if the corresponding van der Waerden-type function exists. It would
be very nice if we could characterize which sets D have the property
that R(Ap,k;r) exists for all k and r. Such a characterization is
not known. However, we will give a partial answer by addressing the
following questions:

1. What general properties must a set D have in
order for R(Ap, k;r) to exist for all k and r?;

2. Are there any properties that preclude Ap from
having this property?

It will be convenient to introduce some terminology.

Definition 4.28. Let D C Z™. For a fixed positive integer r, we say
that D is r-large if R(Ap,k;r) exists for all k. We call D large if it
is r-large for all r > 1.

Note that if s > r, then any set that is s-large must also be
r-large.

Let us consider Question 1 above. That is, what properties are
necessary for D to be large? One such property is fairly easy to prove.
We state it in the following theorem. Note that the theorem gives a
condition that is necessary in order for a set to be 2-large. By the
previous paragraph, it is also a necessary condition in order for the
set to be large.

Theorem 4.29. If D is 2-large, then for each positive integer m, D
contains a multiple of m.

Proof. Assume that D is a set not containing a multiple of every
positive integer. Let n € Z* be such that D contains no multiple of
n. The proof is completed by showing that D is not 2-large, i.e., that
there is a 2-coloring of Z* under which there do not exist arbitrarily
long monochromatic arithmetic progressions with gap belonging to
D. This may be done by an argument that is essentially the same
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as the proof of Theorem 4.4; we leave the details to the reader as
Exercise 4.16. O

Note that the condition of Theorem 4.29 — that D must contain
a multiple of every positive integer — is equivalent to the stronger-
sounding condition that D must contain an infinite number of multi-
ples of every positive integer.

As it turns out, a sequence of positive integers that grows too
fast cannot be large. Here is one result along these lines. For other
interesting results of this type, we refer the reader to the references
given in Section 4.5.

Theorem 4.30. Let D = {d;}32, be an increasing sequence of posi-
tive integers such that d; divides d; 1 for alli. Then D is not 2-large.

Proof. Define a 2-coloring x : Z* — {0,1} recursively as follows.
First, for all z € [1,d;] let x(z) = 1. Once x has been defined on
[1,d;], we extend x to [1,d;11] by having x(x) # x(z — d;) for each
x e [d, + l’di—i-l]-

To complete the proof we will show that for each i > 1 and each
J 21, there is no 3-term monochromatic d;-a.p. contained in [1,d;].

First note that, by the way x is defined on each of the intervals
[d; + 1,d;41], for every i > 1 there can be no 2-term monochromatic
d;-a.p. contained in [1,d;41].

Now assume that j > i+ 2 and that £; < z3 < z3 is a monochro-
matic d;-a.p. that is contained in [1,d;]. Since d;1; divides d;, by
the way x is defined we see that every subinterval of [1,d;] of the
form [kd; 41 +1, (k+1)dit1], k > 1, either has the same color pattern
as [1,d;11], or has the pattern obtainable from that of [1,d;;;] by
replacing all 1’s by 0’s and vice versa. Hence, since there is no 2-term
monochromatic d;-a.p. in [1,d;11], neither of the pairs {z1,z5} or
{2, 23} can be contained in any one interval [kd;11 + 1, (k + 1)d;41].
This implies that z3 — z; > d;y1, and hence z3 — z; > 2d;, which
contradicts the fact that {z,,z2, 23} is a d;-a.p.. O

Example 4.31. Let G = {a,ar,ar? ar®, ...} be an infinite geomet-
ric sequence. Then R(Ag, k;2) does not exist for large enough k. In
other words, there exists a 2-coloring of Z* that does not have, for
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some k, a monochromatic k-term arithmetic progression with differ-
ence from G.

We now shift our attention to finding sufficient conditions for
a set to be large. We begin with a very useful theorem that tells
us that if a union of a finite number of sets is large, then at least
one of the sets itself must be large. This theorem is itself a Ramsey
theorem in the sense in which we described Ramsey theory in Chapter
1: Ramsey theory is the study of the preservation of properties under
set partition. That is, this theorem states that if we have a set that
is large, and if we partition this set into n subsets, then one of the
subsets must be a large set, i.e., if we n-color a large set, then there
must exist a monochromatic large subset.

Theorem 4.32. Let D be a large set, and let n > 1. If
D=DyUDyU---UD,,

then some D; is large.

Proof. We will prove the theorem for n = 2. It is then a simple
induction argument to extend it to general n. Let D = D; U D5, and
assume that neither D; nor D, is large. We will prove the theorem
by showing that D is not large.

Since D; is not large, there exist positive integers k; and r, and
some r-coloring x of Z*, under which there is no monochromatic k;-
term D;-a.p. Similarly, there exist positive integers ky and s, and an
s-coloring ¢ of Z*, under which there is no monochromatic ko-term
Ds-a.p.

Now, let o to be the rs-coloring of Z given by (i) = (x(4), ¢(i)).
Thus, the “colors” of o consist of all ordered pairs whose first coordi-
nate is one of the r colors of x and whose second coordinate is one of
the s colors of ¢. Let k = max{ki,k2}. To show that D is not large
it will suffice to show that if P is any k-term arithmetic progression
that is monochromatic under o, then the gap of P does not belong
to D.

Let P = {®1,z2,...,2x} be an arithmetic progression that is
monochromatic under 0. Then x(z1) = x(z2) = - -+ = x(xx). Hence,
by our assumptions about x and the fact that k > k;, the gap of P
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cannot belong to D;. Similarly, ¢(z;) = ¢(z2) = -+ = @(xx), which
implies that the gap of P cannot belong to D;. Hence the gap of
P does not belong to D; U Dy. Since D = D; U Dy, the proof is
complete. O

The following fact is an immediate consequence of Theorems 4.4
and 4.32.

Corollary 4.33. Let D be large, and F be finite. Then D — F is
large.

Note that the proof of Theorem 4.32 actually tells us more than
the statement of the theorem. It says that if D; is not r-large, and
if Dy is not s-large, then D; U Dy is not rs-large. Extending this
statement to n sets, it tells us that if, for each 7 = 1,2,...,n, D; is
not r;-large, then Dy U Dy U---UD,, is not ryry - - - ry-large. Looking
at the contrapositive of this, and speaking in somewhat more general
terms, it describes a way of going from a set that has a certain degree
of largeness, to a subset of the set that has another (smaller) degree of
largeness (that is, going from ry7s - - - 7,-largeness to the r;-largeness
of D; for some 7). On the other hand, it is generally more difficult to
prove results that involve showing that the r-largeness of a certain set
implies the r-largeness of a proper subset of that set. One such result
that is relatively easy to prove, however, is the following refinement
of the above corollary.

Theorem 4.34. Let r be a positive integer, and assume D 1is r-large.
If F is finite, then D — F 1is r-large.

Proof. It is sufficient to show that for every d € D, the set D — {d}
is r-large (why?). We shall do this by contradiction. So assume
that dy € D, and that D — {dp} is not r-large. Thus, there exist
an r-coloring x of Z*, and a positive integer k, such that under x
there is no monochromatic k-term arithmetic progression whose gap
belongs to D — {dp}. Since D is r-large, this implies that under y
there are arbitrarily long monochromatic dy-a.p.’s. By Theorem 4.29,
mdy € D for some m > 2. It is clear that under x there are arbitrarily
long monochromatic mdp-a.p.’s. Since mdy € D — {do}, we have a
contradiction. O
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In this text we are limiting our methods to what are considered
elementary in the sense that we are relying on the basic techniques of
combinatorics and number theory on the set of integers. Some very
useful and powerful theorems in Ramsey theory have also been proven
by entirely different techniques. For example, several important im-
provements over van der Waerden’s original theorem have been found
by the use of ergodic theory and the methods of measure-preserving
systems. These are very deep results, and we will not be including
any of their proofs here, but we would like to mention at least one
important special case of one of these results, which we shall phrase
in the language of large sets.

Theorem 4.35. Let p(z) be a polynomial with integer coefficients,
with positive leading coefficient, and whose constant term is 0. Then
{p(i) >0:i € Z*} is large.

Theorem 4.35 tells us that the range of any polynomial with the
stated conditions gives us a large set. Denoting, for a polynomial
f, the set {f(z) : = € ZT} by range(f), we see, for example, that
range(p) is large when p(z) = z2. That is, {12,22,32,...} is a large
set. Even a set as sparse as {z1%%0 : z € Z*} is large.

Theorem 4.35 is a generalization of van der Waerden’s theorem,
because van der Waerden’s theorem tells us that Z7* itself is large,
which may be considered as the range of the polynomial f(z) = =z,
x € Zr.

One hypothesis of Theorem 4.35 is that the constant term of
p(z) equals 0, i.e., that z|p(z). We may extend Theorem 4.35 to
polynomials with any linear factor « + a, where a is an integer, as
given by the following corollary.

Corollary 4.36. Let p(x) be a polynomial with integer coefficients,
with leading coefficient positive, and such that x + a divides p(x) for
some integer a. Then {p(i) :i € Z*} is large.

Proof. Let p(z) = (z + a)q(x), and let p(xz) = p(z —- a). Then
p(z) = zq(x —a).

By Theorem 4.35, range(p) N Z* is large. If a < 0, then we have
range(p) C range(p), and therefore range(p) N Z* is large. If a > 0,
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then range(p) = range(p) — F, where F is a finite set, and hence by
Corollary 4.33, range(p) N Z™ is large. O

There are some other interesting results, both positive and nega-
tive, concerning monochromatic arithmetic progressions that satisfy
certain properties. We mention these in Section 4.5.

4.3. Exercises

4.1 Show that if |D| = 1, then R(Ap,2;2) = oo, by exhibiting a
specific 2-coloring of the positive integers.

4.2 Let s be a positive integer. Prove that if R(Ap, k;2) is finite,
then

R(Asp,k;2) = s|[R(Ap, k;2) — 1] + 1;
and that if R(Ap, k;2) = oo, then R(A,p, k;2) = oo.

4.3 Fill in the details of the proof of Case 2 of Theorem 4.8 (i.e.,
explain why there is no 4-term monochromatic a-a.p., no 3-
term monochromatic b-a.p., and no 3-term monochromatic
c-a.p.).

4.4 Define w((dy,d2), k1,k2) to be the least positive integer n
such that for every 2-coloring of [1,n] there is either a mono-
chromatic ki-term arithmetic progression whose gap is d;, or

a monochromatic kp-term arithmetic progression whose gap
is dy. Prove that for all dg, ko > 2,
w((l,dg), 2, kQ) = dz(kz — 1) + 1.

4.5 In this exercise, we extend the notation of Exercise 4.4 above
by denoting by w((d1, d2,ds), k1, k2, k3) the least positive in-
teger n such that for every 2-coloring of [1,n] there is some
i € {1,2,3} such that there is a k;-term monochromatic arith-
metic progression with gap d;. Let g = ged(d,dz), and as-
sume that exactly one of the numbers %L and d—gl is even.

a) Use Theorem 4.7 to prove that

w((dl,dz,d3),2,2,3) < d1 +d2 —g+ 1.
b) Assuming further that d3 = max{di, dz, ds}, prove that
w((dy,dz,d3),2,2,3) =dy +dy —g+1.
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4.6 Using the notation of Exercise 4.5, prove that
’w((l,dz,dg), 2, k2, k‘3) = (k‘g - 1)d2 +1
if exactly one of dy and ds is odd.
4.7 Prove Corollary 4.10.
4.8 Complete the proof of Theorem 4.13.
4.9 Complete the proof of Case 2 of Lemma, 4.16.
4.10 Let x be a (2, 3)-valid 2-coloring of [1,16] with x(1) = 1. Show
that x = 1111000011110000. Do this by direct computation;
do not use Theorem 4.17.
4.11 Finish Example 4.24 for the case when c is even.
4.12 Use Theorems 4.22 and 4.23 to find upper and lower bounds
for w'(mz, 3;2) if m is an odd integer and m > 3.
4.13 Use the method employed in the proof of Theorem 4.25 to
prove that for any positive integer b,
w'(bz + be, 3;2) < (w'(bx, 3;2) — 1)c + w'(bz, 3;2).
4.14 Tt is known that w'(2z, 3;2) = 77. Use this to find an upper
bound for w'(2(z + ¢), 3;2) in terms of c.
4.15 Prove that for all k and 7,
, x
———— k7 | = w(k;
v (w(k;r)—k—l—l’ ’T) wiksr),
so that there is at least some constant ¢ = c(k;) such that
w'(cz, k;r) exists (w(k;r) here represents the ordinary van
der Waerden function).
4.16 Complete the proof of Theorem 4.29.
4.17 Prove that if D is large, and m is a positive integer, then mD
is large.
4.18 Prove that if D is large and m is a positive integer, then
D — {z:m¢tz} is large.
4.19 Let us call a set of positive integers “small” if it is not large.

Must the complement (with respect to Z*) of a small set be
large? Must the complement of a large set be small?
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4.20 Prove: if D is r-large, and if all elements of D are multiples

of the positive integer m, then ;;—D is r-large. Hence if D is
large, then LD is large.

4.4. Research Problems

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Do a more complete study of R(Ap, k;2). In particular, de-
fine m = m(n) to be the least positive integer such that for
all D with |D| = n, R(Ap,m;2) = co. By the work dis-
cussed in this chapter, we know that m(1) = 2, m(2) = 3,
and m(3) = 3 or 4. Determine the exact value of m(3) (it
has been conjectured that m(3) = 3).

Reference: [164)]

Using the notation of Research Problem 4.1, find an upper
bound on m(n) as a function of n. In particular, is it true
that m(n) < n for all n?

Reference: [164]

Using the notation of Exercises 4.4-4.6, characterize those
triples (di, da,ds) for which w((ds,ds,d3),2,3,3) < co.
Reference: [164]

Find a formula for w((d1, d2,d3), 2,2, 3) (see Exercise 4.5).
Reference: [164]

Prove or disprove: the lower bound of Theorem 4.25 is the
precise value of w’(z+¢, k; 2) (computer output suggests that
this may well be the precise value; see Table 4.1).

Reference: [64]

It is known that there is a function f(z) that tends to infinity
as z goes to infinity, such that for each r, w'(f(z), k; r) exists
for all k. This function grows very slowly (something like
an inverse of the classical van der Waerden function w(k;r)).
Try to find a faster growing function that still has this prop-
erty.

References: (53], [64]

Find results analogous to Theorem 4.11 or 4.17 for w'(c, 4; 2)
or w'(c, 3; 3).

Reference: [64)]
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4.8

4.9

4.10

4.11

Let A(k;r) be the set of all positive real numbers a such
that w'(az, k; ) < oo. It has been discovered that w'(§,4;2)
exists (it happens to equal 134), so that : € A(4;2). As
noted in this chapter, w’(§,4;2) does not exist. Thus, letting
B(k;r) denote sup{a : a € A(k;r)} we have 1 < 8(4;2) < 3.
Find the exact value of 3(4;2), or improve its bounds. Do
the same for 5(3;3) (it is known that %= < B(3;3) < —‘/%:l)
and for 3(3;4) (here it is known that 7 < 3(3;4) < @)
Reference: [64]

The following is known: if w'(c, k;2) = 2¢(k—1)2+1 and j is
a positive integer, then w’(jc, k; 2) = 2jc(k—1)2. It would be
desirable to know if the following stronger statement holds:
if w'(c,k;2) =2c(k—1)2+ 1 and m € Z*, then

w'(c+m,k;2) =2(c+m)(k—1)2+ 1.

References: [64], [165]

Theorem 4.27 prompts us to ask whether the fastest growing
function f, such that w'(f(z), k;2) exists for large enough k,
must grow like the function 5. If we cannot answer this, or if
the answer is no, then one might try to answer the following
question: does w'(5%, k; 2) exist for k large enough? Writing a
computer program to calculate various values of w'(f(x), k; 2)
is likely to be a big help with these types of questions.

Reference: [64]

Theorem 4.32 says that if a finite union of sets is large, then
at least one of the sets must be large. Is the same true if
we replace the word “large” with “r-large?” In particular,
is it true that if D U F is 2-large, then either D or F must
be 2-large? The proof of Theorem 4.32 shows that if D is
not 2-large and E is not 2-large, then D U F is not 4-large,
but it does not tell us about the 2-largeness or 3-largeness of
DUE. It follows from Theorems 4.29 and 4.30 that neither
{2n—=1:n € Z*} nor {n!: n € Z*} is 2-large. Hence, the
union of these two sets is not 4-large. Is the union 2-large?
3-large?

Reference: [62]
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4.12 Which sets B have the property that some translation of B
is large? In other words, for which sets B does there exist
an integer ¢ such that D = B+t = {b+1t : b € B} is
large? By Theorem 4.35, the range of a polynomial with
integer coefficients and positive leading coeflicient has this
property, because if f(z) is the polynomial, then f(x)— f(0)
is a polynomial with a zero constant term.

References: [62], [65]

4.13 Let p(z) be any polynomial with integer coefficients, positive
leading coeflicient, and p(0) = 0, and let D be a large set.
Determine if {p(d) : d € D} must be large? In particular,
must {d? : d € D} be large?

References: [62], [65]

4.14 For m a positive integer and 0 < a < m, denote by S, () the
set of all arithmetic progressions whose gaps are not congru-
ent to a (mod m). Do a study of R(Sy(m), k;7).

References: [64], [65], [160]

- 4.5. References

§4.1. Theorems 4.7 and 4.8 are found in [164]. More generally,
[164] considers the function 'w(d_: E), where d = (d1,ds,...,d,) and
k= (k1,ka, ..., kn), defined as the least positive integer m such that
‘ for every 2-coloring of [1, m] there will be, for some 4, a monochromatic
k;-term d;-a.p.
§4.2. The proof of Theorem 4.11 is from [165]. Theorems 4.13, 4.17,
4.20-4.23, and 4.25-4.27 come from [64], which also gives a result
that is slightly more general than Theorem 4.9. Several conjectures,
and some evidence for them, are also found in [64]. The proofs of
Theorems 4.29, 4.30, 4.32, 4.34, and Corollary 4.36 are found in [62],
along with some other conditions that are necessary, or are sufficient,
for a set to be large. For instance, if there exists € > 0 such that
the ratio d—jf,—‘ exceeds 1 + ¢ (asymptotically), then {d; : ¢ > 1} is not
large. Some examples and questions are also presented in [62]. Some
additional results and examples on large sets are given in [151]. The-
orem 4.35 is a special case of a result due to Bergelson and Leibman
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[33]. They employ methods of ergodic theory and measure theory.
Extensions of this, and related results, may be found in [112], [113],
[114], [115], [185], and [233]. See (28] and [184] for excellent ex-
tensive surveys of work in ergodic Ramsey theory. Walters [272]
provides a combinatorial proof of the polynomial extensions of van
der Waerden’s theorem due to Bergelson and Leibman.

§4.3. Exercises 4.4-4.6 come from [164]. Exercise 4.14 is from [64].
Exercises 4.17-4.20 are from [62].

§4.4. Research Problems 4.1-4.4 come from [164]. Research Prob-
lems 4.5-4.10 are discussed in [64], and 4.11-4.13 are from [62].

Additional References: Brown [53] finds a 2-coloring of Z* and a
function h such that if P = {a,a+d,...a+(k—1)d} is monochromatic
then k¥ < min{h(a),h(d)}. That is, in order to have the van der
Waerden property hold, we cannot require d or a to be too small as
a function of k£ (one corollary of this is Theorem 4.4). Other work
along these lines is done in [21] and [152]. This general problem
is mentioned in the excellent monograph of Erdés and Graham [92,
p. 17]; several other intriguing problems concerning monochromatic
arithmetic progressions are discussed in Chapter 2 of [92].

Chapter 5

Other Generalizations of
w(k;T)

In Chapter 3 we looked at ways of generalizing the van der Waerden
function w(k;r) by using supersets of the family of arithmetic pro-
gressions. Thus, we ended up with functions, such as @, (k), which,
under special circumstances (in this case when n = 0), coincide with
the classical van der Waerden function itself. In this chapter we will
consider the Ramsey-type functions for some other generalizations
of arithmetic progressions, constructed by introducing other param-
eters, so that the number w(k;r) is a special case of a more general
function.

5.1. Sequences of Type z,azx + d, bx + 2d

In this section we consider the following generalization of a 3-term
arithmetic progression.

Definition 5.1. Let a < b be fixed positive integers. An (a,b)-triple
is any set {z,ax + d, bz + 2d}, where x and d are positive integers.

It is clear from the definition that we have a generalization of
3-term arithmetic progressions: (z,y,z2) is a 3-term arithmetic pro-
gression if and only if it is a (1,1)-triple. As further examples, {1, 3,8}

135



136 5. Other Generalizations of w(k;r)

is a (1,4)-triple (with z = 1 and d = 2), {2,7,10} is a (3,4)-triple (with
d=1), and {1,3,4} is a (2,2)-triple (with d = 1).

Notation. Denote by Tj ; the set of all (a,b)-triples. Since in this
discussion we shall be dealing only with sets of size three, for ease
of notation, we shall denote the Ramsey-type function R(T,p,k;r)
more simply as T'(a, b; 7).

We see that 7'(1,1;7) has the same meaning as w(3;r). Thus,
from the known exact values of w(k;r), we have T(1,1;2) = 9,
T(1,1;3) = 27, and T(1,1;4) = 76. However, the existence of
T(a,b;r) for the general pair (a,b) would not seem to follow from
van der Waerden’s theorem. In fact, as we shall see, T'(a, b;r) does
not always exist. We seek to answer two natural questions:

1. For which values of a, b, and r does T(a,b;r)
exist?

2. When it does exist, what can we say about the
value of T'(a, b;r)?

One case for which we are able to give a rather complete answer
to these questions is that in which b = 2a — 1 and r = 2. The result
is given by Proposition 5.2 below. We first investigate the relation-
ship between the problem at hand and some families of arithmetic
progressions that were discussed in Chapter 4.

Note that {1,3,5} is not only a (1,1)-triple, but also a (2,3)-
triple (taking d = 1). Thus, (a1,b1) # (ag,b2) does not imply that
Tay b, and Ty, 5, are disjoint. Is there more we can say about the
relationship between such a pair of families?

To help answer this question, let’s look more closely at the par-
ticular case of (1,1)-triples versus (2,3)-triples. In the example of
{1,3,5} mentioned above, it is not a coincidence that this triple be-
longs to both Ty 3 and AP. Actually, if (z,y,2) is any (2,3)-triple,
then

(5.1) z2—y=0Bz+2d)— 2z+d)=zx+d=y -z,

so that (z,y, z) is an arithmetic progression. Hence T3 € T11. On
the other hand, the reverse inclusion does not hold since, by (5.1), for
any (2,3)-triple (z,y, z), we must have z —y =z + d > 2.
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More generally, we have the following.

Proposition 5.2. Let a > 1. Then (x,y,2) € Ta24-1 if and only if
(z,y,2) is an arithmetic progression with gap y —x > (a — 1)z + 1.

Proof. X = {x,y,2} € Ty 2,1 if and only if
z—y=Q2a—-1z+2d—(az+d)=(a-Drz+d=y—=z

for some positive integer d, i.e., if and only if X is an arithmetic
progression with gap at least (a — 1)z + 1. O

As a result of Proposition 5.2, we see that T'(a,2a — 1;2) is a
special case of the Ramsey-type function w(g(z), 3;2) we studied in
Chapter 4, which, you may recall, corresponds to arithmetic progres-
sions {y, y+d, y+2d} such that d > g(y). Making use of bounds given
for this function in Chapter 4, we are able to give upper and lower
bounds for T'(a,2a — 1;2) (for the particular case in which a = 1, we
know that T'(1,1;2) = w(3;2) = 9; see Table 5.1 at the end of this
section for other values of T'(a, b; 2)).

Theorem 5.3. For all a > 2,

16a3 —2a%+4a—-3 for a even,

160> —12a+6 < T(a,2a — 1;2) <
a a+6 < T/ ) {16a3+14a2+2a—3 for a odd.

Proof. By Proposition 5.2, we have T'(a,2a — 1;2) = w'(9(z), 3;2)
where g(z) = (a — 1)z + 1. Applying Theorem 4.23, we obtain

T(a,2a—1;2) >8g(2a+1)+2(2a+1)+2 —¢,
where c is the greatest integer such that
(a—1De+1+c<49(2a+1) +2a+2,.
i.e., such that ac+ 1 < 4[(a — 1)(2a + 1) + 1] 4+ 2a + 2. This implies
c= LL_CLZ‘&—IJ = 8a — 2. Therefore,
T(a,2a—1;2) >8((a—1)(2a+ 1) + 1) + 4a + 4 — 8a + 2,
which gives us the desired lower bound.

For the upper bound, we give the proof for the case of a even,
and leave the case in which a is odd as Exercise 5.2. Assuming a is
even and g(z) = (a — 1)z + 1, then, using the notation of Theorem
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4.22, we have 3 = 1 + 2a and g(8) = 2a? — a. Hence, by Proposition
5.2, Theorem 4.22 yields

T(a,2a —1;2) < 4g (1 +2a+ 42‘122—"”)+7(2a2 —a)+3(1+2a)—- 12
=4g(4a® + 1) + 1402 - 3
=4[(a—1)(4a® + 1) + 1] + 14a® — 3,

which equals the desired upper bound. 0O

By virtue of Proposition 5.2, we may also use the results of Chap-
ter 4 to tell us about the function T'(a,2a — 1;7) when r > 3; the
following theorem gives us a simple answer.

Theorem 5.4. Let a > 2 and r > 3. Then T(a,2a — 1;7) does not
exist.

Proof. By Proposition 5.2, we have T(a,2a — 1;r) = w(g(z), 3;7),
where g(r) = (a — 1)z + 1. From Theorem 4.26, we know that

w(ﬁéz,S;r) does not exist. Since g(z) > —r;zléx for all z, we see
that w(g(x), 3;7) does not exist. O

As we see from the last two theorems, the existence of T'(a, b; )
is dependent on the value of r. This prompts the next definition.
For convenience we will stray a bit from the way that “regular” was
presented in Chapter 1 (where it is associated with a collection of
sets).

Definition 5.5. Let a and b be positive integers with a < b. If
T(a,b;r) does not exist for some positive integer r, the degree of
regularity of (a,b), denoted dor(a,b), is the largest value of r such
that T'(a,b;r) exists. If T'(a, b;r) exists for all positive integers r, we
say that dor(a,b) = oo, and also say that (a,b) is regular.

Obviously, for every pair (a,b), dor(a,b) > 1. By van der Waer-
den’s theorem (1,1) is regular, while Theorems 5.3 and 5.4 tell us that
dor(a,2a — 1) = 2 for each a > 2.

As a brief aside, it is worth noting that the notion of regularity

may be applied to any type of sequence. Thus, for example, any of the
types of supersets of AP discussed in Chapter 3 may be considered
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to be regular. Meanwhile, as we saw in Chapter 4, certain types
of sets may yield a finite Ramsey-type value only when the number
of colors is not too great (see, for example, Theorem 4.26), so that
they would have a finite degree of regularity. The general question of
which sets are regular and, if not, how regular, is rather intriguing.
In later chapters we shall see some other interesting cases of families
of sequences that are r-regular up to some specific finite value of r,
but which fail to be regular.

Getting back to the degree of regularity for (a,b)-triples, we
would like to know whether there are pairs besides those of the form
(@,2a — 1) whose degree of regularity is greater than one. The fol-
lowing theorem provides a complete answer to this question. It also
gives an upper bound for T'(a, b;2) whenever dor(a,b) > 2.

Theorem 5.6. Let a,b € Zt with a < b. Then dor(a,b) = 1 if and
only if b = 2a. Furthermore,

da(b® —3b—3) + 26 + 4b2 + 6b  if b > 2a,

T(a,b;2) <
4a(b® + 2b2 + 2b) — 4b? if b < 2a.

Proof. First, assume b = 2a. To show dor(a,b) = 1, we need only
exhibit a 2-coloring of Z* that admits no monochromatic (a,2a)-
triple. Note that for any (a, 2a)-triple (z,y, z), we have z = 2y. Thus
any 2-coloring 7 such that for each even number 2n, v(2n) # y(n),
avoids monochromatic (a,2a) triples (color the odd numbers first,
arbitrarily, and then color the even numbers appropriately).

Now assume b > 2a. Let
m = 4a(b® + b? — 3b — 3) + 2b° + 4b% + 6b,

and let x : [1,m] — {0,1} be an arbitrary 2-coloring. We will
show that under x there is a monochromatic (a,b)-triple. Assume,
for a contradiction, that there is no such (a,b)-triple. In partic-
ular, {2,2a + 2,2b + 4} is not monochromatic. Thus, there exist
T,z +2 € {2,4,6,...,2b 4 4} such that x(z) # x(z + 2). Without
loss of generality, let x(z) = 0 and x(z +2) = 1.
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Let z be the least integer greater than a(x + 2) such that z is a
multiple of b — 2a. Hence

z<a(z+2)+b-2a-1<a(2b+4)+b—2a—1=2a(b+1)+b—1.
Thus
(5.2) bz +2(b—2a) <2a(B* +b—-2)+ b2 +b<m.

Let S be the (a,b)-triple (z,az + (b — 2a), bz + 2(b — 2a)). By (5.2),
S C [1,m], so by our assumption some member of S must have color
1. Let s € S with x(s) =1, and let

T={stib-20):0<i< =D ol
b—2a

Note that since (b — 2a) divides s and since a < b, we have that

s+ [?éa_;i; + 1] (b—2a)=as+ (b—2a) € T.

Note also that the largest member of T is bs + 2(b — 2a), and that by
(5.2) we have
bs+2(b—2a) < b(bz + 2(b— 2a)) + 2(b — 2a)
<2a(B3+ b2 —2b—2) + b3+ b2+ 2
<m.
Thus, T C [1,m], and since {s,as + (b — 2a),bs + 2(b — 2a)} is an

(a, b)-triple contained in T' (hence cannot be monochromatic), some
member of T' must have color 0.

Let t be the least member of 7' with color 0. Thus, since t > s
and x(s) = 1, we have x(t — (b — 2a)) = 1. Since z < 2b+ 2 and
t < bs+2(b— 2a), from (5.2) we have

bz +2)+2(t—-ax—b) =2t+z(b—2a)
< 4a(b3 +b% - 2b — 2)
+2(b% + b2 + 2b) + (2b + 2)(b — 2a)
=m.
Let (o, 8,7) = (z+2,t—(b—2a), b(z+2) +2(t—az—b)). We claim that

(o, 8,7) is an (a, b)-triple. To see this, first note that by the definition
oft, 3 =1t~ (b-2a) > a(x+2). Now let d = § — a(z + 2). Then
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B = aa+d and v = ba+2d, establishing the claim. Since we assumed
that x(a) = 1, and since x(8) = 1, we know that x(y) = 0. However,
this gives the monochromatic (a, b)-triple (z,t,v), a contradiction (we
leave it to the reader to show that (z,t,7) is, in fact, an (a, b)-triple).
This finishes the case in which b > 2aq.

Now assume b < 2a, and let m = 4a(b® 4 2b% +2b) — 4b?. Assume,
by way of contradiction, that there is a 2-coloring x of [1,m] under
which there is no monochromatic (a, b)-triple. As in the previous case,
there exist y — 2,y € {2,4,...,2b+ 4} that are not of the same color;
say x(y—2) =1 and x(y) = 0. Let z be the least integer greater than
ay — (2a — b) that is a multiple of 2a — b, and let S be the (a, b)-triple
{z,az+ (2a — b),bz +2(2a — b)}. As in the previous case, there is an
s € S having color 1, and if

T={s,s+(2a—b),s+2(2a—b),...,bs+2(2a —b)},

then as+(2a—b) € T and T C [1,m]. It follows that T contains a least
member, ¢, with color 0 (why?). Then x(t — (2a — b)) = 1 and, since
(o, 8,7) = (y—2,t—(a—2b),b(y —2) +2(t —ay +b)) is an (a, b)-triple
that is contained in [1, m] (the verification of this is left to the reader
as Exercise 5.3), we must have x(v) = x(by + 2(t — ay) = 0. This
gives the monochromatic (a, b)-triple (y,t,~), a contradiction. O

Theorem 5.6 provides an upper bound for T'(a,b;2). The next
theorem gives a lower bound.

Theorem 5.7. Let a,b € Z* with a <b. Then

202 +5b—2a+4 ifb> 2a,

T(a,b;2) > ,
32 +5b—4a+4 ifb< 2a.

Proof. For each of the two cases we shall exhibit a 2-coloring (of the

appropriate interval) that avoids monochromatic (a, b)-triples.

For the case of b > 2a, let x : [1,2b% + 5b — 2a + 3] — {0,1} be
the coloring defined by x([1,6+ 1]) = 0, x([b+ 2,6 +2b+1]) = 1,
and x([b? + 2b + 2,2b% 4 5b — 2a + 3]) = 0. There cannot be a
monochromatic (a, b)-triple of color 1, because the largest term of
any (a, b)-triple whose least term lies in [b + 2,b% + 2b + 1] would lie
outside of this interval.
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Now assume that (z,y, z) is an (a, b)-triple of color 0. Obviously,
z & [1,b+1]. Also, if z,y € [1,b+ 1], then d < b+ 1 — az (where
ar +d = y), so that 2 < bz + 2(b + 1 — az) < b? + 2b. Hence,
we must have y > b2 + 2b + 2. 1t follows that if z < b + 1, then
d > b%+2b+2— ax, so that

bx +2d > 202 +4b+4 — 2ax + br
=202 +5b+4—2a+ (z—1)(b— 2a)
> 2b 4 5b — 2a + 3,

which is not possible. Thus, we assume that > b? + 2b + 2. Then,
since d > 1 and b > 3,

z > b% 4202 +2b+ 2 > 2b% + 5b — 2a + 4,

which is also impossible. This completes the case in which b > 2a.

To establish the lower bound for b < 2a, consider the 2-coloring
of [1,3b? 4 5b — 4a + 3] = [1,m] defined by coloring [b+ 2, b% + 2b + 1]
with color 1, and its complement in [1,m] with color 0. We leave

the proof that this coloring avoids monochromatic (a,b)-triples as
Exercise 5.4. O

Now that we have established upper and lower bounds for the
function T'(a, b;2), we look at a few examples.

Example 5.8. Consider T'(1,b;2) where b is some fixed positive in-
teger. Thus we are concerned with the family of triples that have the
form (z,z + d, bz + 2d) for some d € ZT, a natural generalization of
AP. We know that T'(1,1;2) = w(3;2) = 9, and (by Theorem 5.6)
T'(1,2;2) does not exist. For b > 3, Theorem 5.6 gives 4b%(1 + o(1))
as an asymptotic upper bound for T'(1, b; 2), while Theorem 5.7 gives
2b%(1+40(1)) as an asymptotic lower bound (Exercise 5.5 gives a lower
bound for T'(1,;2) that is slightly better than that of Theorem 5.7,
but which is asymptotically the same).

Example 5.9. Let b = a. Theorems 5.6 and 5.7 give the asymptotic
bounds 3a?(1 + 0(1)) < T(a,a;2) < 4a*(1 + o(1)). It is known, in
fact, that T(a,a;2) = O(a?), so that in this case the actual value of
T'(a,a;2) is very close to the bound of Theorem 5.7. Moreover, it has
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een shown that T(a,a;2) < 3a% + a for all even a > 4, and that
T(a,a; 2) < 8a? + a for all odd a.

Example 5.10. Theorems 5.6 and 5.7 yield the asymptotic bounds
12a2(1 + o(1)) < T(a,2a — 1;2) < 32a*(1 + o(1)). However, these
pounds are not as good as the bounds provided by Theorem 5.3:
16a2(1 + o(1)) < T(a,2a — 1;2) < 16a3(1 + o(1)).

We now return to the problem of determining the degree of reg-
ularity of (a,b)-triples. So far we know, by Theorem 5.6 that

dor(a,b) > 2 unless b = 2a;
by Theorems 5.3 and 5.4 that
dor(a,2a —1) =2 fora > 1;
and by van der Waerden’s theorem that dor(1,1) = oo.
It has been conjectured that (1,1)-triples (the arithmetic pro-
gressions) are the only (a,b)-triples that do not have a finite degree

of regularity. In the next theorem, we show that, whenever b is large
enough in comparison to a, the degree of regularity is indeed finite.

Theorem 5.11. Let 1 < a < b, with b > (2%/2 — 1)a — (2% - 2).
Then dor(a,b) < [2log, c], where ¢ = [2].

Proof. Let a and b be as stated and let r = [2logyc] +1. To
prove the theorem, we will provide an r-coloring of Z7 that yields no
monochromatic (a, b)-triple. For convenience of notation, let B = V2.

We define x : Zt — {0,1,...,7 — 1} as follows. For each i > 1,
whenever 8¢ < z < f‘t!, let x(z) = 7 where i = 7(modr) and
0 <7 < r— 1. For example, (assuming r > 5), x(1) = 1, x(2) = 2,
X(3) =3, x([4,5]) = 4, and x([[671, [87*']]) = 0.

Assume, for a contradiction, that there exists an (a,b)-triple
(z,y,2) = (z,az + d,bx + 2d) that is monochromatic under y. Let
j > 1 be the integer such that 87 < y < B7*!. Since ¢ > 2,
we have z < ¢y, so that from the meaning of r it follows that
z < Br-1pitl = Bi+7. Hence, by the way x is defined and the
fact that x(y) = x(z), we must have

(5.3) F<y<z<pth
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We consider two cases.
Case 1. b < 2a. By the hypothesis of the theorem,

b—a>2a(B-1)-2(8-1).

Therefore,
(a—1)z 1
(54) b—az S 2F-1)
Since b < 2a — 1, we have that (b — a)z < (a — 1)z. Hence, by (5.4),
(a—Dzx+d 1

(b—a)z+d = 2(B8-1)
Thus, using (5.3),
_ Jj+1 _ (37 J
pe P BB P
28-1) " 28-1) 2
Because y > 39, this implies z > 37 — 772 = 772, Since, in this
case, r = 3, and since x(x) = x(y), by the way x is defined we must
have 39 < z < §9*1. Therefore, z,y, z € [37, 37 *!). Hence,
z—zx=(0b-Dr+2d<pf(B-1)<z(B-1),
contradicting the fact that b—1> 3 — 1.
Case 2. b > 2a. In this case,

G2,

y—z=(a—z+d<(b—a)z+d=2z—y.
Hence, 37 (8—1) < 7 (1 - ﬁ—}_T) Since y > 37, this implies

/81_1_1 ) _ ,Bj—r+1'

Since x(z) = x(y), by the definition of x we must have
fF<z<y<pt

Thus, all three numbers z,y, 2 belong to the interval [37, 371). As
in Case 1, this yields a contradiction. O

xzﬂj—ﬂj(l—

We may extend the idea of (a, b)-triples to k-tuples. That is, for
fixed positive integers a1 < ag < -+ < ag—1, we may ask about
the Ramsey-type functions corresponding to k-tuples of the form

p.1. Sequences of Type z,az +d, bz + 2d 145

it
{z,a17 +d,a2x+2d,...,ak_12 + (k —1)d}. (Analogously to the no-
tation T'(a,b), these more general Ramsey-type functions are denoted
by T(a1,a2,...,ak-1); see, for example, Research Problem 5.6.)

For this discussion, we shall limit ourselves to the special case
in which a; = a3 = -+ = ar_;. Therefore, for convenience, we
use the notation dory(a) to denote the largest integer r (or possibly
oo) such that for every r-coloring of the positive integers there is a
monochromatic k-term progression of the form

(5.5) {z,ax +d,az +2d,...,ax + (k — 1)d}.

Noting that for a = 1 we are simply dealing with arithmetic progres-
sions, by van der Waerden’s theorem dory(1) = oo for each k. It is
also known that 2 < dor(2,2) < 5 and 2 < dor(3,3) < 5 (see Table
5.2 at the end of this section), i.e, that 2 < dors(a) < 5 if a = 2 or
a = 3. In contrast to van der Waerden’s result, the following theorem
shows that for all @ # 1, and large enough k, dorg(a) < oo (in fact,
the degree of regularity is not greater than three).

Theorem 5.12. For alla > 2 and all k > E‘f—l +2, dorg(a) <3

Proof. To prove the theorem, it suffices to show that if @ and k satisfy
the given hypotheses, then there exists a 4-coloring of Z* that avoids
monochromatic k-term sequences having the form of (5.5). Clearly,
we may assume k = (ﬁfﬂ + 2.

Define x to be the 4-coloring of the positive integers defined by
coloring each of the intervals [1,a — 1], [a,a® — 1], [a®,a® — 1],... as
follows: x([a’,a’T! —1]) = 7, where j = 7(mod4) and 0 < 7 < 3. We
will complete the proof by showing that if x(z) = x(az + d), then
x(az + (k = 1)d) # x(z).

Assume that x and az + d have the same color under x, and let ¢
be the integer such that z € [a?,a*!). Obviously, az +d ¢ [a*, a*t?).
Hence, by the way x is defined, there is some m € Z* such that
az + d € [a"H4™, a4, From this it follows that

(5.6) a'(a*™ —a*) <d < a"(a'™ - 1).
Note that, by the way m and x are defined, if we can show that
(5.7) @ttt < gz (k —1)d < T,
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then az + (k — 1)d must be colored differently from z and ax + d,
thereby completing the proof. Hence, we proceed to prove (5.7).

To prove ax + (k—1)d < att4(m+1) first note that k < a3 +1 for
all a > 2. Hence, 1+ (k —2)(1 — a~*™) < a®, and therefore
(5.8) ai+4m+l + (k _ 2)ai+1(a4m _ 1) < ai+4(m+1).
By (5.6), we have

az+ (k—1)d =ar+d+ (k—-2)d
S ai+4m+1 + (k _ 2)ai+1(a4m . 1)

This, together with (5.8), implies az+(k—1)d < a*+4(™+1) as desired.
To complete the proof, we show that a**t4m+1 < aqz + (k — 1)d.

Since k > ? + 2, we have (k — 2)(a%? — 1) > a® — a2, and therefore

(k —2)(a® — a=*m=1)) > g3 — a2. From this we know that
(5.9) am 4 (k - 2)at(a?™ — a?) > gt Him L,

Also, from (5.6), we have

(5.10) az + (k- 1)d > a*™*™ 4 (k — 2)a*(a®™ — a?).

By (5.9) and (5.10) we have a*t4™+! < az + (k — 1)d, and the proof

is complete. O

The following two tables give the known values and lower bounds for
T(a,b;2), and the known degrees of regularity for some small a and
b, respectively.

(a\bfl1]2[3]4a]5[ 6 [ 7 |

1 9]{00|39|58| 81 |>108|>139
2 16 | 46 | 0o [ 139 | > 106 | > 133
3 39|160|114| oo |>135
4 40 | 87 | > 124 | > 214
5 70 | 100 | > 150
6 78 | > 105
7 95

Table 5.1: Values and lower bounds for T'(a,b;2)
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(

(1,1) 00 (2,5) 2-3
(1,2) 1 (2,6) 2-3
(1,3) 2-3 (2,7) 2—-4
(1,4) 2-4 (2,8) 2—-4
(1,5) 2-5 (2,9) 2-5
(1,6) 2—-6 (3,3) 2-5
(1,7 2-6 (3,4) 2-5
(1,8) 2-6 (3,5) 2

(1,9) 2-7 (3,6) 1

(2,2) 2-5 (3,7 2-4
(2,3) 2 (3,8) 2-3
(2,4) 1 (3,9) 2-3

Table 5.2: Degree of regularity of (a,b)-triples

5.2. Homothetic Copies of Sequences

Definition 5.13. Let s;,53,...,8x_1 be positive mtegers A homo-
thetic copy of the k-tuple (1,14 51,1+ s; + 32, R Zz_l s;) is a
k-tuple (a,a + bs1,a + b(s1 + s2),...,a + bzl_l s,) where a and b
are any positive integers.

How are homothetic copies related to arithmetic progressions?
Well, consider the collection of all homothetic copies of (1,2,...,k),
i.e., where s; = 1 for all 7 in Definition 5.13. Then this is the collection
of all sequences of the form {a,a+b,a+2b,...,a+ (k—1)b}; in other
words, the family of all k-term arithmetic progressions.

For fixed s1,52,...,55_1, we shall denote by H(s1,52,...,8k_1)
the 2-color Ramsey-type function associated with the family of all ho-
mothetic copies of (1,1+s,.. 1+Zz_1 s;). Hence, the classical van
der Waerden function w(k) has the same meaning as H(1,1,...,1).
It follows easily from van der Waerden’s theorem that for all £ and all
(k—1)-tuples (s1, 82, ..., 5k—1), the number H(sy,sg,...,8k_1) exists
(this is left to the reader as Exercise 5.6).

We know that H(1,1) = w(3) = 9. We now examine the function
H(s,t) for general pairs (s,t). That is, for a fixed pair (s,t), we want
the least positive integer h = H(s, t) such that for every 2-coloring of
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[1, h] there is a monochromatic triple of the form (a, a+bs, a+bs+bt)
for some positive integers a and b. As we will see, this is a Ramsey-
type function for which we are able to come rather close to providing
a precise formula.

We begin with an upper bound for H(s,t). We shall make use of
the following lemmas. We leave the proof of Lemma 5.14 as Exercise
5.7.

Lemma 5.14. For all s,t > 1, H(s,t) = H(t,s).

For convenience, from now on we will refer to a homothetic copy
of {1,14 5,14+ s +t} as an (s,t)-progression.

Lemma 5.15. Let s,t,c be positive integers. Then

H(cs,ct) = c(H(s,t) — 1)+ 1.

Proof. Let m = H(s,t). By the definition of H(s,t), every 2-coloring
of [0, m — 1] yields a monochromatic (s,t)-progression. Hence, every
2-coloring of {0,¢,2¢,...,(m — 1)c} yields a monochromatic (cs, ct)-
progression, giving ¢(m — 1) + 1 as an upper bound for H(cs, ct).

To prove the reverse inequality, first note that there exists a 2-
coloring x of [1, m—1] that yields no monochromatic (s, t)-progression.
Now define x’ on [1,¢(m — 1)] by

X' ([e(i = 1) + 1, ci]) = x(),

for 1 <4 < m—1. To complete the proof, we will show that x’ avoids
monochromatic (s, ct)-progressions.

Assume, for a contradiction, that {z; < z3 < z3} C [1,¢(m — 1)]
is a (cs, ct)-progression that is monochromatic under x’. Then there
exists u > 0 such that 3 —xz5 = uct and zo —x; = uecs. For j =1,2,3,
let y; = [%2]. Then

x x
Yz — Y2 = {—3.' - [—2-‘ = ut.
c c
Similarly, yo — y1 = us.

Hence {y1 < y2 < ys} is an (s,t)-progression. Furthermore,
x(y;) = x ([%l]) = X'(z;) for each j. This contradicts our assump-
tion that there is no monochromatic (s, t)-progression under x. 0O

5.2. Homothetic Copies of Sequences 149

Theorem 5.16. For all s,t > 1, H(s,t) <4(s+1t)+ 1.

Proof. By Lemma 5.14, we may assume that s < ¢t. We may also
assume that ged(s,t) = 1. To justify this last statement, assume that
the theorem is true for all pairs (s, t1) such that ged(s;,t1) = 1. Let
d = ged(s,t). Then by Lemma 5.15, we have

H(s,t) =d(H(5,%)-1)+1
<d(d(5+5)+1-1)+1
=4(s+t)+ 1

We noted before that H(1,1) = 9. We may also calculate directly
that H(1,2) = 13 and H(1,3) = 17, so that the theorem holds for
the pairs (1,1), (1,2), and (1,3). Now assume gcd(s,t) = 1, s < ¢,
and (s,t) ¢ {(1,1),(1,2),(1,3)}. Consider the following collection of
subsets of [1,15]:

C= {{1,2,6},{2,3,7},{3,4,8},{4,5,9},{1,3,10}, {2,4, 11},
{3,5,12},{1,4,13},{2,5,14},{1,5,15}, {6, 7,10}, {7, 8,11},
{8,9,12}, {6, 8,13},{7,9,14},{6,9, 15}, {10, 11,13},
{11,12,14},{10,12,15},{13,14,15} }.

We leave it to the reader (Exercise 5.10a) to check that every 2-
coloring of [1,15] yields a monochromatic triple from this list of twenty
triples in C.

We now make a one-to-one correspondence between the members
of C and twenty different (s,t)-triples that are in [1,4(s +t) + 1] by
means of the following associations (that the twenty resulting triples
of elements of [1,4(s +t) + 1] are, in fact, distinct (s, t)-triples is left
to the reader as Exercise 5.10b):

11 2o s5+1 3e—2s+1
43s+1 5« 4s+1 6 s+t+1
T 2s+t+1 8—3s+t+1 9 4ds+t+1

1025 +2t+1
135 3s+3t+1

11 3s+2t+1
14 = 4s+3t+1

12454+ 4t+1
15 4s+4t+ 1.
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Since every 2-coloring of [1,15] admits a monochromatic member
of C, it is clear that every 2-coloring of [1,4(s + t) + 1] must admit
a corresponding monochromatic triple from among the twenty (s, t)-
triples that result from the above association scheme. This yields the
desired upper bound on H(s,t). O

As it turns out, the upper bound given in Theorem 5.16 is known
to be the actual value of H (s, t) for a rather broad class of pairs (s, t),
although an exact formula that holds for all cases is still unknown.
The next theorem provides part of the answer.

Theorem 5.17. Let s < t be positive integers. If neither L
ged(s,t)

nor @th) is divisible by 4, then H(s,t) =4(s+1t) + 1.

Proof. By Theorem 5.16, we see that it is sufficient to show that
H(s,t) > 4(s+t) + 1. We shall split the problem into two cases,
in each one providing a specific 2-coloring of [1,4(s + t)] that avoids
monochromatic (s, t)-progressions.

Let d = ged(s, t). Of course, not both £ and % are even.

Case 1. £ and % are both odd. As demonstrated in the proof of
Theorem 5.16, we may assume d = 1. Color [1,4(s + t)] according to
the string

1010...100101...01.
= Y N~
2(s+t) 2(s+t)

Assume, for a contradiction, that {z < y < z} is a monochromatic
(s,t)-progression. Then there exists a positive integer b such that
y=2z+bsand 2z = y+ bt. Let B; and B, represent the intervals
[1,2(s +t)] and [2(s +t) + 1,4(s + t)], respectively.

In case b is odd, then (since we are under the assumption that s is
odd), z and y have different parities (one is even and the other odd).
Similarly, y and z have different parities. Since x and 3 have the same
color, yet opposite parity, it is evident from the way the coloring is
defined that z € B, and y € B,. Hence z € By, from which it follows
that y and z cannot have the same color, a contradiction.
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If b is even, then z,y, and z are all of the same parity. Hence,
either they all belong to By or they all belong to B;. Thus,

b(s+t)=z—x<2(s+1),

which means that b = 1, a contradiction.

Case 2.0One of § and 5 is even. By the hypotheses, and without loss
of generality, we assume that 5 =2 (mod 4). As in Case 1, we shall
assume that d = 1.

Let A be the 2-coloring of [1,4(s + t)] represented by the string
1100 1100...1100; that is, it consists of s+t consecutive occurrences
of the string 1100.

We shall show, by contradiction, that A avoids monochromatic
(s,t)-progressions. Thus, assume that {z < y < z} is an (s,1)-
progression that is monochromatic under X. Then there exists b > 1
such that y — z = bs and z — y = bt. Now, since

z—z=>b(s+t) <4(s+t)—1,

we have that b < 3.

First assume b = 2. Then z — z = b(s + t) is even. Note that
by the definition of A, we know that the only way that two integers
¢ and j can have an even difference and be of the same color is for
J — 1 to be divisible by 4. Hence 4 divides z — z. However, by our
assumptions of Case 2, this is impossible since exactly one of s and
t is even. Now assume that b = 1 or b = 3. Because s = 2 (mod 4),
y — x is even but is not divisible by 4; this is also impossible, since bs
is not a multiple of 4. O

By Lemmas 5.14 and 5.15, and Theorem 5.17, we see that we
would know all values of H(s,t) if we knew the value of H(4j,1)
when t is odd and ged(j,t) = 1. For many such pairs it is known
that H(s,t) = 4(s +t) + 1. Meanwhile, it has been conjectured that
H(4j,1y = 4(45 + 1) for all m > 1, and it has been proven that
4(45+1) < H(4j5,1) < 4(4j5 + 1) + 1 for all positive integers j.
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5.3. Sequences of Type z,x +d,z +2d+b

One simple way to form a generalization of an arithmetic progression
is expressed in the following definition.

Definition 5.18. Let b > 0. A k-term augmented progression with
tail b is a sequence of the form

{z,x+d,z+2d,...,x+ (k—2)d,z+ (k—1)d+ b}

for any z,d € Z7.

Denote the family of all augmented progressions with tail b by
AUG,. We see that this provides us with a generalization of w(k),
since AUGy = AP and therefore w(k) = R(AUGy, k). We shall limit
the discussion to the case of k = 3, so that we are interested in se-
quences of the form {z,z+d,z+2d+b} and the function R(AUG}, 3).
We are unaware of any significant work that has been done for k > 4
(this sounds like a research problem that is wide-open for exploration).

An obvious question we should ask is: does R(AUGY, 3) exist (in
other words, is it finite?) for every b? We answer this, and more, in
the following theorem.

Theorem 5.19. For b odd, R(AUG,,3) does not exist. For b even,
R(AUG,, 3) < [25] +9.

Proof. First assume b is odd. Consider the coloring of the positive
integers represented by the string 101010... . Then no triple of the
form {z,x + d,z + 2d + b} can be monochromatic because the first
and third elements of this triple differ by an odd number.

Now let b be even. We consider two cases.

Case 1. b=0 (mod 4). Since R(AUGy,3) = w(3) =9, the theorem
is true when b = 0. Hence, it is sufficient to show that for b > 4,
and m = [§b] +9, every 2-coloring of [1,m] admits a monochromatic
3-term augmented progression with tail b. Let x : [1,m] — {0,1} be
any 2-coloring and assume, by way of contradiction, that x admits
no such monochromatic set.

Let A={i € 1,m]:x(i)=1} and B={i € [1,m]: x(¢) =0}.
By the pigeonhole principle, some 3-element subset, S, of [1,5] is
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monochromatic. Since there are (3) = 10 possibilities for S, we shall
consider ten subcases. We will present four of the subcases here,
and leave the rest to the reader as Exercise 5.12. Without loss of
generality, we shall assume S C A.

Subcase i. S ={1,2,3}. Since 1,2 € A, and since we are assuming
that there is no 3-term monochromatic augmented progression with
tail b, we must have 3+b € B. Likewise, 2,3 € A implies 4+b € B; and
1,3 € A implies 5 + b € B. Using the same line of reasoning, we have
the following sequence of implications (note that each of the integers
occurring in the implications below belongs to [1,m]; note also that
since b > 4, in each implication the 3-term augmented progression
alluded to is, in fact, a set of 3 distinct integers):

3+b,4+be Bimpliesb5+2b€ A,

3+b,5+b€ Bimplies7+2b€ A,

1,5+ 2b € A implies 3+ & € B,

3,5+ 2b € A implies 4 + & € B,
3,7+2b € Aimplies 5+ & € B,
3+2,4+85+%cBimplies5+2,7+% €4,
1,5+§29€Aimplies3+%€B,

3,5+ % € A implies 4 + ¢ € B,
3,7+ % € Aimplies 5 + & € B,
3+24+25+%cBimplies5+ 5,6+ 3% cA4,
5+ 326+ 5 € Aimplies 7+ % € B,

3+ 2,7+ % c Bimplies 5+ 3 € 4,
5+%,7+% c Bimplies 6+ 3 € 4,

5+ 32,6+ 32 ¢ Aimplies 7+ 2 € B.

Thus {3 + %, 5+ %, 7+ % }, an augmented progression with tail b, is
monochromatic, a contradiction.

Subcase ii. S = {1,2,4}. By Subcase i, we may assume 3 € B.
Using the same idea as in the proof of Subcase i, we have the following
sequence of implications:

1,2,4 € A implies 6 +b,7+ b € B,
6+ b,7+ b€ B implies 8 +2b € A,

. 2,4,8+2b€ A implies 5+ 2,6+ 2 € B,
3,5+ % € B implies 7+ 2b € 4,
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17+2b€Aimplies4+ € B,
4+'2’,5+2,6+ eBlmp11e56+32b,8+3beA
246+32b,8+ €A1mp11es4+4,5+4,6+ € B,
4+Z,5+4,6+ eBlmphes6+ib,7+5b€A
6+5b7+5b€A1mpheS8+ EB
4+4,6+4,8+ EBlmphes6+ %QEA,
6+3b 7+3b€A1mphes8+7b€B

Thus {4 + ;';—, 6+ %, 8+ %b}, an augmented progression with tail b, is
monochromatic, a contradiction.

Subcase iii. § = {1,2,5}. By Subcases i and ii, we may assume
that 3,4 € B. By the method used in those subcases, it can be shown
that there exists a monochromatic augmented progression with tail b
whose largest element does not exceed max{8+ 22,10+ 2b} < m. We
leave the details to the reader as Exercise 5.11.

Subcase iv. S = {2,3,4}. That the result holds for this case is
a consequence of Subcase i, by a simple translation of length 1 (see
Proposition 2.30), because the proof of Subcase i yields a monochro-
matic augmented progression with tail b that is contained in [1, m—1].

Case 2. b =2 (mod 4). We consider the same ten subcases as for
Case 1. As the proofs are quite similar to those of Case 1, we present
here only one subcase, and leave the the proofs of the other subcases
to the reader.

Subcase i. S ={1,3,5}. Then 5+ b,7+b € B. Thus, 9+ 2b € A.
We then have the following sequence of implications:

3,5,9+2beAimpnes6+g,7+geB,
6+ 2,742 € B implies 8 + % € A4,

1358+3bEA1mphes2+Z,121+§ BitesB,
2+5, 0 +2, 3+ cBimplies 245 15450 ¢ 4
18480 175+5b€A1mphes17+gzbe ,
942 1842 174% ¢ Bimplies 12430 156436 ¢ 4
134 30 15 4 35 € A implies I + 2 € B.

Then the augmented progression { 4 + 2,7 4 2 1T 4 701 j5 contained
in B; this is a contradiction since all of the 3-term augmented pro-
gressions occurring in the argument are contained in [1, m]. O
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We next provide a lower bound for R(AUG),3) (for b even).
Note that this lower bound agrees precisely with all known values
of R(AUG, 3) (see Table 5.3 at the end of this section).

Theorem 5.20. For b= 2 and for all even b > 10,
R(AUGYy, 3) > 2b + 10.
For b € {0,4,6,8}, R(AUG},3) > 2b+ 9.

Proof. The coloring 1100011110000 avoids 3-term mono-chromatic
augmented progressions with tail 2, so that R(AUG3,3) > 14. For
b € {0,4,6,8}, let s, denote the alternating string 1010...101 of
length b+ 3. It is easy to check that the coloring defined by the
string s,00s,, which has length 2b 4 8, avoids monochromatic 3-term
augmented progressions with tail b.

Now let b > 10 be even. Define the coloring x of [1,2b + 9] as
follows. Let

By = {1,2},

By = {3,4,5},

Bs =[6,b+ 2],

By = {b+ 3},
=[b+4,b+7],

Bs = [b+8,2b+9].

Let x(B1) = x(Bs) = x(Bs) = 1 and x(B;) = x(Ba) = x(Bs) = 0.
We assume that P = {z < y < z} is a monochromatic augmented
progression with tail b, and seek a contradiction. Note that no single
B; can contain all elements of P, since z —x > b+ 2.

First assume x(P) = 1. It is clear that y # 2, since otherwise
z = b+ 3, which is of a different color. Thus, if z € By, then y > 6;
but then z € Bg, which is not possible. If z € B3, then again we have
A B6.

Now assume x(P) = 0. If z,y € B, it then follows that z € Bj,
a contradiction. If x € By and y ¢ By, then z > 3b+1 > 2b+ 9,
which is impossible. Finally, if + = b + 3, then z is again outside of
(1,2b+9)]. O
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From the discussion above we know that R(AUGY, 3;2) exists for
every even b (that is, when two colors are used). What happens when
we increase the number of colors? As the next theorem shows, the
situation is different when r = 3, and quite different when r > 4.

Theorem 5.21. Ifb # 0(mod6), then R(AUGY),3;3) does not exist.
Furthermore, for all b, R(AUG, 3;4) does not exist.

Proof. If b is odd, then this is covered by Theorem 5.19. Hence,
we let b be even but not divisible by 6. Assume, for a contradiction,
that R(AUGY,3;3) exists. Color the positive integers according to
the string 012012012... . Then any monochromatic augmented pro-
gression {z,r + d,z + 2d + b} must have d a multiple of 3; but then
b must also be a multiple of 3. Since b is even, it must be a multiple
of 6, a contradiction. This proves the first statement.

To see that the second statement holds, color the positive integers
with the coloring y = 1¥2k3k4k1%k2k3k4k = By the case for three
colors, we assume that 6 divides b. Let (z,y, 2) = (z,z+d, z+2d+Db);
we will show that (z,y, 2) is not monochromatic. Note that if s < ¢,
then x(s) = x(¢) if and only if, for some positive integer i, we have
dki— (k—1)<t—s<4ki+ (k—1). However, z—y=d+bisin

[4kj— (k—1)+6k, 4kj+(k—1)+6k] = [4k(j+1)+k+1, 4k(j+1)+3k—1]
for some positive integer j. Hence x(y) # x(2). O

We mention, without proof, that it is known that when b is a
multiple of 6, R(AUG,, 3;3) < 32b+ 1, so that R(AUG, 3; 3) exists if
and only if b = 0 (mod 6).

Recall that in Chapter 4 we discussed a generalization of w(k), de-
noted w’(c, k), which pertained to arithmetic progressions whose gaps
were no less than c. In the same way, we may generalize the function
R(AUG}, k) by defining, for each positive integer ¢, R(c, AUGy, k) to
be the least positive integer m such that for every 2-coloring of [1,m]
there is a monochromatic augmented triple {z, z+d, z +2d} with the
added restriction that d > ¢. Since R(c, AUG, k) has the same mean-
ing as w'(c, k), we know by Theorem 4.11 that R(c, AUGq, 3) = 8c+1.
By modifying the proofs of Theorems 5.19 and 5.20, it is not all
that difficult (although it is a bit tedious) to obtain generalizations
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of those two theorems, where the parameter ¢ is included. We do
not present the proofs of these generalizations here, but do state
the results in the next two theorems. The proof of Theorem 5.22
imitates the proof of Theorem 5.19, except instead of considering
the possible colorings of [1,5], one considers the possible colorings of
{1,14¢,142¢,1+4 3¢,1+ 4c}. Notice that Theorems 5.19 and 5.20
are, indeed, special cases of Theorems 5.22 and 5.23.

Theorem 5.22. Let b > 0 be even, ¢ > 1, and a = 2b+ 9¢c. Then
max {9 + 8¢+ 1,a+ 1} if 4|b,
R(c, AUGy, 3) < max {$ + 17 + 1 a+1}  ifd{bandcis odd,
max {% + 17¢ + 19 4 4 10} if 4{band cis even.
Theorem 5.23. Let b > 2 be even, and let ¢ > 1. Then
2b+T7c+3 if b>6c+ 3,
R(c, AUG,,3) > 2b+7c+2 ifc+2<b<6ec+2,
b+8c+4 if2<b<c+1.
The following table gives the known values of R(c, AUGY, 3). Note
that R(AUG),3) = R(1, AUG,, 3).
[o\el[1[2[3[4[5]6[7[8]09]

0 9 |17 (25[33|41|49|57|65]|73
2 14122130 (38|46 |54|62| 70|78
4 17124324048 |56 | 64 | 72 | 80
6 21128 |35(|42 (50|58 |66 |74| ?
8 25 (3239|4653 (60|68 7 | ?
10 3036|4350 |57 64|71 7|72
12 34140 |47 |54 |61 68| 7 | 7 | ?
14 38 |44 |51 (88|65 | 7 (7| 7|7
16 42 14915516269 7 | 72| 7|7
18 46 |53 |59 (66| 7 | 72| ? |7 |7
20 50 |67 |63 72 |2 | 2?2?27
22 54 161 | 7 | 2?2?27 ?
24 S8l T ||| Y|
26 62| 7 (7|22

Table 5.3: Values o

=

R(c, AUG}, 3)
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5.4. Exercises

5.1 How many (1, 3)-triples are contained in [1,100]? How many
(a, b)-triples are contained in [1,100]? How many are con-
tained in [1,n)?

5.2 Prove Theorem 5.3 for the case in which a is odd.

5.3 At the end of the proof of Theorem 5.6 it is claimed that
(o, B,7) is an (a, b)-triple that resides in [1,m]. Verify this.

5.4 Complete the proof of Theorem 5.7 by showing that the col-
oring of [1,3b% + 5b — 4a + 3] = [1,m] defined by coloring
[b+ 2,b% + 2b + 1] with color 1, and its complement in [1,m]
with color 0, avoids monochromatic (a, b)-triples.

5.5 By Theorem 5.7, we know that T'(1,b;2) > 2b%+5b+2 for b >
3. Show that this lower bound can be tightened to T'(1, b; 2) >
2b? + 5b + 6 (hint: color

S =[1,b+1]U{b+3}U[b*+ 2b+4,2b> + 5b+ 5]

with the color 1, and its complement in [1,2b? + 5b + 5] with
the color 0).

5.6 Use van der Waerden'’s theorem to prove that for all k¥ and

all (k — 1)-tuples (s1,52,...,8k—1) of positive integers, the
number H(s1, S2,...,85—1) exists (is finite).

5.7 Prove Lemma 5.14.

5.8 Assume that si,s2,...,8k, and ¢ are positive integers and

that H(sy,S2,...,8k) = m. Prove that
H(csy,c82,...,¢88) =c(m—1)+ 1.
5.9 Verify that H(1,2) = 13 and H(1,3) = 17.

5.10 a) Show that every 2-coloring of [1,15] yields a monochro-
matic member of the family C as defined in the proof of The-
orem 5.16.
b) Show that the 20 triples of elements of [1,4(s+t) +1] that
correspond to the 20 members of C (via the correspondence
between elements of [1,15] and elements of [1,4(s + t) + 1]
given in the proof of Theorem 5.16) are distinct (s, t)-triples.

5.11 Complete the proof of Subcase iii of Case 1 of Theorem 5.19.
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5.12 Prove the subcases of the proof of Theorem 5.19 that were
not done in the text.

5.13 For given nonnegative integers a and b, define f (a,b) to be
the least positive integer such that for every 2-coloring of
1, f(a, b)] there is a monochromatic set {z, z+d+a, x+2d+b}
for some positive integers x and d. Prove that if b > a, then

f(a, b) = f(b —a,b).
5.14 Using the notation of Exercise 5.13, prove that if b > 2a, then

f(a’ b) = R(a’ + ]-7 AUGb—2a» 3)
5.15 Use Exercises 5.13 and 5.14 to show that if % < a < b, then

~

F(a,b) = R(b— a + 1, AUG24_s, 3).

5.5. Research Problems

5.1 Improve the known bounds for T'(a, a; 2).
Reference: [175]

5.2 Improve the known bounds for T'(a,2a — 1;2).
Reference: [175]

5.3 Improve the known bounds for T'(1, b; 2).
Reference: [175]

5.4 Prove or disprove: (1,1) is the only pair (a,b) such that
dor(a,b) = .
Reference: [175]

5.5 Find the degree of regularity of some pair (a, b) for which the

degree of regularity is still unknown (see Table 5.2).
Reference: [175]

5.6 Extend the study of T'(a,b;2) to T(a,b,c;2) by considering
4-tuples of the form (z,ax + d,bx + 2d, cx + 3d). Extend it
to T(ay,as,...,ar_1;2).

Reference: [175]

5.7 Let a > 1 and r > 3. Define 7 =
positive integer such that dor:(a) <

<

there exists s > r such that 7(a; s)
" Reference: [175]

7(a;r) to be the least

r. Prove or disprove:
T(a;T).



160 5. Other Generalizations of w(k;r)

5.8 Investigate the function H(s,t,u), i.e., for homothetic copies
of 4-term sequences.
Reference: [66]

5.9 Investigate the function H(s,t;3); that is, where three colors
are used instead of two.
Reference: [66]

5.10 Prove or disprove the conjecture that H(4j,1) = 4(4j+1) for
all j > 1.
Reference: [66]

5.11 The only cases for which the exact value of H(s,t) have not
been determined are those pairs (s,t) = (¢t + e,t) such that
0 < e <t < 2 and either t + e or t is a multiple of 4.
Determine the exact value of H(s,t) for these cases.
Reference: [66]

5.12 Investigate the function R(AUG), k) for k > 3; in particular,
consider sequences of the form {z,z + d,z + 2d,z + 3d + b}.
References: [39], [165]

5.13 Let f(a,b), a < b, be defined as in Exercise 5.13. Prove or
disprove the conjecture that for any fixed even value of b, the

maximum of f(a,b) occurs when a = %

5
Reference: [165]
5.14 Study the Ramsey properties for sequences of the form

{z,x+d,x+2d + b,z + 3d + b2 }.

References: [39], [165]

5.15 Improve the upper bound for R(AUG},3;3). Find a lower
bound for this function.
References: [39], [165]

5.6. References

§5.1. The results of this section may be found in [175]. That article
also contains other results on T'(a, b;2), including a quadratic upper
bound for T'(a, a;2). It also mentions a result on an extension to k-
tuples that is analogous to a result on arithmetic progressions from
[127], as well as a conjecture on dori(a).

5.6. References 161

—

§5.2. The work on homothetic copies is from [66], which contains a
more thorough discussion. In [170] and [172], Ramsey-type functions
pre considered for the collection of sequences that, for some ¢ > 1, are
homothetic copies of the k-tuple

{1,2,24t,24+t+82,... 24+t +t2+---+tF72).

§5.3. The function R(AUGY, 3;r) was first considered in [39], where
it is shown that R(AUG}, 3) does not exist for b odd, and that, for b
even, R(AUG,,3) < %b + 1. The authors of [39] also provide proofs
of Theorems 5.20 and 5.21, and show that R(AUGYy,3;3) < g’ﬁéb +1
for b = 0 (mod 6). Proofs of Theorems 5.22 and 5.23 are found
in [165], for which Theorems 5.19 and 5.20 are special cases. That
paper also investigates the function f (see Exercises 5.13-5.15), and
its relationship to the function R(AUGY, k).

Additional References: An important result, known as the Hales-
Jewett theorem [136], is a generalization of van der Waerden’s theo-
rem.



Chapter 6

Arithmetic Progressions
(mod m)

An arithmetic progression is a sequence in which the gaps between
successive terms are all equal to some positive integer d. In this
chapter we shall consider sequences that are analogous to arithmetic
progressions but where, instead of all of the gaps being equal integers,
they are all congruent modulo m, where m is some prescribed integer.
Another way to think of this analogy is that the gaps of an arithmetic
progression are equal elements of Z, whereas the gaps of one of the
integer sequences discussed here, although possibly non-identical in-
tegers, are equal when considered as elements of the additive group
ZLy,. We will discover some rather interesting Ramsey properties in
this setting.

We begin with some basic definitions and notation.

Definition 6.1. Let m > 2 and 0 < a < m. A k-term a(mod m)-
progression is a sequence of positive integers {z; < z3 < -+ < zx}
such that z; — 2;_; = a (modm) for 2 <i < k.

For fixed m and a, denote the family of all a (mod m)-progressions
by APa(m)‘

Definition 6.2. Let m > 2. An arithmetic progression (mod m) is a
sequence that is an a(mod m)-progression for some a€{1,2,...,m—1}.

163
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Note that in Definition 6.2 we do not allow a = 0 (in the context
of the congruence classes modulo m, having a = 0 is somewhat like
having a gap of 0 in an arithmetic progression).

For a given m > 2, we denote the family of all arithmetic pro-
gressions (modm) by AP(y. Obviously, for any m > 2,

m—1

APy = | APum).

a=1

Example 6.3. The sequence {1,7,33,44,70} is a 5-term 1 (mod5)-
progression. The sequence {3,41,49,67} is a member of APg(1¢) as
well as a member of APs(5) and APy(2). Both sequences are members
of AP(s).

6.1. The Family of Arithmetic Progressions
(modm)

Van der Waerden’s theorem tells us that R(AP, k;r) < oo for all k
and r; in other words, that the family of arithmetic progressions, AP,
is regular. In contrast, the next theorem tells us that for every m > 2,
the family of arithmetic progressions (mod m) is not regular (it is not
even 2-regular). The proof makes use of elementary group theory.

Theorem 6.4. Let m > 2 and k > []. Then R(APq,,k;2) = cc.

Proof. Let m and k be as in the statement of the theorem. It is
sufficient to find a 2-coloring of Z* that admits no monochromatic
k-term arithmetic progression (mod m).

Let the following string represent y : ZT — {0,1}:

11...100...011...100...0....
S~

(21 m=[31 (%] m-[%]

We will prove that for each a, 1 < a < m — 1, the maximum size of a
monochromatic a (mod m)-progression does not exceed [m.‘,

which is bounded above by [%2]. It is clear that the theorem follows
from this.
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Let a € {1,2,...,m — 1} be fixed. Let d = ged(a,m) and let
g = %. We will consider the integers 1,2,... ,m as the elements of
Zm, Where Z,, is the m-element cyclic group of order m, under the
operation of addition modulo m (note: it is more typical to call the
identity element 0, but under addition modulo m, using the element
m as the identity works just as well; recall that addition in Z,, =
{0,1,...,m — 1} is defined by i® j =1+ J, where, for any z € Z,
Z denotes the (unique) integer such that z =7 (modm) and
0<zT<m-—1).

From elementary group theory we know that, since g is a divisor
of m, there is a unique g-element cyclic subgroup H of Z,,, with
H ={d,2d,...,qd = m}. Also, since ged(a,m) = d, H is generated
by a, so that

(6.1) H={d,2d,...,qd} = {@,2a,...,qa}.

Now assume that X = {z; < 22 < --- < x4} is an arbitrary
g-term a (mod m)-progression (in Z*). Therefore, we have, for each
,1<i<g-—1,

Tiy1 = z; +d;,
where d; = a(mod m). It follows that

{.TT,I_Q,... ,.’L‘—q} = {z—l,xl—i—a,... ,a:1+(q—1)a}
=7+ H.

Furthermore, from (6.1) we have that Y = z7 + H, a subset of [1,m],
is an arithmetic progression with gap d and length g. Among the
q members of this arithmetic progression, at most [2] of them can
belong to the interval [1,[Z]], and the same holds for the interval
[[2]+1,m]. Hence, by the way x is defined, no more than [2]
members of Y can be monochromatic. Further, since x(z;) = x(7;)
for each 7, 1 < i < g, we see that at most [521] members of X can
form an arithmetic a (modm)-progression, which gives the desired
result. O
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We end this section with a table.

[m\k[[2]3]4[5] 6 [ 7 |
2 oo | oo | oo | o0 00 00
3 3 ||| 00 o0
4 3 |oo| 0|00 o0 00
) 3 |oo| 0|00 00 00
6 319|000 00 I's)
7 3|19 |o0|oo| o0 00
8 319 |oc0]|o0 00 oo
9 319 (22| (%) 00
10 319 |27]| 0 00 00
11 319 (22| (%) 00
12 319 || 00 00
13 319 |27| 0 00 00
14 319 (27| 00 00
15 319 27| o0 00
16 319 (27|53 00 0
17 319 (27|58 00 00
18 319 (28|54 >97 | >101
19 319 (28| (%) s}
20 3191300 00 00
21 319 32|66 00 00
22 319 (3|0 o0 00
23 319 (32|64 00 00
24 319 (34|67]|>100 ?
25 319 (34|79 00 [
26 319 (35]|65]|>102 ?
27 319 (3]|63|>110 ?
28 319 (35|65 ? ?
29 319 |35]65 00 00
30 319 (35|75 00 00

Table 6.1: Values and lower bounds of R(AP,, k;2)
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6.2. A Seemingly Smaller Family is More
Regular

It is obvious from Theorem 6.4 that any subset of AP, also fails to
be 2-regular. In particular, for any fixed a € {1,2,...,m — 1}, the
collection AP, (,,y of all a (mod m)-progressions is not 2-regular. This
is not unlike the fact that the family of all arithmetic progressions
whose gaps must be the fixed integer d (in Chapter 4, we denoted this
family by Ap, where D = {d}) is not 2-regular. Loosely speaking,
“we might say that families such as APy(m) (a # 0) or Aggy are too
“small” to be 2-regular. This is not surprising, especially for Agay,
since such families restrict the allowable gap (or the gap (mod m)) to
‘just one number. Yet, it turns out that every collection of the form

(6.2) APy U Aimy

is, in fact, 2-regular. This statement seems to run counter to our
intuition, since it surely seems that the family AP,,,) is, in some sense,
much “larger” than the family of (6.2). We proceed to establish the
2-regularity of these “smaller” families.

For families of the form (6.2) in which a = 0, it is fairly easy
to show ‘regularity. We begin with this case. It is clear from the
definitions that any member of Ay} is also a member of APy(m).
Hence APO(m) U A{m} = APO(m).

Theorem 6.5. Let k,r > 1 and m > 2. Then

R(APo(m), k;r) = rm(k - 1) + 1.

| Proof. Consider any r-coloring of I = [1,rm(k — 1) + 1]. Exactly
r(k—1)+1 elements of I are congruent to 1 (modm). By the pigeon-
hole principle, at least k of these r(k — 1) + 1 integers have the same
color. Since these k elements are mutually congruent modulo m, they
form a 0 (mod m)-progression. This proves that rm(k — 1) + 1 is an
upper bound for R(AFPy(m), k;T)-
To show the reverse inequality, let x be the coloring represented
by the string

(™2™ ™y (12 ™)L (1T ™)
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where the string (1™2™ ...7r™) appears k—1 consecutive times. Since
X is an r-coloring of [1,rm(k —1)] that avoids k-term monochromatic
0 (mod m)-progressions, the proof is complete. a

We now turn our attention to families of the form (6.2) where
a # 0. For brevity, from now on, we will use the symbol AP;(m)
to denote AP,(m) U Am). We shall obtain upper and lower bounds
for R(AP} ), k). As it turns out, the behavior of R(AP;,,, k) when
ga(‘ZTn—) is even is somewhat different from the behavior when m

is odd. Therefore, we shall handle these two cases separately.

We will establish bounds on R(AF; ), k) by considering a cer-
tain generalization of this Ramsey-type function. The generalization
involves adding one more parameter. While it is often the case that
proving a generalization of a theorem is more difficult than prov-
ing the theorem, an extra parameter can also give us some “leeway”
in the proof. In this particular instance, proving the generalization
appears better suited to the mode of proof than proving the less com-
plex theorem (k = ¢ in Theorem 6.7 below). Also, if we can get a
more sweeping result without more work, all the better. Here is the
generalization of the function.

Definition 6.6. Let k, 4,7 > 2. For1 < a < m, let R(AP;(m), k,¢;r)
denote the least positive integer n (if it exists) such that for every 7-
coloring of [1,n] there is either a k-term monochromatic a (modm)-
progression or an /-term monochromatic arithmetic progression with

gap m.

As usual, R(APy, .k, {;2) is abbreviated by R(AP; ), k, ).

We begin with the case in which m is even.

m)?

Theorem 6.7. Let 1 < a < m and let k > 2 and £ > 3. Assume
is even. Let ¢ = m(k —1)(£—1) Then

—_—m___
ged(a,m)

(6.3) c+1<R(AP; . k,¢)<ct+a(k —2)+1.

m)»
Proof. To establish the lower bound, we will present a 2-coloring
of [1,n] = [1,m(k — 1)(£ — 1)] that avoids both monochromatic k-
term a (mod m)-progressions and monochromatic ¢-term arithmetic
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progressions with gap m. To describe this coloring, we first partition
[1,m(k — 1)(£ — 1)] into the k — 1 blocks

Bi=[m(£—-1)(i—1)+1,m(£—1)i],

1 <4 < k—1. Letting d = ged(a, m), we further partition each B;
into # smaller blocks:

where
Cij=ml-1)GE-1)+dFi-1)+1,m(l—-1)(G~- 1) + dj].

Note that each C; ; contains d integers and that
m(

Sl
[1,n] = U U Ci,j.
Jj=1 =1

Now define the 2-coloring A of [1,n] as follows. Let A : Cy,; — {0,1}
be defined arbitrarily. For (i,5) # (1,1), color C; ; by the following
rule: for each t € [1,d], A\(m({ —1)(i — 1) +d(j — 1) +t) = A(t) if
and only if ¢ and j have the same parity.

Since |B;| = m(¢ — 1) for each %, no single B; can contain an
/-term arithmetic progression with gap m. So if there exists an /-
term monochromatic arithmetic progression with gap m, there must
exist ,y,141,Jj1,7j2 with y — 2z = m, Mz) = Ay), ¢ € Cj,;,, and
y € Cy41,5,- Since 2d divides m and |C;;| = d for all i and j,
jo — j1 must be even. Therefore, by the definition of A, A(z) # A(y),
a contradiction.

To complete the proof of the lower bound, we need to show that,
under ), there is no monochromatic a (mod m)-progression of length
k. Assume, for a contradiction, that such a progression exists. Then
for some i, B; contains at least two terms of this progression. So
assume z,y € B;, with z < y, A(z) = A(y), and y — 2 = a(mod m).
It follows by the definition of A that if y € C;; and x € C; ;, then
j — j' is even. However, since 7 is even, § is odd; this implies that
y — z = ud where u is odd, contradicting the fact that j — j is even.
This establishes the lower bound.
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For the upper bound, we use induction on k. First assume k = 2
and let x be any 2-coloring of [1,m(¢ — 1) + 1]. Let

S={im+1:1<i<¢-1}.

If S is not monochromatic, then some member of S has the same
color as m + 1 — a, and we have a 2-term monochromatic a (mod m)-
progression. If S is monochromatic, and if x(1) = x(S), then we
have an /-term monochromatic arithmetic progression with gap m.
Finally, if S is monochromatic, but x(1) # x(S), then we must have
either x(m+a+1) = x(1) or x(m+a+1) = x(m+1), each of which
gives us a monochromatic 2-term a (mod m)-progression.

Now assume that k£ > 2 and that the upper bound of (6.3) holds
for k and all £ > 3. Let x be any 2-coloring of

I=[1,mk(f{—-1)+a(k—1)+1].

We wish to show that, under yx, there is either a (k + 1)-term mono-
chromatic a (mod m)-progression or an /-term monochromatic arith-
metic progression with gap m. By the inductive hypothesis, we
may assume that there is some k-term monochromatic a (modm)-
progression X contained in [1,m(k —1)(£ — 1) + a(k — 2) + 1] (or else
we would have the desired monochromatic /-term arithmetic progres-
sion). Let zj denote the largest member of X. If any member z of
Y ={zr+a+im:0<4i<¢-1} C I has the same color as X,
then X U{z} is a monochromatic (k+1)-term a (mod m)-progression,
as desired. If no member of Y has the same color as X, then Y is
a monochromatic {-term arithmetic progression with gap m, which
completes the proof. O

For k = 2, Theorem 6.7 gives a precise formula for the associated
Ramsey function, which we state as the following corollary.

Corollary 6.8. Let1 < a < m, and assume ) is even. Then

—m
ged(a,m

R( ;(m),2,€) =m(f—-1)+1.

Under a certain strengthening of the hypotheses of Theorem 6.7,
it can be shown that the lower bound of (6.3) is the exact value of
R(AP;‘(m), k,?). The proof being rather complex, we state this result
without proof.
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Theorem 6.9. Let 1 < a < m, where a divides m and 7} is even.
Let k,£ > 3 with =2 < ™. Then

R(AP} (), k, €) = m(k — 1)(£— 1) + 1.

For k = ¢, we have the following result as an immediate corollary
of Theorem 6.9.

Corollary 6.10. Let 1 < a < m where a divides m and = is even.
Then for all k > 3, R(APY, k) =m(k—1)>+1.

(m)’

We now examine the situation in which EE(%T{) is odd. In the
next theorem we give an upper bound for the associated Ramsey-type
function. We first mention a lemma that will be useful.

Lemma 6.11. Let 1 < a < m. Letk,d > 2 andc > 1. Letn =

R(AP;(m),k,f; r). Then
R( c*a(cm)a k,f; ’I‘) = C(n — 1) + 1.

Proof. Notice that for any ¢ > 1, X = {z; < 23 < -+ < zx} is an
m-a.p. if an only if 1 + ¢X = {1+ cz; : 1 <14 < k} is an arithmetic
progression with gap ¢m. Also, X is an a (modm)-progression if
and only if 1 + ¢X is a ca (mod ecm)-progression. Therefore, by the
meaning of n, any r-coloring of the set {1,c¢+1,2¢+1,...,(n—1)c+1}
must contain a k-term monochromatic ca (mod em)-progression or an
{-term monochromatic arithmetic progression with gap ca. Hence,
R(AP;, oy, by 67) S c(n—1) + 1.

For the reverse inequality, we know there exists an r-coloring
x of [1,n — 1] that avoids both monochromatic k-term a (modm)-
progressions and monochromatic ¢-term arithmetic progressions with
gap m. Now define the r-coloring x’ of [1,¢c(n — 1)] as follows: for
eachj,1<j3<n—-1,

X ([e(d = 1) + L, ¢f]) = x(4).-

We complete the proof by showing that X’ avoids monochromatic
k-term ca (mod em)-progressions, and also avoids monochromatic ¢-
term arithmetic progressions with gap cm. Assume, for a contradic-
tion, that {s; : 4 =1,2,...} is a sequence of one of these types that is
monochromatic with respect to x’. Let t; = [icl] for each 7. Then, by
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the definition of x’, using the reasoning of the previous paragraph, the
sequence {t; : i =1,2,...} C [I,n — 1] is either a k-term a (mod m)-
progression or an {-term arithmetic progression with gap m that is
monochromatic with respect to x, a contradiction. O

We remark that the above proof also shows that if, for a particular
triple (k, ¢; ), one of the two Ramsey-type functions mentioned in the
statement of Lemma 6.11 is infinite, then so is the other.

We now give an upper bound for R(AP;(m), k,¢) when
is odd.

m
ged(a,m)

Theorem 6.12. Let 1 < a < m and let k,£>2. Let d = ged(a,m)
and assume 7 is odd. Then

R(AP (), b, 0) <m (k= 2)(£=1) +1) + ka — d + 1.

Proof. Note that it is sufficient to prove the result for d = 1. To see

this, assume the theorem holds whenever d — 1, and let @’ = $ and

m/ = % Note that ged(a’,m’) = 1. Hence, using Lemma 6.11, we
have

R(AP sk ) = d (R(AP 0k, 0) ~ 1) +1

dm/((k=2)(l—1)+1) + ka' —1) +1
m((k—=2)¢—-1)+1)+ka—d+ 1.

IN

Il

We complete the proof by using induction on k. For k = 2 we
must show that for any ¢ > 2, R(AP;(m), 2,¢) < m+2a. Apparently,
for £ = 2 the value of ¢ is irrelevant; this is so, as we will show
that R(AP,(m),2) < m+ 2a. By way of contradiction, assume there
exists a 2-coloring x of [1,m + 2a] that avoids 2-term monochromatic
a (mod m)-progressions. Let @ represent the operation of addition
modulo m+2a in the group Zmt24, Where we take the identity element
to be m+2a. Notice that if m+a < 5 < m+2a, then i®a =i—m—a,
so that {i @ a,i} is a 2-term o (mod m)-progression. Thus, by our
assumption, for every i € [1,m + 24,

(6.4) X(i & a) # x(i).
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Since d = 1, m is odd and therefore m + 2a is odd. Hence, by (6.4)
we must have x(1® (m + 2a)a) # x(1). However, 1 ® (m + 2a)a = 1,
a contradiction.

Now assume that k£ > 2 is fixed and that the upper bound holds
for k and every ¢ > 2. We will show that it holds for £+ 1. Let £ > 2
and let x be any 2-coloring of [1,m((k—1)(¢{—1)+1)+ (k+1)a]. By
the inductive hypothesis we may assume there is a monochromatic k-
term a (mod m)-progression X within [1, m((k—2)(¢/—1)+1)+ka] (or
else we have the desired /-term progression). The proof is completed
in the very same manner as the last part of the proof of Theorem 6.7;
we leave the details to the reader as Exercise 6.8. |

We next state, without proof, the best known lower bound for
R(AP;(m),k,E) when gcd(+m5 is odd.

Theorem 6.13. Let 1 < a < m and assume that m 158 odd.
Then for all k,£ > 3,

R(AP 1y, k, 0) 2 (k= 2)(m(£ — 2) +a) + 1.

From Theorems 6.7, 6.12, and 6.13, the following result is imme-
diate. -

Corollary 6.14. If1 < a <m, then
R(AP} .y, k;2) = mk*(1 4 o(1)).

the that the magnitude of the Ramsey-type function given by
Corollary 6.14 is significantly smaller than that of w(k;2) (which
grows at least exponentially — see Theorem 2.18).

6.3. The Degree of Regularity

Van der Waerden’s theorem tells us that the family of arithmetic
progressions is regular, i.e., the associated Ramsey-type functior{ is
finite for all k regardless of the number of colors being used. According
to Corollary 6.14, for 1 < a < m the family AP}, , is 2-regular.
However, unlike the family of arithmetic progressions, in most cases
APz | has degree of regularity only two, and never more than three.

What makes this especially interesting is that the associated Ramsey
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function of this family, using two colors, is a much slower growing
function than that of the family of arithmetic progressions. The next
theorem shows that when a # %, this family is not 3-regular.

Theorem 6.15. Let m >3 and 1 < a < m. Assume a # 1’23 Then
R(AP} ., k;3) = 0o whenever k > [22] .

Proof. We actually prove a stronger result: for m, a, and k as in
the statement of the theorem, R(AP;(m),k,2; 3) = co. That is, we
show that there exists a 3-coloring of Z* that avoids monochromatic
k-term a (mod m)-progressions and monochromatic 2-term arithmetic
progressions with gap m.

As was explained in the proof of Theorem 6.12, by Lemma 6.11
we may assume that ged(a,m) = 1. Let s = [22] and t = [42].
Define x : Z* — {1,2,3} to be the 3-coloring represented by the
string

122t-—232m—t122t—232m—t122t—232m—t o

Note that x is periodic with period 2m.

We next show that x yields no 2-term monochromatic arithmetic
progression with gap m. Since m > 3, we have s < m < t. Thus if
J€[1,5], then s+1 <7+ m < 2m, so that x(j+m) # x(j). Likewise
if 7€ [s+1,¢], then 74+ m & [s + 1,t], and if 7 € [t + 1,2m], then
J+m¢g[t+1,2m]. So for every positive integer j, x(j) # x(7 +m),
i.e., there is no 2-term monochromatic member of Afmy-

To complete the proof, let S be any (s + 1)-term a (mod m)-
progression; we show that S is not monochromatic under y. We see
that S has the form {z,2+a+cim,z+2a+cym, ... ,Z+sa+csm}
with 0 <¢; <ep <+ <. Let

§={T,ﬂﬁ+a-|~01m,33+2a+czm,...,alc+sa-i—csm}.

Note that S consists of s+1 distinct elements modulo m, for otherwise
there exist ¢ < j with z4+4a+c¢;m = z+ja+c;m (modm); then, since
ged(a,m)=1, i = j (mod m), contradicting the fact that 0< <j<m.
Clearly, these s+1 elements are also distinct modulo 2m. By the way
X is defined, and since each of [1,s], [s+1,¢], and [t + 1, 2m] contains
no more than s elements, S cannot be monochromatic under x. O
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In the above proof we needed the fact that gdZ"Tym—) > 3. The
proof does not work if @%,7) = 2, ie., if a = F. In this one
case, AP;(m) is 3-regular. In fact, an exact formula for the associ-
ated Ramsey-type function using three colors is known. We state it,

without proof, as the next theorem.
Theorem 6.16. For all m,k > 2, if 2 € Z* then

R(APy

(m)’

k;3) = %(sz — 13k +5) + 1.

So far we know that the family of sequences AP;(m) is regular if
a = 0, has degree of regularity at least three if a = %, and has degree
of regularity two otherwise. We will know the degree of regularity for
this family in all cases if we can determine the degree of regularity
when a = %'. The next theorem provides us with the solution: the
degree of regularity is exactly three if @ = 3. What is even more
striking is that although the associated Ramsey function using three
colors exists (is finite) for all values of k (the length of the sequence),

when four colors are used it does not exist even for k = 2.

Theorem 6.17. Let 1 < a < m and assume that m 18 even.
Then R(AP},,,2;4) = oo.

Proof. By Lemma 6.11 it suffices to prove this when ged(a, m) = 1.
Hence we may assume that m is even and a is odd. To prove the
theorem we provide a 4-coloring of Z* that admits no monochro-
matic 2-term a (mod m)-progressions and no monochromatic 2-term
arithmetic progressions with gap m.

Let x be the 4-coloring of Z* represented by
1212...123434...341212...123434

m m m m

It is easy to see that y admits no monochromatic 2-term arithmetic
progression with gap m. Also, since m is even, by the way x is
defined, whenever |y — z| is odd, x(z) # x(y). Thus, there is no
monochromatic 2-term a (mod m)-progression. ]

We conclude this chapter with a table that summarizes what is
known about the degree of regularity of the families in this chapter.
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Throughout the table, we assume that 1 < a < m is fixed. Whenever
a family is r-regular, we also give the order of magnitude (as a function
of the length k of the sequence, with r fixed) of the best known upper
bound for the associated function R(F, k;r). For comparison reasons,
we also include the family AP, but do not include Gowers’ bounds
for R(AP, k;r) (see Section 2.4).

| F ” Restriction ‘ 2-regular | 3-regular | r-regular (r > 4) |
AP yes yes yes
AP(m) no no no
AP, (m) no no no
APy(m) yes; 2mk | yes; 3mk yes; rmk
AP*(m) m 42 | yes; mk? no no
AP} (m) o =2 | yes; mk® | yes; 3mk? no

Table 6.2: Degree of regularity of families of type AP,

6.4. Exercises

6.1

6.2

6.3

Let 1 <a<m.

a) Show that there exists a set of positive integers that con-
tains arbitrarily long members of AP;(m) but that fails to
contain arbitrarily long members of AP, ().

b) Show that there exists a set of positive integers that con-
tains arbitrarily long members of AP, ,,) but does not contain
arbitrarily long descending waves (see Definition 3.20).

¢) Show that there exists a set of positive integers that con-
tains arbitrarily long arithmetic progressions but does not
contain arbitrarily long members of AP;(m).

Can you find a relationship among a, b, and m, so that any
set containing arbitrarily long members of AP;(m) must also
contain arbitrarily long members of APb*(m)?

Define g(n) to be the largest value of k such that for every
2-coloring of the group Z, = {0,1,2,...,n — 1} there is a
monochromatic k-term arithmetic progression (with distinct
members). Note: we are not insisting that the members of
the arithmetic progression be increasing, just distinct. Find
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—

6.4

6.5

6.6
6.7

6.8
6.9

6.10

6.11

g(6). Also, If it is known that g(n) < k, is there anything we
can say about w(k + 1)?

Define h(n) to be the same as g(n) in Exercise 6.3, except
the members of the arithmetic progression are not required
to be distinct. Find h(6). Also, find an infinite set .S such
that if s € S, then g(s) = h(s).

Prove that if R(AP(),k) > (m —1)(k — 1) + 1, then
w(k) > (m—-1)(k—1)+ 1

Prove that if m > [ﬂkﬁ_lﬁ] then R(APm), k;2) < w(k).

Prove the following implication: if R(AP(y),k;2) = oo for
k > logm, then w(logm) > mlogm and hence w(k) > ke*.

Complete the last part of the proof of Theorem 6.12.
Let 1 < a < m. Prove that R(AP* _,,2;3) < 3m. (Hint: as-

a(m)
sume there exists a 3-coloring x : [1,3m] — {1, 2,3} yielding
no appropriate monoehromatic 2-element set; assume that

x(m+1) =1 and x(2m + 1) = 2, and arrive at a contradic-

. tion.)

Let 1 <a<m,let m be odd, and let £ > 2.

a) Prove the following, which is a slight improvement over
Theorem 6.12 in certain cases when £ = 3:

R(AP;(m), k,3;2) <2m(k—1)+a(k—2)+ 1.

b) Prove the following, which gives a slight improvement over
Theorem 6.12 when ¢ = 2:

R(AP; .k, 2,2)<mk—-1)+alk—1)+1—c¢,

where € = 0 if a is odd, and € = ged(a,m) is a is even.

Consider the following generalization of AP;(m). For T a set
of positive integers, let APy, » = APy(m) U Ar; that is, it
consists of all a (mod m)-progressions and all arithmetic pro-
gressions whose gaps are in T. Now define R(AP;(m),T’ k,f)
to be as in Definition 6.6, except we replace “/-term member
of A(p)” with “/-term member of Ap”. Prove the following.

a) R(AP ) r,k) < coif and only if em € T for some c € Z*.
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b) Let d = ged(e, m), and let ¢ > 1, k > 2 and £ > 3. Assume
that em € T. If 7 is even, then
R(AP; . .k, €) <em(k—1)(¢-1)+ (k—2)a+1.

c) Under the hypothesis of (b), except assuming 2 is odd,
R(AP; . 7k, 0) <em(k—2)(¢ —1)+ m+ak —d + 1.

6.5. Research Problems

6.1

6.2

6.3

6.4

6.5

6.6

Investigate which pairs of integers m and k have the property
that R(AP,), k) < co. Exercise 6.6 handles the situation in

which m > —%w . For those values of m and k that do not
satisfy this inequality, the situation is unclear. For example,
it is known that R(AP(2,),5) = oo, while R(AP3;),5) and
R(AP(23),5) are both finite. In particular, find a function
h(m) (as small as possible) such that R(AP,), h(m)) = oo
for all k > h(m). (See Table 6.1.)

References: [65], [173]

Prove or disprove: if m and k are such that R(AP(m), k) < oo,
then R(AP,),k) <w(k). (See Table 6.1.)
References: [65], [173]

Find bounds for R(AP,), k) when it exists. (See Table 6.1.)
References: [65], [173]

Computer calculations suggest that the upper bound of 3m
from Exercise 6.9 is not the best possible. Improve on this
bound (or show it is the best possible).

References: [173], [176]

It is known that if 2 gcd( is odd, then R(AP* a(m) 2 6) =

For certain such pairs a and m the least value of r such that
R(AP* m), ;7) = oo is 6; for some it is 5. Determine if the
least r is ever 4 (it is never 3 by Exercise 6.9).

Reference: [176]

It has been conjectured that Theorem 6.9 is true when the re-
striction k 2 < 7 is removed. Prove or disprove this conjec-
ture. (Note it is known that this formula does not work if we
loosen the requirement to ﬁa,m) being even. For example,
computer calculations have shown that R(APg(m), 3,3) =49,
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6.7

6.8

6.9

6.10

6.11

which is much closer to the upper bound of 50 given by The-
orem 6.7 than to the lower bound of 41. The conjecture has
been proven when = = 2, but not for other cases.)
Reference: [173]

Improve the lower bound given by Theorem 6.13. Perhaps it
can be tightened to m(k — 2)(¢ — 1) + 1.
Reference: [173]

Corollary 6.8 gives a precise formula for R(AP; (m)? k,£) when
k=2and ﬁ%m is even. Formulae have also been found for
this function when k = 2 and m is odd. No formulae
are known for £ = 2 and general k. Find such formulae.

Reference: [173]

Consider the variation of R(AP; ), k,¢) that follows. Let
R'(AP; .\, k,€) denote the least positive integer n so that
every 2-coloring of [1,n] either admits an /-term monochro-
matic arithmetic progression with gap m, or else in each color
there is a k-term monochromatic a (mod m)-progression. It
has been shown that R’(API*@), k) <2(k—1)(£{-1)+k-2.
Does this generalize to arbitrary a and m?

- Reference: [173|

Families analogous to type AP,(,) have been considered,
where more than one congruence class is allowed. For exam-
ple, the families AP, (m)b(n) = APs(m) U APy(n) were stud-
ied, and a characterization was given for those pairs of con-
gruence classes a (modm) and b(modn) for which such a
family is 2-regular. An upper bound was also given when
2-regularity occurs. As one special case, if m is even and
b= (c—1)m for some ¢ > 2, then R(APy(m) p(cm),3) < 4em.
Prove or disprove the conjecture that under the same hy-
potheses, R(AP,(m) b(cm),3) = 4(c — 1)m + 1.

Reference: [65]

Given 1 < a < m fixed, determine the Ramsey properties
of sequences of the form {z; < z2 < --- < zx} such that
z; —x1 =a(modm) foralli =2,... k.

References: [65], [160], [173]
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6.12 Let 1 < a < m. Consider the family of all sequences of
positive integers of the form {r; < z3 < -+ < z}} satisfying
x; — i1 = t;d, with t; = a (modm) for each ¢, and where
d is some fixed positive integer. For example, if t; = 1 for
all 7, then these are the arithmetic progressions. For m = 2
and a = 1, it has been calculated that for this family (call
it C), R(C,3) =9, R(C,4) = 15, and R(C,5) = 21. Study C.
One specific question is this: what happens for ¢ = 1 and
arbitrary m?
Reference: [65], [160], [173]

6.6. References

§6.1. The proof of Theorem 6.4 is from [65], which also discusses the
Ramsey-type functions for AP, ) UAPyy), as well as unions of more
than two such families. It also contains work related to Exercise 6.11.

§6.2. The family AP;‘(m) is introduced by Landman and Long [173],
and its 2-color Ramsey-type functions are studied. This paper con-
tains proofs of Theorems 6.5, 6.7, 6.9, 6.12, and 6.13, and of Lemma
6.11. It also gives an exact formula for R(AP;‘(m), 2,4). It discusses
several computer-generated values and patterns which leave us with
several unanswered, but intriguing questions.

§6.3. Proofs of Theorems 6.15-6.17 are in [176]; that paper also
includes more work on R(AP;,,,2;7). The generalization of APy,
to families of the type AP,(,) U Ar is examined in [160], which also
includes a table summarizing what is known about the regularity of
these and related families, as well as the asymptotic values of their
associated Ramsey-type functions. For an extended version of Table
6.2, see [176].

Additional References: Arithmetic progressions contained in the
group Z, (where the elements of the arithmetic progression are dis-
tinct in Z,,) are studied in [254] (we believe that the very last inequal-
ity in the article is incorrect) with upper and lower bounds given for
the associated Ramsey-type functions. A relationship between such
Ramsey functions and the classical van der Waerden numbers yields
a lower bound for w(6).

Chapter 7

Other Variations on van
der Waerden’s Theorem

The notion of an arithmetic progression, being so basic, has naturally
led to many intriguing mathematical questions. Here we mention a
few selected topics dealing with arithmetic progressions, not covered
in the previous chapters, that fall under the general heading of Ram-
sey theory on the integers.

7.1. The Function T, (k)

In Chapter 3 the function I'y,, (k) was introduced. Here is a reminder
of its definition.

Definition 7.1. For m,k > 2, I',,, (k) denotes the least positive inte-
ger s such that for every set S C ZT with S = {x1,22,...,2s} and
z; —xi—y € {1,2,...,m}, 2 <i<s, S contains a k-term arithmetic
progression.

We showed in Chapter 3 that I',,,(k) exists for all m and k. We
also discussed the relevance of T',, (k) to the goal of finding an upper
bound on the van der Waerden numbers: w(k) < SP,,(I'yn(k)), where
SP,, is the Ramsey-type function associated with semi-progressions
of scope m. In this section we look more closely at the I';, function.

We first define a related function.

181
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Definition 7.2. For m,k > 2, Q,,(k) is the least positive integer n
such that whenever X = {z1,22,...,2,} and z; € [(i — 1)m,im — 1],
there is a k-term arithmetic progression in X.

We consider an example.

Example 7.3. Let m = 2 and k = 3. We wish to find the least
integer n so that every sequence x,,zo,...,z, satisfying the condi-
tions z1 € {0,1}, z2 € {2,3}, ..., zn € {2n — 2,2n — 1}, will con-
tain a 3-term arithmetic progression. The sequence {0,2,5,6,9,11},
since it does not contain a 3-term arithmetic progression, shows that
03(3) > 6. If we check directly, we find that every 7-term sequence
Z1,Z2,...,27 with each x; € {2i — 2,2{ — 1} does contain a 3-term
arithmetic progression. Therefore Q2(3) = 7.

One obvious question we want to ask is whether €,,(k) always
exists. The next theorem, which describes a fundamental relation-
ship between the values of the 2 functions and w(k;r), answers this
question in the affirmative.

Theorem 7.4. For all k,r > 1,
(k) < wik;r) < Qu(r(k—1) +1).

Proof. Let w = w(k;r). We first show that Q,.(k) < w. To this end,
let X = {x1,22,...,24} withz, € [(n—1)r,nr—1]forn=1,2,...,w.
Thus, for each n € [1,w], z, = (n — 1)r + ¢,, where ¢, € [0,7 — 1].
Now r-color [1,w] as follows: x(n) = j if and only if ¢, = j. From
the definition of w, there is some monochromatic k-term arithmetic
progression under x. So assume {a +id: 0 < i <k — 1} C [1,w] has
color jo for some a,d > 1. Hence, co4iq = jo for each i € [0,k — 1],
so that
ZTotia = (a+1id— 1)1+ coyig

=(a+1id—1)r+jo

= (a—1)r + jo + idr,
for 0 < ¢ < k— 1. Therefore, {244iq : 0 < i < k— 1} is a k-term
arithmetic progression contained in X, and hence, Q. (k) < w(k;r).

Now let m = Q,(r(k — 1) + 1). To complete the proof, we show

that every r-coloring of [0,m — 1] yields a monochromatic k-term
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arithmetic progression (this is equivalent to having w(k;r) < m). Let
A:[0,m—1] — {0,1,...,7—1} be an arbitrary r-coloring of [0, m—1].
Define the sequence A = {a; : 0 < ¢ < m—1} by letting a; = ir+A(3).
Notice that for each i, a; € [ir, (¢ + 1)r — 1]. By the definition of m,
A must contain an arithmetic progression of length r(k — 1) + 1, say

B={a;;:0<j<r(k-1)}={aj, +jd:0<j<r(k—1)}

for some d > 1. Then the set {a;;, : 0 < j < k — 1} is a k-term
arithmetic progression with gap rd. Hence, for each j, 1 < j <k —1,
we have

(7.1) rd = Qijp = Qig;_yy, = r(ijr — i(j—l)r) + )\(ijr) - /\(i(j—l)r)'

Since the range of Ais {0,1,...,7 — 1}, and since the right-hand side
of (7.1) must be a multiple of r, we have that A(ij») = A(ij_1)r)
for each j, 1 < j < k — 1. Hence, by (7.1), ijr — i(j_1), = d for
each j € {0,1,...,k —1}. Thus, {ij, : 0 < j < k— 1} is a k-term
arithmetic progression that is monochromatic, and is contained in
[L,ark-1)] € [1,m]. u

In the next theorem we show that I'.(k) is bounded above by a
simple function involving Q, (k).

Theorem 7.5. (k) <rQ.(k) for all k,r > 2.

Proof. Let m = Q. (k). It is necessary to show that every sequence
{z1 <22 <+ < Ty} satisfying z;—x;_; < r foreachs, 2 < i < rm,
contains a k-term arithmetic progression. Let X be such a sequence.
We begin with the case in which z; = 1, so that for each j, 1 < j < m,
the interval [(j — 1)r, j~ — 1] must contain some element y; of X. By
the definition of m, the sequence ¥ = {y; : 1 < j < m} contains a
k-term arithmetic progression. Since Y C X, we are done.

Now assume z; > 1. Let 2} = z; —x1 + 1 for each 4, 1 <1 < rm.
Since 27 = 1, we know that {z : 1 < i < rm} contains a k-term
arithmetic progression {y; : 1 < j < k}. Hence,

{yj+21—-1:1<j<k}

is a k-term arithmetic progression contained in X, which completes
the proof. O
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Theorem 7.5 bounds I, from above by an expression involving the
Q function. The Q) function may also be used to bound the I" function
from below. The proof being rather straightforward, we leave it as
Exercise 7.2.

Theorem 7.6. Q.(k) < Tg._1(k) for all k,r > 2.

We are now able to tie the van der Waerden numbers more closely
to the I" function.

Theorem 7.7. Let k,v > 2. Then
Fr(k) < w(k, 7') < 1“2,._1(r(k - ].) + ].)

Proof. We first show that I',.(k) < w(k;r). Let w = w(k;r) and let
X ={z;:1<i<w}withz; —z;_1 € {1,2,...,7}. We wish to show
that X contains a k-term arithmetic progression. As in the proof of
Theorem 7.5, it suffices to assume that z; = 1.

Define the coloring x on [1,w] as follows: x(n) = j if and only
if j = min{z; — n: z; > n}. Obviously, w < z,,. Therefore, x is an
r-coloring of [1,w] using the colors {0,1,...,7 —1}. By the definition
of w, there is a monochromatic k-term arithmetic progression under
x; say {a+3jd : 0 < j < k—1} has color t. Note that for any n € [1,w]
such that x(n) = t, we have t + n = z; for some 4, 1 < i < w. So for
each j,0<j < k-1, we have t+a+jd = z;; € X. Thus X contains
a k-term arithmetic progression, as desired.

The second inequality follows immediately from Theorems 7.4
and 7.6, since

wlk;r) < Qu(r(k—1)+1) <Topy(r(k—1) +1).
]

Example 7.8. Taking r = 2 and using Theorems 7.4-7.6, we obtain
1
(7.2) §F2(k) < Qa(k) < w(k;2) < D2k — 1) <T'3(2k —1).

In particular, for k£ = 3, the leftmost two inequalities agree with our
previous calculations of w(3;2) = 9, Q3(3) = 7 (Example 7.3), and
I';(3) = 5 (Example 3.28), while the other two inequalities tell us
that 9 S 92(5) S F3(5)
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The above series of theorems, although providing a good picture
of how the different functions are interrelated, does not actually pro-
vide any specific upper or lower bound for any of these functions. We
next mention, without proof, a lower bound for I'..(k) due to Alon
and Zaks. Note that by (7.2) this also gives a lower bound for Q3 (k)

Theorem 7.9. For every r > 2, there exists a constant ¢ > 0 (de-
pendent upon 7) such that

T, (k) > rk=evk
for all k > 3.

7.2. Monochromatic Sets a(S + b)

In Chapter 2 we gave several equivalent forms of van der Waerden’s
theorem. One of these is the following: for every r-coloring of Z*
and every finite S C Z%, there exist integers a,b > 1 such that
aS + b is monochromatic. We can think of aS + b as being derived
from S via the operations, in order, of multiplication and addition.
What happens if we reverse the order of these two operations? More
explicitly, is it true that for every finite S and every r-coloring of Z*,
there must be a monochromatic set of the form a(S +b)? As we shall
see, the answer is no. This suggests the question: for which S and r
does this Ramsey property hold?

We adopt the following terminology and notation.

Definition 7.10. For S a finite set of positive integers and r > 2,
we say that S is reverse r-reqular if for every r-coloring of Z* there
exist ¢ > 1 and b > 0 such that a(S + b) is monochromatic. We say
S is reverse reqular is S is reverse r-regular for all r > 2.

Notation. If S is reverse r-regular, denote by RR(S;r) the least
positive integer m such that for every r-coloring of [1,m] there is a
monochromatic set a(S + b) for some a > 1 and b > 0.

Interestingly enough, the regularity properties of sets of the form
a(S+0) are far different from those of the form aS+b. As mentioned
above, by van der Waerden’s theorem, the latter type are always
regular. The following theorem describes, quite plainly, which sets
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are reverse regular. We omit the proof, but we do prove Theorem
7.12, below, which has the “if” part of Theorem 7.11 as an immediate
corollary.

Theorem 7.11. A set S of positive integers is reverse reqular if and
only if |S] < 2.

It is obvious that every l-element set is reverse regular. For
sets S such that |S| = 2, it is not difficult to give a formula for
RR(S) = RR(S;2).

Theorem 7.12. Let s,t > 1 with s < t. Then RR({s,t};2) = 2t.

Proof. For convenience we will denote RR({s,t};2) more simply by
RR(s,t). To show that RR(s,t) > 2t — 1, let d = t — s and consider
the 2-coloring x of [1,2t — 1] defined by x(¢) = 1 if | %] is odd and
x(i) = 0if | 4] is even. Clearly, if a(S + b) C [1,2t — 1] with b > 0,
then a = 1 and b < t — 1. So it suffices to show that there is no
0 < b <t—1 such that S + b is monochromatic. Assume, by way
of contradiction, that {s + b,¢ + b} is monochromatic. Then {f—f—SIZJ

and [:—J_E—ZJ have the same parity. That is, | 32| and | =%t | have

the same parity. Since |td+0| = |=b| + 1 we have arrived at a
contradiction.

To show that RR(s,t) < 2t, consider any 2-coloring of [1,2t]. At
least two elements of {2s,s + t,2t} must have the same color. We
consider three cases, depending on which two of these elements are
monochromatic. If 2s and s+t have the same color, then taking b = s
and a = 1, we have a({s,t} + b) monochromatic. We leave the other
two cases as Exercise 7.4. 0O

Although the only reverse regular sets (those that are reverse
r-regular for every r) are those with two or less elements, the next
theorem tells us that for any finite set S and any positive integer r,
there exists some positive integer ¢ such that ¢S is reverse r-regular.
That is to say, for every finite S, for arbitrarily large r there is a
multiple of S that is reverse r-regular (which multiple of S this is,
however, depends on 7).
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Theorem 7.13. Let S be a finite set of positive integers, and let
r > 1. Then there exists a positive integer c (depending on S and 1)
such that ¢S is reverse r-regular.

Proof. Let S and 7 be fixed. From the equivalent form of van der
Waerden’s theorem mentioned in the first paragraph of this section,
by using the compactness principle, we know there is a positive integer
m such that for every r-coloring of [1,m] there is a monochromatic
set of the form aS+b,a>1,b> 0. Let ¢ = lem{1,2,... ,m}.

Let x be any r-coloring of Z+. We wish to show that there exist
a’ > 1 and ¥ > 0 such that a/(cS + ') is monochromatic under .
Consider the r-coloring o of [1,m] defined by (i) = x(ci). We know
that there exist a > 0, b > 0 such that a.5 +b is monochromatic under
a. Therefore, caS + cb is monochromatic under x. Clearly, a < m,
and hence a divides c. Let ¢ = da. Then caS + dab = a(cS + db) is
monochromatic under x. Hence, letting a’ = a and b’ = db, the proof
is complete. O

7.3. Having Most Elements Monochromatic

In this section we look at a modification of van der Waerden’s theo-
rem by loosening the requirement that there is a k-term arithmetic
progression having all of its terms be of the same color. What if we
instead require only that, in any 2-coloring, there be an arithmetic
progression that is predominantly of one color? We formalize this
idea in the following definition.

Definition 7.14. Let £ > 1 and let 0 < j < k. Let w*(k,j) be the
least positive integer w such that for every x : [1,w] — {0, 1} there is
a k-term arithmetic progression with the property that the number
of elements of color 0 and the number of elements of color 1 differ by
more than j.

It is clear from van der Waerden’s theorem that w*(k, j) always
exists.

Example 7.15. If j = k — 1, then w*(k,j) has the same meaning
as w(k), since there must be k elements of one color and none of the
other color. At the opposite extreme, if k is any odd positive integer,
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then w*(k,0) = k, because in any 2-coloring of [1, k] (which itself is
a k-term arithmetic progression), the number of integers of one color
must exceed the number of the other color.

We saw in Example 7.15 that the case in which k isodd and j =0
is rather trivial. This is not so when k is even and j = 0.

Theorem 7.16. Ifk > 2 is even, then w*(k,0) = 29 (k—1)+1, where
j is the largest positive integer such that 27 divides k.

Proof. Let m = 2/(k — 1) + 1, and let x : [1,m] — {1,—1} be an
arbitrary 2-coloring of [1,m]. To show that w*(k,0) < m, assume, for
a contradiction, that, under y, every k-term arithmetic progression
has exactly % of its elements in each color. In particular, for each
a€[l,m—k|,

k—1
(7.3) > xla+i)=0
1=0
and
k
(7.4) > xla+i)=0.
=1
Likewise,
k—1
(7.5) > x(1+i27) =o0.
=0

Note that from (7.3) and (7.4) we have
(7.6) x(a) = x(a+k) for all a € [1,m — k].

We next show that (7.5) and (7.6) lead to a contradiction.
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Let ¢ = 2% Note that from the meaning of j, ¢ must be odd.
Since k — 1 = ¢27 — 1, we have

B
—

271 [(s+1)g-1

x(1+@) = S [ % X(1+i2j)>

i
(=}
»
i
(=)

i=sq
29-1 /q-1
= ( x(1+ (i + sq)2j)>
s=0 1=0
J 1

27-1 /q—
= ( x(1+i2j+sk)>.
s=0 =0

By (7.6), for all s and i such that 0 < i < g—1and 0 < s < 20 -2,
we have

X (14127 + sk) = x (1 +1i27 + (s + 1)k) .

Therefore
k-1 g—1
(7.7) Dox(1+d27) =213 x (1+427).
=0 i=0
From (7.5) and (7.7), we obtain
q—1
Y x(1+i27) =0,
i=0

which gives us a contradiction because q is odd.
We still must show that w*(k,0) > 27(k—1)+1. It suffices to find

one 2-coloring A : [1,m — 1] — {—1, 1} such that for every arithmetic
progression {a,a +d,...,a+ (k — 1)d} C [1,m — 1], we have

k
Y Ma+ (i —1)d) =0.
i=1
Define X as follows. Let A(z) =1 for 1 <z < £, and let A\(z) = -1

for £ < 2 < k. Finally, for z > k, let A(z) = A(Z), where T € [1, k]

and z = 7 (mod k).
Let {a 4+ (1 — 1)d : 1 < i < k} be any arithmetic progression
contained in [1,m — 1]. Let e = ged(d, k) and k' = £. Since d < 27,
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k' is even. Therefore, by the way ) is defined and the fact that k'd is
a multiple of k,

e—1 (s+1)kl

k
DAMa+(-1d)=>"| Y Aa+(i-1)d)
i=1

s=0 \i=sk’+1

X
= ezx\(a+ (i —1)d)

=1
K
2 k'd
= i—1 — —
e;()\(a+(z )d)+)\(a+(z 1)d+ 5 ))
= 0’
because % = £ (mod k). This completes the proof. O

Although very little is known about w*(k,j) for j > 1, progress
has been made on a related question. Before stating the question, we
adopt the following notation. For a 2-coloring x : [1,n] — {1,-1},
denote by [1,7n]; and [1,n]_; the sets of elements of [1,n] having the
colors 1 and —1, respectively. The question we wish to ask may now
be stated this way: for n a positive integer, can we determine some
minimum number j, depending on n, such that for every 2-coloring
X : [1,n] = {1,—1}, there must be some arithmetic progression A
so that AN [1,n]; and AN [1,n]_; differ in size by at least j? The
following theorem gives an asymptotic lower bound for such a j as a
function of n. We omit the proof, which is beyond the scope of this
book.

Theorem 7.17. Let

k
Z x(a +id)
i=0

where the minimum is taken over all 2-colorings x : [1,n] — {1, -1}.
Then j(n) > O(n'/*).

j(n):mgnm%{ ta,d,keZt anda+kd§n},

Example 7.18. To help get some insight into what the above theo-
rem is saying, consider j(12). For a given coloring of [1,12], we want
the most “unbalanced” arithmetic progression A, in the sense that
the difference in the sizes of the sets AN [1,12]; and AN [1,12]_; is
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maximized. For example, let x* be the coloring such that [1,12]; =
{3,4,5,6,8,9,10} and [1,12]_; = {1,2,7,11,12}. Then it is easy
to check that the arithmetic progression A = {3,4,5,6,7,8,9,10} is
the arithmetic progression we seek because the difference between the
sizes of AN[1,12]; and AN([1,12]_, is six, and no other arithmetic pro-
gression yields as great a difference (check this). Using the notation
of Theorem 7.17, this may be stated (equivalently) as

max
a,d,k

Denoting this maximum by M (x*), we have M(x*) = 6, and this
is obtained with a = 3, d = 1, and k = 7 (it is, of course, possible
that there is more than one arithmetic progression that gives the
maximum). Now, if we do this for each 2-coloring x of [1,12], we
get its associated maximum M(x). Then by taking the minimum,
J(12), over all 2-colorings X, we are saying that, for each coloring ¥,
there will always be some arithmetic progression A in [1,12] having
the property that the difference between the number of members of
A with color 1 and the number of members of A with color -1 is at
least j(12). We leave it to the reader (Exercise 7.7) to determine the
value of j(12).

k

D x*(a+id)

i=0

:a+kd§12}=6.

7.4. Permutations Avoiding Arithmetic
Progressions

In this section we are concerned with the question of whether per-
mutations (i.e., arrangements) of certain sequences (possibly infinite)
contain subsequences of a desired length that form an arithmetic pro-
gression. To clarify, we begin with a definition.

Definition 7.19. A sequence (a1,a2,...,a,) or (aj,asz,...) has a
k-term monotone arithmetic progression if there is a set of indices
{i1 < i3 < .-+ < i)} such that the subsequence Qiyy Qigy vy Ay, 1S

either an increasing or a decreasing arithmetic progression.

Example 7.20. The sequence (3,1, 4,5) contains a 3-term monotone
arithmetic progression (namely, 3,4,5), but none of four terms. The
sequence (4,2,3,1) has no 3-term monotone arithmetic progression.
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The sequence (1,9,7,6,2,4,5,3,8) has a 4-term monotone arithmetic
progression (the subsequence 9,7,5, 3 is one), but none of length 5.

Here is one simple question: are there any positive integers n
such that every permutation of the sequence (1,2, ...,n) has a 3-term
monotone arithmetic progression? This is relatively easy to answer.

Theorem 7.21. Let n > 1. There is a permutation of (1,2,...,n)
that does not contain a 3-term monotone arithmetic progression.

Proof. First note that if 1 < n; < ng, and if the theorem holds
for ng, then it also holds for n; (simply take the permutation that
works for no, and delete those integers greater than n). Hence, it is
sufficient to prove the theorem for n € {2* : k > 0}. We do this by
induction on k.

Clearly, the result holds for n = 2°. Now assume that k > 0, that
n = 2%, and that there is a permutation (c1,cz,...,c,) of (1,2,...,n)
that does not contain a 3-term monotone arithmetic progression.
Consider the sequence

S=(2c1 —1,2co—1,...,2¢n, — 1,2¢1,2¢3,...,2¢,).

Note that S is a permutation of the sequence (1,2,...,2n = 2k+1),
and that the first 2% terms of S are odd and the other 2* terms of S
are even.

In any 3-term monotone arithmetic progression, the first and
third terms must be of the same parity. Therefore, if S contains
a 3-term monotone arithmetic progression P, then either

PC{2;—-1,2¢c0-1,...,2¢, -1} =5
or
P C{2c1,2¢a,...,2¢,} = S2.
This is impossible, for if {a, b, ¢} C [1,n] is not a monotone arithmetic
progression, then neither is {2a — 1,2b —.1,2¢ — 1} nor {2a, 2b, 2c}.
Therefore, S is a permutation of {1,2,...,2%*1} that contains no 3-
term monotone arithmetic progression, and the proof is complete. [

Now that we know that for each n there is some permutation of
(1,2,..., n) containing no 3-term monotone arithmetic progression, a
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patural question to ask is: how many such permutations are there?
Clearly, for n > 3, not all n! permutations of [1,n] avoid 3-term
monotone arithmetic progressions (for example, (1,2,...,n)). Let us

enote by 6(n) the number of permutations of (1,2,...,n) containing
no 3-term monotone arithmetic progressions. No formula for 8(n) is
known. However, both upper and lower bounds are known for 6(n).
The following theorem gives a lower bound.

Theorem 7.22. For alln >1, §(n) > 271

Proof. We use induction on n. First note that §(1) = 1, (2) = 2,
end 6(3) = 4, so the inequality holds for n < 3. Now assume n > 4,
and that it holds for any n’ < n. We consider two cases.

Case 1. n = 2m is even. By the reasoning used in the proof of
Theorem 7.21, if S; and S, are any permutations of [1,m] that avoid
3-term monotone arithmetic progressions, then ((25; — 1),2S5,) and
(252, (251 —1)) are permutations of [1, n] that also avoid 3-term mono-
tone arithmetic progressions. Therefore,

6(2m) > (6(m))? + (0(m))* = 2 (B(m))* > 2 (2m1)* = 27",
Case 2. n=2m+1isodd. Asin Case 1, if S; and S, are permuta-
tions of [1,m] and [1, m+ 1], respectively, that avoid 3-term monotone

arithmetic progressions, then (251, (252 —1)) and ((2S; —1),285)) are
permutations of [1,7n] that do likewise. Therefore,

0(2m+1) > 20(m)f(m + 1).
From the induction hypothesis, if n = 2m, then
6(n) > 2(2m 1% = 2",
and if n = 2m + 1, then
6(n) > 2(2m 1) (2m) = 2n~ 1,

We now turn to upper bounds for §(n).

Theorem 7.23. Let n > 1. Ifn = 2m — 1, then 6(n) < (m!)2. If
n = 2m, then 6(n) < (m + 1)(m!)2.
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Proof. Denote by ©(t) the set of permutations of [1,t] that avoid
3-term monotone arithmetic progressions. Note that each member S’
of ©(n + 1) may be obtained from some member S of ©(n) by the

insertion of n + 1 somewhere into S = (a1, as,...,a,). If a; is such
that
(7.8) [" i 3} <a;<n,

then {n + 1,a;,2a; — n — 1} is an arithmetic progression that, from
the meaning of ©(n + 1), cannot occur as a monotone progression in
S’. Therefore, for each a; that satisfies (7.8), S’ cannot have n+ 1 to
the immediate right of a; if 2a; — n — 1 is to the left of a;. Likewise,
n + 1 cannot be to the immediate left of a; if 2a; — n — 1 is to the
right of a;.

Now, if i < n and if n+ 1 is allowed neither to the right of a; nor
to the left of a; 11, S cannot be extended to an element of O(n + 1).
Similarly, S cannot be extended if i = 1 and n+1 is not allowed to be
placed to the left of a;; and S cannot be extended if i =n and n + 1
is not allowed to be placed to the right of a;. Therefore, each of the
n— | 22| + 1 values of a; satisfying (7.8) eliminates at least one of
the n + 1 positions in S’ as a possible location for n + 1. Subtracting
this quantity from n+1 leaves us with at most | 22| positions where
n + 1 may be placed. Hence

n+3

(7.9) O(n+1) < { J 6(n).

By a straightforward induction argument, using the fact that
6(1) = 1 and 0(2) = 2, (7.9) implies the theorem. We leave the
details to the reader as Exercise 7.9. O

We now turn our attention to permutations of Z7, i.e., of the in-
finite sequence (1,2,3,...). For example, S = (2,1,4,3,6,5,8,7,...)
and (12,1,2,3,4,...) are such permutations. Theorem 7.21 tells us
that not all permutations of the interval [1,n] yield 3-term monotone
arithmetic progressions. Is this also the case for the permutations of
Z+? The following theorem tells us the answer.

Theorem 7.24. There is no permutation of Z* that avoids 3-term
monotone arithmetic progressions.
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Proof. Let S = (a1,a2,...) be any permutation of Z*. Let j be
the least positive integer such that a; > a,. Consider ay = 2a; — a;.
Since a; > a1, we have ax > a;. Also, ax — a; = a; — a1, so that
A = {a1,a;,ax} is an arithmetic progression. By the definition of
J» we know that k > j, and therefore A is a monotone arithmetic
progression in S. O

As for guaranteeing monotone arithmetic progressions of more
than three terms in the permutations of Z*, the following theorem is
known, the proof of which we omit.

Theorem 7.25. There exist permutations of Zt that avoid 5-term
monotone arithmetic progressions

An intriguing question, whose answer is still unknown, is whether
there are any permutations of Z* that avoid 4-term monotone arith-
metic progressions.

7.5. Exercises

7.1 Determine the value of Q3(3).
7.2 Prove Theorem 7.6.

7.3 Verify, by direct computation, the observation in Example
7.8 that 9 S 92(5) S F3(5)

7.4 Complete the proof of Theorem 7.12 by considering the two
remaining ways in which {2s, s + ¢, 2t} may be colored.

7.5 What is the value of w*(3,2)? of w*(3,1)? How do these
examples generalize to arbitrary values of k (the length of
the arithmetic progression)?

7.6 Determine the value of w*(4,1).
7.7 Determine the value of j(12) (see Example 7.18).
7.8 Find 6(4) and 6(5).

7.9 Complete the proof of Theorem 7.23 by using induction to
show that (7.9) implies the statement of the theorem.
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7.6. Research Problems

7.1 Improve the lower bound of Theorem 7.9.
References: [53], [63]

7.2 Run a computer program to calculate values of I'z(k). Try
to find an upper bound on T's(k).
References: [53], [63], [195], [209]

7.3 Run a computer program to calculate values of I's(k). Along
the lines of Theorem 7.9, try to find a lower bound for 'z (k).
References: [53], [63], [195], [209]

7.4 Is it true that RR(S,;r) < oo if and only if, for every prime
p, every r-coloring of [1,p — 1], every a > 1, and every b > 0,
a(S + b) (mod p) is monochromatic?

Reference: [72]

7.5 Characterize those pairs (S,r) for which RR(S;r) exists.
Reference: [72]

7.6 Find an upper bound and/or a lower bound on w*(k,1). A
computer program to calculate values may give interesting
results.

References: [23], [92], [99], [257]

7.7 Determine if limg_, o [w* (k, 1)]/* < 0.
References: [23], [92], [99], [257]

7.8 Determine if limg_, o [w* (k, Vk)]/* < o0.
References: [23], [92], [99], [257]

7.9 Improve on Theorem 7.17, i.e., find an improved lower bound.
References: [84], [92], [99], [228], [257]

7.10 Improve the best known upper bound for j(n) (see the Ref-
erences section below).
References: [99], [257]

7.11 Determine if there exists a permutation of Z1 that contains
no 4-term monotone arithmetic progressions.
References: [43], [44], [76], [200], [223], [244)]

7.12 Does there exist ¢ > 0 such that for alln € Z*, [8(n)]}/" < ¢?
Does lim,, oo [f(n)]"/™ exist?
Reference: [76]
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7.13 Investigate the question of avoiding monotone arithmetic pro-
gressions by permutations of Z (rather than Z%).
Reference: [76]

7.14 Determine if it is possible to partition Z* into two sets, each
of which can be permuted to avoid 3-term monotone arith-
metic progressions. What if we replace Z* with Z?
Reference: [76]

*7.15 Let k > 1. Let {a; < aa < ---} be a sequence of positive
integers such that a;4+q —a; < k for all ¢ > 1. Must there be
a 3-term arithmetic progression as, ay,a, such that z,y, z is
also an arithmetic progression? This is known to be true for
k<4.

7.7. References

§7.1. Theorems 7.4-7.7 are due to Nathanson [195]. Earlier, Rabung
[209] showed that the existence of I',.(k) for all 7,k > 1 is equivalent
to van der Waerden’s theorem. Theorem 7.9 is due to Alon and Zaks
[16].

§7.2. Theorems 7.11-7.13 are from [72], which also includes more on
reverse regular sets.

§7.3. Theorem 7.16 is due to Spencer [260]. Roth [228] proved
Theorem 7.17. In the other direction, Spencer [257] showed that
j(n) < ey/nBIR% for some constant c. Further work on j(n) may be
found in [22], [99], [234], [235], [236], [237]. Valko [269] generalizes
the known upper and lower bounds on j(n) to higher dimensions.
Some other results related to j(n) are found in [84], [88], [238].

§7.4 The proof of Theorem 7.21 is from [202]. Theorems 7.22-7.25
and their proofs appear in [76]. Sidorenko [250] gives a permutation
of Z* in which there are no 3 terms such that both their values and
positions form arithmetic progressions. Modular analogs of some of
this work are consider in [196].

Additional References: This chapter covered only a few of the
many interesting problems related to van der Waerden’s theorem that
have been considered. A stronger form of van der Waerden’s theorem
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states that for every r-coloring of Z*, for each k there is a monochro-
matic arithmetic progression A = {a +id : 0 < ¢ < k — 1} such
that d has the same color as A. For proofs of this theorem and ad-
ditional information, see [3], [51], [127], [215]. A related result of
Graham, Spencer, and Witsenhausen [129] determines how large a
subset of [1,n] can be, that fails to contain both a k-term arithmetic
progression and its gap d (the answer is a function of n and k).

Another question is this: what is the maximum number s of subsets
C1,Cs,...,C; of [1,n] such that for all ¢ # j, C; NC} is an arithmetic
progression? If we include the empty set as an arithmetic progression,
then it is known that

=(5)+(3)+(1)

and that this is the best possible upper bound on s [128]. If we do
not allow the empty set to be an arithmetic progression, then it is
known that there is a constant ¢ such that s < cn? [252]. For other
interesting variations involving arithmetic progressions, see [18], [60],
and [205].

Chapter 8

Schur’s Theorem

Until now we have devoted most of our study to Ramsey-type theo-
rems dealing with variations of van der Waerden’s theorem. There are
many other interesting aspects of Ramsey theory on the integers that
we may explore, and we do so in the remaining chapters. We begin
with a result that came before van der Waerden’s theorem: Schur’s
theorem.

Van der Waerden’s theorem proves the existence, in particular, of
w(3;7). In other words, any r-coloring of Z+ must admit a monochro-
matic 3-term arithmetic progression {a, a+d, a+2d} for some a,d > 1.
Lettingz = a, y = a+2d, and z = a + d, this may also be described
as a monochromatic solution to x + y = 2z, where z,y,2 € Z* and
T # y. Since x +y = 2z is the equation of a plane, it is natural to
ask other questions about coloring points in a plane.

Consider the equation of the simple plane z = z+y. Let P be the
set of the points in this plane whose coordinates are positive integers.
Thus, for example, (1,1,2) and (3,4,7) are in P (note that we are
not insisting that x and y be distinct). Next, using any finite set of
colors, assign a color to each positive integer.

Now, for each (a,b,c) € P, perform the following. If the colors
of a, b, and c are identical, then color (a,b,c) (in the plane) with
that color. Otherwise, mark (a,b,c) (in the plane) with an X. The
question is: can all of the points in the plane be marked with an X ,

199
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or must there be a colored point? We would like to know whether
every coloring yields a colored point; in other words, is it possible to
finitely color Z* so that no point (z,y, z) € P is colored?

This question was answered by Issai Schur in 1916, and is one
of the first Ramsey-type theorems. However, Erdés and Szekeres’
rediscovery of Ramsey’s theorem in 1935 is due most of the credit for
popularizing the subject.

Schur was not motivated by the idea of coloring points in the
plane, but rather by perhaps the most famous and elusive of all math-
ematical problems, Fermat’s Last Theorem (which was not officially
a theorem until Wiles proved it in 1995). His result, which states
that the answer to the above question is “no, there must be a colored
point,” has become known as Schur’s theorem, but was only used as
a lemma for the main theorem in his paper, which is given below as
Theorem 8.1. We will prove this theorem after we have acquired a
necessary tool.

Theorem 8.1. Let n > 1. There exists a prime q such that for all
primes p > q the congruence z™ + y"™ = z™ (mod p) has a solution in
the integers with xyz Z 0 (mod p).

From Theorem 8.1 we can garner some insight into why Fermat’s
Last Theorem was so difficult to prove, and why no elementary proof
(if one exists) has surfaced yet: Fermat’s Last Theorem is false if we
replace the equation by a congruence. Because of Schur’s result, we
know that we cannot prove Fermat’s Last Theorem just by considering
congruences.

8.1. The Basic Theorem

We now state and prove Schur’s theorem. We make use of Ramsey’s
theorem (see Section 1.2). We remind the reader of the following
terminology.

Given a coloring x of a set of positive integers and an equation
£ in the variables x1, s, ..., Z,, we say that £ has a monochromatic
solution under x if there exist values of x1,zo,..., T, that satisfy £
and that are monochromatic under .
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Theorem 8.2 (Schur’s Theorem). For anyr > 1, there exists a least
positive integer s = s(r) such that for any r-coloring of [1, s] there is
a monochromatic solution to = + y = 2.

Proof. Ramsey’s theorem states, in particular, that for any r > 1
there exists an integer n = R(3;r) such that for any r-coloring of K,
(the complete graph on n vertices) there is a monochromatic triangle.
We will use a specific coloring, described as follows. Number the ver-
tices of K, by 1,2,...,n. Next, arbitrarily partition {1,2,...,n—1}
into r sets. In other words, randomly place each z € {1,2,...,n—1}
into exactly one of the r sets. These sets will correspond to the r col-
ors. Color the edge that connects vertices 7 and j according to the set
of which |j — 4| is a member. By Ramsey’s theorem, a monochromatic
triangle must exist. Let the vertices of this monochromatic triangle
be a < b < c. Hence, b—a,c—b, and ¢ — a are all the same color. To
finish the proof, let £ = b —a, y = ¢ — b, and z = ¢ — a, and notice
that z +y = z. O

Definition 8.3. We call the numbers that satisfy Schur’s theorem
the Schur numbers and denote them by s(r). (Some books define
the Schur number as the maximal number m = m(r) such that there
exists an r-coloring of [1,m] that avoids monochromatic solutions to
z +y = z. We prefer to use the same type of notation as that of the
van der Waerden numbers.)

Definition 8.4. A triple {z,y, z} that satisfies z + y = z is called a
Schur triple.

The only values known for the Schur numbers are for r = 1,2, 3, 4:
s(1) =2, s(2) =5, s(3) = 14, and s(4) = 45. In the next example we
show that s(2) = 5.

Example 8.5. In Section 1.4 we showed that s(2) > 5 (color 1 and
4 red; color 2 and 3 blue). We now show that s(2) < 5. Consider any
2-coloring of [1,5]. Without loss of generality we may assume that
1 is colored red. Assume, by way of contradiction, that there is no
monochromatic Schur triple. Since 1+ 1 = 2, we must color 2 blue.
Since 2+ 2 = 4, we must color 4 red. Since 1+4 = 5, we must color 5
blue. All that remains is to color 3. However, if 3 is red, then {1, 3,4}
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is a red Schur triple and, if 3 is blue, then {2,3,5} is a blue Schur
triple.

Having Theorem 8.2 under our belt, we are now in a position to
prove Theorem 8.1. The proof uses elementary group theory.

Proof of Theorem 8.1. Let p > s(n) be a prime and let
Z,={1,2,...,p—1}

be the group (under multiplication) of nonzero residues modulo p.
Let S = {z" (mod p): x € Z}}. Notice that S is a subgroup of Zy.
Hence, we can write Z,, as a union of cosets Z, = Ule a;S, where

k

= D)

Next, define a k-coloring of Z,, by assigning the element t € Z,
the color j if and only if t € a;S. Since k < n and p — 1 > s(n),
by Schur’s theorem there exists a monochromatic triple {a, b,c} C Zy
such that a + b = ¢. That is, for some i, 1 < i < k, there exist
a,b,c € a;S with a + b = c. Hence, there exist z,y, z € Z,, such that
a;x" + a;y™ = a;2" (mod p). Multiplying through by a; ! completes
the proof. O

Although Schur’s original proof of Theorem 8.2 did not involve
Ramsey numbers (in fact, Ramsey’s theorem was not proved until
1928, while Schur proved his result in 1916), it is clear from our
proof that the Schur numbers and Ramsey numbers are related. In
particular, we have the following corollary. (Recall that R, (3) denotes
R(3,3,...,3), where we are using 7 colors.)

Corollary 8.6. Forr > 1, s(r) < R.(3) — 1.

Proof. Using the coloring given in the proof of Theorem 8.2, we have
a correspondence between edgewise colorings of K, and colorings of
[1,n — 1]. More explicitly, for any r-coloring of [1,n — 1] we derive
an r-coloring of K, by numbering the vertices of K, and considering
the differences between all pairs of vertices. By Ramsey’s theorem,
for n = R,(3) we are guaranteed a monochromatic triangle. By the
definition of our coloring, this monochromatic triangle corresponds
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to a monochromatic Schur triple. Hence, if n = R,.(3), we have
s(r)<n—1=R.(3)-1. O

Corollary 8.6 gives us an upper bound. However, the upper bound
is not very useful unless we have an explicit upper bound for R.(3).
Fortunately, we do.

Lemma 8.7. Forr > 1, R.(3) < 3rl.

Proof. For r = 1 we have R;(3) = 3, so that the given bound is

true. We now assume that r > 2. For 1 < ¢ < r, denote by R.(3)

the Ramsey number R(3,3,...,3,2,3,3,...,3). We begin by showing
S—_—— N—

i—1 r—i

that
(8.1) RA&SjiM@)
=1

To prove (8.1) we will use the same method of proof as that employed
to prove Theorem 1.15. Let m = Y. _, R:(3) and consider any 7-
coloring of the edges of K,,,. Select one vertex, say v. Let the colors be
1,2,...,r,andlet C;, 7 =1,...,r, denote the set of vertices connected
to v' by an edge of color i. By the pigeonhole principle there must
exist j such that |C;| > R%(3). Hence, the complete graph on C; must
contain either a K of color j or a monochromatic triangle of color
ce{l,2,...,j—-1,5+1,j+2...,r}. If it contains a monochromatic
triangle, we are done. If it contains a K5 of color 7, then these two
vertices, together with v, create a monochromatic triangle of color j,
thereby proving (8.1).

Next, we show that for any i € {1,2,...,r},
(8:2) Ri(3) = R,—1(3).

Let n = Ri(3). Clearly, n > R,_1(3). It remains to show that
n < R,_1(3). By the definition of n, there must exist an r-coloring
of the edges of K,,_; that avoids monochromatic triangles of color
ce{1,2,...,i—1,i+1,i+2...,r} and avoids a K> of color i. Since
we must avoid a K of color 7, no edge may have color i. Hence, we
actually have an (r — 1)-coloring of the edges of K, _; that avoids
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monochromatic triangles. Thus R._1(3) > n, and we conclude that
(8.2) holds.

Using (8.2), we see that Y . _; R.(3) = rR,_1(3). Hence, by
(8.1), R-(3) £ rR,_1(3) for r > 2. By repeated application of this
inequality and the fact that R»(3) = 6, we get R,.(3) < 3r!. O

From Corollary 8.6 and Lemma 8.7, we have the following result.

Theorem 8.8. Forr >1, s(r) < 3r! —1.

Now that we have an upper bound on the Schur numbers, we
turn our attention to a lower bound.

Theorem 8.9. Forr > 1, s(r) > 31,

Proof. Let n > 1 and assume x : [1,n] — {1,2,...,7} is an r-
coloring of [1,n] that has no monochromatic Schur triple. Define an
(r + 1)-coloring x : [1,3n + 1] — {1,2,...,r + 1} that extends x
as follows. For all z € [n+ 1,2n + 1], let Y(x) = r + 1; and for all
z € [1,n]U[2n+2,3n+1], let X(z) = x(y), where z = y (mod 2n+1).

We now argue that [1,3n + 1] contains no monochromatic Schur
triple under . Let {x,y,2} with z < y be a Schur triple. First,
consider the color » + 1. Since 2(n + 1) > 2n + 1, {z,y,2} cannot
be a monochromatic Schur triple of color r + 1. Now consider any
color j # r+ 1. Since x is identical to x on [1,n], {z,y,z} C [1,n]
cannot be a monochromatic Schur triple of color j. Furthermore,
since (2n+2) + (2n+2) = 4n +4 > 3n + 1, it is not possible that
z,y € [2n 4 2,3n + 1]. Thus, [2n + 2,3n + 1] does not contain a
Schur triple of color j. Hence, any Schur triple of color j must have
z€[l,n]and y € [2n +2,3n + 1].

However, if {x,y, 2} is such a Schur triple of color j, by taking
Y, € [1,n] with y =y (mod (2n + 1)) and 2’ = z (mod (2n + 1)),
we see that {x,y’, 2} is a Schur triple of color j contained in [1,7], a
contradiction.

Thus, we have shown that if s(r) > n+1, then s(r+1) > 3n+2.
Hence,

(8.3) s(r+1)>3s(r) — 1.
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The proof is completed by induction on r. Clearly, s(1) =2 > ___312+1,
Now assume that r > 1 and that s(r) > 252, Then, by (8.3),

s(r+1)23s(r)—123(§r2i1)—1=%%—ﬂ. O

Since we have the existence of at least one monochromatic Schur
triple in any r-coloring of [1, s(r)], we must have an infinite number
of Schur triples in any 7-coloring of the natural numbers. To see this,
note that if [1, n] contains a monochromatic Schur triple, then so does
k[1,n] = {k,2k, ..., nk}, for any positive integer k. This holds by the
trivial observation that if x +y = z then kz + ky = k2. Now consider
the sets S; = s(r)?[1,s(r)] for j = 0,1,2,.... For each j we have
a monochromatic Schur triple that resides in S;. Consequently, any
r-coloring of the positive integers must contain an infinite number of
monochromatic Schur triples.

With regards to the infinitude of monochromatic Schur triples,
we consider the following problem: find the minimum number of
monochromatic Schur triples that a 2-coloring of [1,7n] must have.
We will answer this question in Theorem 8.15, below. As is often the
case with such questions, the answer is given asymptotically, and so
we will be using the O(n) notation (see Section 1.5). To solve the
above problem, we have need of the following notation and lemmas.

Notation. We denote by Af,<p<c} a triangle on vertices a,b,c. We
denote by M, (n) the number of monochromatic Schur triples under
X, where x is a given 2-coloring of [1,n].

Lemma 8.10. In every edgewise 2-coloring of the complete graph
K, there are at least g—z + O(n?) monochromatic triangles.

The proof of Lemma 8.10 is Exercise 1.10.
Lemma 8.11. Over all 2-colorings of [1,n], the minimum number of

monochromatic Schur triples is O(n?), i.e.,

mxin(MX(n)) = 0(n?).

Proof. We note first that for any 2-coloring x, My (n) < cn? + O(n)
for some positive constant ¢ which is independent of x (we leave this
to the reader; see Exercise 8.2). To complete the proof, we use Lemma
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8.10 to show that M, (n) > 28 +0O(n) for any 2-coloring x. Examining
the proof of Schur’s theorem, we see that there is a natural connection
between triangles and Schur triples: with each triangle Afacbec) We

can associate the Schur triple {b — a,c —b,c — a}.
Define a @ b = j, where a +b=j (mod n) and 1 < j < n.

Next, we notice that, for j = 1,...,n, the triangles

Afaj<t@j<cos and Afagj<(ate—b)@j<cds)
have the same associated Schur triple. Consequently, each Schur triple
corresponds to at most 2n triangles (why?). Combining this with
Lemma 8.10, we have at least %‘; +O(n) monochromatic Schur triples,
thereby proving the lemma. O

Lemma 8.12. Let ¢ > 0 and let n be sufficiently large. Let x be a
2-coloring of [1,n + 1] and let x be x restricted to [1,n]. If My(n) =
en? 4+ O(n), then My (n+ 1) = cn? 4+ O(n). Hence, we may take n to
be even when determining the rate of growth of M, (n).

Proof. The only monochromatic Schur triples counted in M, (n+ 1)
that are not counted in My (n) are of the form {z,y,n + 1} with
z+y = n+ 1. There are only [%] possibilities, since {z,y} must
belong to {{1,n},{2,n—1},...,{| 2|, n+1~ |2+L]}}. Hence,

0< My(n+1) = My(n) < 5 +1,
so the conclusion of the lemma holds. O

Lemma 8.13. Let x : [1,n] — {red, blue} be described by R, the set
of red integers under x, and B, the set of blue integers under . Let
N* be the set of non-monochromatic pairs {a,b} C [1,n] such that
a+b>n. Then

(8.4) 2M,(n) = (’2’) — 2|R||B| + |N*|.

Proof. To justify (8.4), we will view the Schur triples as ordered
sets, so that we consider (a,b,a+b) and (b, a,a+b) to be distinct (for
a # b). Thus, we will actually count each Schur triple twice. This is
the reason why 2M, (n) is on the left-hand side of (8.4), instead of
just M, (n).
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First, note that (’2‘) counts all ordered Schur triples by choosing
yand z in £ 4+ y = 2. Next, let a € R and b € B. Then the ordered
Schur triples (|b — al,a,b) and (a,b,a + b) are not monochromatic,
and thus we want to remove these from the set of ('2‘) Schur triples.

' Hence, we subtract 2|R||B| from (}). However, the ordered Schur

2
triples (a,b,a + b) with a + b > n were not counted in (7}). Hence,

since these were subtracted once in —2|R||B|, we need to add |[N*|.
This establishes (8.4). O

We are now in a position to give the asymptotic minimum number
of monochgomatic Schur triples over all 2-colorings of [1,n]. We start
with Theorem 8.14, which gives an upper bound on this minimum.

Theorem 8.14. Over all 2-colorings of [1,n], the minimum number
. . . 2
of monochromatic Schur triples is at most %5 + O(n).

Proof. It is sufficient to prove the result for those n that are multiples
of 11, since if 11 { n we may apply Lemma 8.12 at most 10 times to get
the desired result. Hence, assume 11 | n and consider the 2-coloring of
[1,n] defined by R = [{%, 1%] and B = [1, 42 — 1U[XR 11, n], where
R is the set of red integers and B is the set of blue integers. To prove
this theorem we will show that this coloring admits, asymptotically,
only 35 +O(n) monochromatic Schur triples. By letting n = 11k, our

coloring is R = [4k,10k] and B = [1,4k — 1] U [10k + 1, 11k].

We start by counting the red Schur triples. Thus, we will count
the number of solutions to x + y = z in the interval [4k, 10k]. First,
note that z > 8k. It follows that the red Schur triples are the triples

{4k +c,z—4h—c,2} 18k < 2 < 10k,0 < c < 258k}

(So that we do not count any red Schur triple more than once, we
require 4k + c < z—4k —c,ie., 0 < c < %) Now, by summing
over all possible values for z we have

10k

Yo% +1) =2) 4+ (k+1)

2=8k z=1
=kk+1)+(k+1)
=k +2k+1

red Schur triples.
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Next, we count the blue Schur triples. The same analysis as above
shows that within the interval [1,4k — 1] there are 4k? + O(k) blue
Schur triples. The details for this are left to the reader as Exercise
8.3. Furthermore, there is obviously no blue Schur triple within the
interval [10k + 1, 11k]. However, we have not counted all of the blue
Schur triples yet; for example, {1,10k + 1,10k + 2} has not been
counted.

In order to count the remaining blue Schur triples {z,y, 2z}, let
z € [1,4k — 1] and let z € [10k + 1,11k]. Notice that we must have
y € [10k + 1,11k] in order to have z + y = z. Writing z = 1 + ¢
and y = z — ¢ — 1 with ¢ > 0, we must have z — 1 — ¢ > 10k + 1,
i.e., ¢ < z — 10k — 2. Hence, we wish to count the number of triples
{l1+c,z—c—1,z} with0<c¢<2z-10k -2 and z € [10k + 1, 11k].
Summing over all possible values of z, we have

11k
> (z—-10k—1) =1((11k)? - (10k)?) — 10k* + O(k)
z=10k+2
=5 +0(k
remaining blue Schur triples.

Adding all cases together, we have

11, 11 /n\? _n?
S +0k) = 5 ($1) +0(m) = 25 +0(n)
monochromatic Schur triples. O

We now show that the upper bound given in Theorem 8.14 is
actually the minimum.

Theorem 8.15. Ouer all 2-colorings of [1,n], the minimum number
of monochromatic Schur triples is Z—; + O(n).

Proof. Denote by R and B the sets of red integers and blue integers,
respectively, in any red-blue coloring x. Let NT be the set of non-
monochromatic pairs {a,b} C [1,n] such that a + b > n, and let
N~ be the set of non-monochyomatic pairs {a,b} C [1,n] such that
a+b<n.

|
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From Lemma 8.13, we have 2M,(n) = (3) —2|R||B|+|N*|. Now,
gince |R| + |B| = n, we have

(8.5) |R| =n(} + ) and |B| =n(} —q)

for some a € [—%,1]. Notice that for a and n fixed, |R| and |B| are
determined, so that by minimizing |N*| we are minimizing M, (n).
Hence, our first goal is to minimize |NT| for o and n fixed. To this
end, notice that

86) . IN*|+INT[=|R|IB|=n*(% - a?).

Our next step is to find an upper bound for |[N~| — |[N*t|. Such
an upper bound, when coupled with (8.6), will give a lower bound for
|NT|, thereby bounding the number of monochromatic Schur triples
from below. From Lemma 8.12, we may assume that n is even, so
that to obtain an upper bound for |[N~| — |N*| we may decompose
[1,n] into disjoint 2-element subsets {z,n +1—=z}, z=1,2,..., 5.

For the pair of sets X = {a,n+1—a} and Y = {b,n+1—b} with
a # b, we will count the contribution of the elements of these sets to
N* and to N~. In the following we will only consider z+y with z € X
and y € Y. Thus, we do not count pairs of the form {z,n+ 1 — z}.
The reason for this is that each such pair only contributes one to N,
and since the number of such pairs is § = O(n), by Lemma 8.11 we
may safely ignore these pairs in the asymptotic calculation.

We consider four cases. In each case, let
P={(z,y):zeX,yeY}.

We will determine the number of pairs in P contributing to N~ and
the number contributing to N*. By doing so, we will find a function
f(n) such that [N=| — |[NT| < f(n). Such a function, together with
(8.6), will provide a lower bound for |[N*|.

Case 1. X and Y are monochromatic of different colors. These two
sets produce four non-monochromatic pairs in P whose sums are
a+bn+l+a—-bn+1+b—a,and 2n+2—a—b. Clearly two of
these sums exceed n and the other two are less than n. Consequently,
[PNNT|=|PNN~|, ie., the number of pairs in P contributing to
Nt is equal to the number of pairs in P contributing to N~.
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Case 2. X and Y are non-monochromatic with a and b being different
colors. These sets produce two non-monochromatic pairs with sums
a+band 2n+2—a—b. Hence, [ PNN*|=|PNN~|.

Case 3. X and Y are non-monochromatic with a and b being the
same color. These sets produce two non-monochromatic pairs with
sums n+1+b—aandn+1+a—b. Thus, |[PONNT|=|PNN"|

Case 4. X is monochromatic and Y is non-monochromatic with a
and b different colors. These sets produce two non-monochromatic
pairs with sums a + b and n + 1+ b — a. Since in our decomposition
a + b < n, both of these sums are at most n. In this situation the
contribution of these pairs to N~ is 2 greater than their contribution
to Nt,ie, |[PNNt|+2=|PNN"|.

Since our goal is to find some f(n) such that |[N~|—|N*| < f(n),
we note that only Case 4 gives us a situation where |N | is larger than
IN*| (so that we must have f(n) > 0 for n > 0). We now analyze
Case 4 to determine f(n).

Let On be the number of non-monochromatic sets {z,n+1 —z}.
Then exactly one of z,n + 1 — z is in R. Thus, using (8.5), we
see that the number of monochromatic sets {z,n + 1 — z} in R is
1(n(3+a)) -2 = (L +a-p)2. Looking at the details of Case
4, we see that for every non-monochromatic set {b,n + 1 — b}, a
monochromatic set {a,n+1—a} with a and b the same color will have

sums that contribute exactly 2 more to N~ than to N*. Therefore,

INT| = IN*| = 26n(;3 +a-F)(5) +O0(n)
2
(8.7) < (%J’Ta)nuom),

where the second expression equals the third expression precisely
when 8 = % (3 +a). Thus, we have found an upper bound on
IN~| — |N*| as sought.

Combining (8.6) and (8.7), we get

2
(8.8) |N+| > (4—11 _2(12 _ (é';a) )n2+0(n)

3
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Using (8.4) with (8.8), we have

2
n2e—g) + i) n? + O(n).

(8.9) 2My(n) > ( 3 11

We can easily see that (8.9) is minimized when o = 515, giving
2
2M, (n) > % + O(n), Le., My(n) > 2 + O(n).
The proof is complete, since the upper bound given in Theorem
8.14 matches this lower bound. O

Now that we see that the coloring in Theorem 8.14 attains the
minimum, we remark that it can be shown that this coloring is essen-
tially the only coloring that attains the minimum number of mono-
chromatic Schur triples.

We have an extension of Theorem 8.14 that gives the following
upper bound for the analogous r-colored question (r > 2).

Corollary 8.16. Let r > 2. The minimum number of monochro-
matic Schur triples over all r-colorings of [1,n] is no greater than
77.2

Proof. Extending the coloring defined in the proof of Theorem 8.14,
we define, for n > 27, the coloring x : [1,n] — {1,2,...,7} by

J if 7 <i< gy for1<j<r-2
-\ . . 4 10 .
X(Z)— r—1 lflSlSﬁOfﬁ(lS%},
: 4n : 10n
r if 725 <i< 7o

The calculation showing that x admits only 1—1?"% +0O(n) mono-
chromatic Schur triples is left to the reader as Exercise 8.6. O

8.2. A Generalization of Schur’s Theorem

We turn our attention to a generalization of Schur’s theorem, given
below as Theorem 8.17. Another, more powerful, generalization was
done by Richard Rado, a student of Schur, and is investigated in
Chapter 9.

It will be convenient to use the following notation.



212 8. Schur’s Theorem

Notation. Let £(t) represent the equation z, +z2+---+x4_1 = Ty,
where 1, z9,...,2; are variables.

Theorem 8.17. Let r > 1 and, for 1 < i < r, assume that k; > 3.
Then there exists a least positive integer S = S(k1,ka,..., k) such
that for every r-coloring of [1,S] there is a solution to L(k;) of color
j for some j € {1,2,...,7}.

The numbers S(ki, ks, ..., k) are called the generalized Schur
numbers. We denote the case k; = ko = - -+ = k, = k more simply by
Sy (k).

To fully understand Theorem 8.17, consider the following exam-
ples.

Example 8.18. Any red-blue-green coloring of [1,5(3,4,5)] must
contain a solution to £(3) consisting of only red integers, or a so-
lution to £(4) consisting of only blue integers, or a solution to £(5)
consisting of only green integers. Theorem 8.17 tells us that S(3,4, 5)
is the least positive integer such that the above condition is met.

Example 8.19. If k; = 3 for 1 < i < r we have S(3,3,...,3) = s(r),
the r-colored Schur number we have already investigated. Considering
S.(k) = S(k,k,...,k), Theorem 8.17 states that any r-coloring of
[1, S, (k)] must contain a monochromatic solution to L(k).

Example 8.20. We will determine S(4,5). To see that S(4,5) > 14,
consider the 2-coloring of [1,13] defined by R = {1,2,12,13} and
B = [3,11], where R is the set of red integers and B is the set of blue
integers. It is easy to check that this coloring admits no red solution
to £(4) and no blue solution to £(5).

To show that S(4,5) < 14, let R be the set of red integers and
B be the set of blue integers in a given red-blue coloring of [1,14].
We must show that there is either a red solution to £(4) or a blue
solution to L£(5).

We proceed by contradiction, so assume that no red solution to
£L(4) and no blue solution to £(5) exist in the given coloring. First
consider the case in which 1 € R. Since 1+ 1+ 1 = 3 we must have
3 € B. Next, since 3+ 3 +3 + 3 = 12 we must have 12 € R. This
implies that 10, 14 € B, for otherwise I+1‘-+ W=120r1+1+12=14
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would be a red solution. Next, since 2+ 2+ 3+ 3 = 10, we must have
2 € R. This implies that we must have 5 € B to avoid the red solution
1+2+2 =15, which gives 3+ 3 + 3+ 5 = 14 as a blue solution, a
contradiction. The case when 1 € B is left to the reader in Exercise
8.7.

Just as the proof of Schur’s theorem follows easily from Ramsey’s
theorem, so does the proof of Theorem 8.17.

Proof of Theorem 8.17. Let n = R(ky,ks,...,k,) be the r-colored
Ramsey number. Consider the same edgewise coloring as in the proof
of Schur’s theorem. That is, number the vertices of K,, by 1,2,...,n
and arbitrarily partition the set {1,2,...,n — 1} into r subsets, with
each of these subsets corresponding to a different color. Color the
edge connecting vertices 7 and j according to the subset of which
|7 — 4| is a member.

By Ramsey’s theorem, this coloring of K, must admit a mono-
chromatic Ky, subgraph for some color 1 < j < r. For ease of
notation let k = k;. Let the vertices of this monochromatic subgraph
be {vo,v1,...,vk_1}, and define the differences d; = v; — v9. By
ordering and renaming the vertices we may assume that d;_; < d; for
2 <1i < k—1. Since K is monochromatic of color j, we have that
the edges 7,173, 1 = 1,2, ...,k — 1, and Tx_17g must all have color j.
Since v; —v;—1 = d;—d;—1, for: = 2,3,...,k—1, we see that d; —d;_1,
2 <4< k—1,d;, and di—; must all have color j. Hence we have the
solution to L(k) of color j given by dy + Zf;; (di —di—1) = dg—1 in
any r-coloring of {1,2,...,n— 1}. O

Now that we have extablished the existence of generalized Schur
numbers, we investigate the values and bounds for some of these
numbers. We start with Theorem 8.21, which gives the exact values
for all 2-colored generalized Schur numbers. We give part of the proof
of Theorem 8.21, and leave the remainder to the reader as Exercise
8.8.
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Theorem 8.21. Let k,£ > 3. Then

30 -4 if k=3 and £ is odd,
S(k,0)=4 30-5
kt—0-1 if4<k<U{

if k=3 and £ is even,

Proof. For all colorings below, we denote by R the set of red integers
and by B the set of blue integers.

We start by showing that the given expressions serve as lower
bounds for their respective cases. To do this, for each case we exhibit
a valid 2-coloring, i.e., one that avoids both a red solution to L(k)
and a blue solution to L(¥).

Case 1. k=3 and £ > 3 is odd. Consider the coloring of [1,3/ — 5]
given by

R={n:1<n</¢-2, nodd}U{n:2(-2<n<3-5n even};
B=[1,3¢-5]-R.

We will first establish that there is no red solution to £(3). Let
71 < 2o < z3 < 3¢ — 5 be red integers. If {z1,z2} C [1,£— 2] then
x, + zo belongs to [2,2¢ — 4] and is even. Thus z; + z2 is colored
blue, so that {x1,z2,73} is not a red solution to £(3). Hence, we
assume that z; € [1,£ — 2] and zo € [2¢ — 2,3¢ — 5]. Here we have
T, + @9 € [2¢ — 1,4¢ — 7] and odd. This shows that either z; + z2 is
colored blue or out of bounds, so that {z;, z2, 23} is not a red solution
to £(3). Finally, we assume {z1,z2} C [2¢ — 2,3¢ — 5]. This gives
Z1 + zo > 40 — 4 > 3¢ — 5. In this situation, since the sum is out of
bounds, {r1,22,73} cannot be a red solution to £(3).

Next, we show that there is no blue solution to L£(¢). Assume
21 < xp < - < xp_q < xp < 30— 5 are £ integers all colored blue.
If {z1,%2,...,2¢—1} C [2,£ — 3] then Ef;ll z; > 20 — 2 and is even.
This implies that Zf;ll z; is either colored red or is out of bounds.
Hence {z1,2,...,Z¢} is not a blue solution to L£(¢). If, on the other
hand, there exists j € {1,2,...,¢ — 1} such that z; ¢ [2,¢ — 3|, then
21,22, ...,Tj-1 > 2 implies that Y, z; > 2(j —1) +£—-3 =3 - 5.
However, since z, < 3¢ — 5, we may assumg,thgf Zf;ll z; =3l -5,

'
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which is colored red. This shows that {z,z2,...,7¢} cannot be a
blue solution to L(¥).

This completes the proof of the lower bound for k = 3 and ¢ odd.
The lower bounds for the other cases are left to the reader in Exercise
8.8.

We now move on to the upper bounds. We prove one case and
leave the other cases to the reader in Exercise 8.8. We will consider
4 <k </{and 1€ R. We prove the equivalent statement:

S(k+1,0+1)<kl+k—1 for 3< k<.

Assume, for a contradiction, that there exists a 2-coloring of
[1,k¢ + k — 1] that avoids both a red solution to L(k + 1) and a
blue solution to L(£ + 1).

Since 1 € R, it follows that k € B, and hence k¢ € R, which in
turn implies that ¢ € B. Since 1,kf € R, we have kf+k—1 € B.
We deduce from this that 2k — 1 € R (or else the (¢ + 1)-tuple
{k,k,...,k,2k—1, kf+k—1} would be a blue solution). Since 2k—1 is
red, we must have 2 € B or else the (k+1)-tuple {1,2,2,...,2,2k—1}
would be red. This implies that 3¢ —2 € R in order to avoid the blue
solution given by the (£+ 1)-tuple {2,2,...,2,¢,3¢/—2}. This in turn
shows that we must have 3¢ + k — 3 € B in order not to have the
(k + 1)-tuple {1,1,...,1,3¢ — 2,3¢ + k — 3} be red.

We next show that £+1 € B. First note that 3 € R, for otherwise
{3,3,...,3,k,3¢ + k — 3} would be blue. Since 1,3 € R, it follows
that k +2 € B. Now assume, for a contradiction, that £+ 1 € R.
Under this assumption, we have 2/ + k € B, so that the (k + 1)-tuple
{1,1,...,1,£ + 1, + 1,2¢ + k} is not red. This leads to the blue
solution to L(£ + 1) given by {2,2,...,2,k + 2,2¢ + k}, the desired
contradiction. Thus, £+ 1 € B.

We have shown that 2,k,£+ 1 and 3¢+ k — 3 are all blue, so that
the (£+ 1)-tuple {2,2,...,2,k,£+ 1,30+ k — 3} gives a blue solution
to L(£ + 1), a contradiction. a

We conclude this section with upper and lower bounds for the
generalized Schur number S, (k). We start with an upper bound, the
proof of which is very similar to the proof of Corollary 8.6.
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Theorem 8.22. Letr > 2. If k > 3, then S,(k) < R,(k) — 1, where
R, (k) is the r-colored Ramsey number.

Proof. The proof of Theorem 8.17 gives a correspondence between
the edgewise r-colorings of K, and the r-colorings of [1,n—1]. Hence,
if n = R.(k), we have S,(k) <n—-1= R.(k) - 1. O

As we did in the proof of Lemma 8.7, it is possible to use Ram-
sey’s theorem to obtain an upper bound independent of the Ramsey
numbers. However, the formula is rather cumbersome, and we will
not present it here.

On the other hand, we do have a nice formula for a lower bound.
The lower bound is a generalization of Theorem 8.9. The proof is
quite similar to that of Theorem 8.9 and we leave much of it to the
reader as Exercise 8.9.

Theorem 8.23. Let r > 2. If k > 3, then S.(k) > ﬂlk—%{crj—l

Proof. Let x : [1,n] — {1,2,...,7} be an r-coloring of [L,n] with no
monochromatic solution to £(k). Define an (r + 1)-coloring

X:[Lkn+k-1—{1,2,...,r+1}

that extends y as follows: for z € [n+1, (k—1)n+k—2] let X(x) = r+1;
otherwise let ¥(z) = x(y), where z = y (mod ((k — L)n + k — 2)).
We leave it to the reader to deduce that under %, [1,kn + k — 1]
contains no monochromatic solution to £(k). Thus, we have that if
S.(k) > n+1then S,41(k) > kn+k—1. Hence, Sr+1(k) > kSr(k)—1.
Noting that Sy(k) = k — 1, we leave it to the reader to show that
Sy (k) > B2k O
8.3. Refinements of Schur’s Theorem

Schur’s theorem (Theorem 8.2) tells us that any r-coloring of [1, s(r)]
must contain a monochromatic solution to z +y = z. However, =
and y need not be distinct, and in fact this was crucial in showing
that s(2) = 5 (see Example 8.5). You may have asked yourself: does
Schur’s theorem hold if we require that z.and y be distinct? This
is obviously a stricter condition and, ag we. have seen, this can turn

v
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Ramsey-type statements into false statements. However, in this case,
the resulting Ramsey-type statement is true.

Theorem 8.24. For r > 1, there exists a minimal integer § = §(r)
such that every r-coloring of [1, 8] admits a monochromatic solution
to x +y = z with ¢ and y distinct.

Proof. For r = 1 we have §(1) = 3. We proceed by induction on
r. Let 7 > 2 and assume that §(r — 1) exists. We will show that
5(r) < w(28(r — 1) + 1;7), where w(k;r) is the van der Waerden
function.

For any r-coloring of [1, w(25(r — 1) 4+ 1;7)] there is a monochro-
matic arithmetic progression {a,a + d,a + 2d,--- ,a + 25(r — 1)d}
of color, say, red. If there exists i, 1 < ¢ < §(r — 1), such that id
is red, then z = id, y = a + id, and z = a + 2id are all red, so
that we have z + y = z with z and y distinct. Hence, assume that
d[1,5(r —1)] = {id : 1 <i < §(r — 1)} is void of the color red. Then,
d[1,5(r — 1)] is (r — 1)-colored. By the inductive assumption and
Proposition 2.30 we have a monochromatic solution to z +y = z with
z and y distinct. O

From previous chapters we have seen that the best known up-
per bounds on the van der Waerden numbers are very large. Hence,
the upper bound for §(r) provided by the proof of Theorem 8.24 is
not very useful. For example, the proof gives §(2) < w(7;2). Gow-
ers’ bound (Theorem 2.21) gives the smallest known (at least to our
knowledge) upper bound for w(7;2):

265536

22"

a number whose decimal representation cannot be written down be-

cause it exceeds the number of atoms in the universe (estimated as
107® atoms).

As it turns out, much better upper bounds for §(r) are known.
We can fairly easily provide one such bound; this bound is given in
Theorem 8.25. The best known upper bound is given in Theorem
8.26, which we state without proof.

Theorem 8.25. Forr > 1, 5(r) < 2%"'—1,



218 8. Schur’s Theorem

Proof. Let n = 3r!. Let {a;}?_; be an increasing sequence of positive
integers with no arithmetic progression of length 3.

We first claim that any r-coloring of [1, a,] must contain a mono-
chromatic solution to x +y = z with  # y. To see this, we show that
there exist a; < a; < ay, such that ay — a;, ar — ai,a; —a; € [1,a,] all
have the same color.

Recall that R,.(3) is an r-color Ramsey number. From Lemma
8.7 we have R.(3) < n. Hence, any edgewise r-coloring of K,, must
contain a monochromatic triangle. Label the vertices of K, with
the a;’s. We use the same coloring as defined in the proof of Schur’s
theorem. Hence, we color the edge between vertices a; < a; depending
upon a; —a;. As a result, we have a monochromatic triangle on three
vertices, say a; < a; < Q.

Now, since ay — a; = (ax — a;) + (a; — a;) and a — a; # a; —a;
(because a;, aj,ar are not in arithmetic progression), we have proven
the claim.

To complete the proof, let a; = 27!, ¢ = 1,2,...,n, and note
that {2° ;‘;01 contains no arithmetic progression of length three. [

Theorem 8.26. Forr > 1, §(r) < |rlre] + 1.

There is still room for improvement on the upper bound of The-
orem 8.26. Via a computer search it can be proved that §(2) = 9; the
bound from Theorem 8.26 gives §(2) < 11.

We conclude this chapter with a result similar to Theorem 8.24
for the generalized Schur numbers. Recall that we denote by £(¢) the
equation r1 + a9 + -+ + X471 = x4.

Theorem 8.27. For any r > 1, there exists a least positive integer
S = S(k‘l,kg,...,kr) such that for any r-coloring of [1, 5] there is a
monochromatic solution to L(k;) of color j for some j € {1,2,...,r}
with x1,xq, - , Tk; distinct.

Proof. Let n = R(ki1,k2,...,kr). Let {a;}]-; be an increasing se-
quence of positive integers such that

am — ag # a; — a; for all 1§i<:}:‘§hf“€<m§n.

1 ‘
P
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We first claim that any r-coloring of [1, a,] must contain a mono-
chromatic solution to L(k;) of color j with zy,z,, ..., x, distinct. To
establish this claim, we show that for some j € {1,2,... , T} there exist
iy < @iy <-o < g, such that {a;,,, —a;, : 1 <t < k; —1} C[1,a,]
is monochromatic.

By the definition of n, any edgewise r-coloring of K,, must contain
a j-colored Ky ; for some 1 < j < r. Label the vertices of K,, with the
a;’s. For all pairs of vertices as < at, coloring the edge between as and
a; with the color a;—as, we have, for some j € [1, r], a monochromatic
Ki; of color j on k = k; vertices, say an, < an, < ++ < ap,.

Now, since an, — ap, = E;:ll (@n,,, — an,) and all the differences
at —as, 1 < s <t < n, are distinct, we have proven the claim.

To complete the proof, let a; = 271, i = 1,2,...,n. To show
that the differences a; — a5, 1 < s < ¢t < n, are distinct, assume (for a
contradiction) that there exist 0 < w < z < y < z < n —1 such that
2% — 2V =27 — 2%, Then 2¥(2*7Y — 1) = 2¥(2*~% — 1) and hence

WTW(2FTY 1) =2 — 11,
a contradiction since the left side is even and the right side is odd. O

Remark 8.28. We remind the reader of Definition 1.23. We say that
an equation £ is regular if, for all 7 > 1, for every r-coloring of Z*
there is a monochromatic solution to £. From Theorem 8.17, we see
that 1 + 22 + - - - + 41 = zy is regular.

8.4. Exercises

8.1 Regarding the discussion in the introduction of this chapter,
explain why the planes z + y = 2z and = + y = 2z must,
under any given finite coloring, contain an infinite number of
colored points with positive integer coordinates.

8.2 The maximum number, asymptotically, of monochromatic
Schur triples over all r-colorings of [1,n] is known to be
en? + O(n), for some ¢ > 0. Find c.

8.3 Use Exercise 8.2 to complete Theorem 8.14 by showing that
within [1,4k — 1] there are 4k? + O(k) Schur triples.
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8.4

8.5

8.6

8.7

8.8

Use Lemma 8.11 to show that, under any 2-coloring of [1,n]
the number of monochromatic 3-term arithmetic progressions
is O(n?).

Show that the 2-coloring of [1,1000m] = [1,n], m € Z*, given
by »
152m010m 152m068m1106m0212m 1212m0106m 168m052m110m052m

yields only .053382n2 + O(n) monochromatic 3-term arith-
metic progressions. (A computer may be helpful here.) (Note:
this is slightly more than %nz + O(n), which the second-
named author conjectures to be the minimum number, over
all 2-colorings of [1,n], of monochromatic 3-term arithmetic
progressions. )

Show that the coloring given in Corollary 8.16 admits only
2
11353 + O(n) monochromatic Schur triples.

Finish Example 8.20 by

a) showing that the given coloring of [1,13] is indeed a valid
coloring, i.e., that there is no red solution to £(4) and no blue
solution to £(5), and

b) concluding that any 2-coloring of [1,14] with 1 € B must
admit either a red solution to £(4) or a blue solution to £(5).

Finish the proof of Theorem 8.21 as follows:
a) Show that the following colorings provide lower bounds for
the stated cases:
i) For £ > 4 and even, the 2-coloring of [3¢ — 6]
given by R = Ry UR; and B = [1,3¢ — 6] — R,
where Ry = {n: 1 <n < ¢-3, nodd} and
Ry={n:20-2<n<3({-6, neven};
ii) For 4 < k < ¢, the 2-coloring of [kf — £ — 2]
given by R = RiUR; and B = [1,k{—{—2]—R,
where Ry ={n: (k—1)({—-1) <n<kl—-{-2}
and Ry ={n:1<n<k-2}
b) Finish the upper bound 4 < k < ¢ for 1 € B. (Hint: in
the case where 1 € R, interchange all occurrences of the set
R with the set B, of the word ‘red’ with the word ‘blue’, and
of the value k with the value £. Check to make sure that the
resulting argument is correct.)

A [
st
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c¢) Deduce the upper bounds for £ = 3 and £ > 4 and even,
and for £ = 3 and ¢ > 3 and odd, in a fashion similar to the
case presented in the proof of Theorem 8.21. (Hint: begin by
considering two subcases: 1 € R and 1 € B.)

Finish the proof of Theorem 8.23 by showing that

a) x admits no monochromatic Schur triple, and
b) Sp(k) > K2

8.5. Research Problems

8.1.

Prove or disprove the conjecture that s(5) = 160.
References: [106], [110]

*8.2. For r > 3, find the minimum number, asymptotically, over all

r-colorings of [1, n], of monochromatic Schur triples.
References: [75], [225], [248]

*8.3. Find the minimum number, asymptotically, over all 2-colorings

of [1,n], of monochromatic 3-term arithmetic progressions.
(The 2-coloring of [1,n] that gives the smallest upper bound
(to date) for this minimum is given in Exercise 8.5.)
References: [203], [225], [248]

*8.4. Find the minimum number, asymptotically, over all 2-colorings

8.5.

8.6.

of [1,n], of monochromatic solutions to z+ay = z, for a # 1.
(The existence of such monochromatic solutions is implied by
Rado’s theorem, given in the next chapter.)

References: [225], [248]

Determine new bounds and/or values for the r-colored gen-
eralized Schur numbers, for » > 3.
References: [36], [224]

Determine the exact value of the 2-colored strict generalized
Schur numbers (see Theorem 8.27), i.e., determine the least
positive integer G(k, £) such that any 2-coloring of [1, G(k, ¢)]
must admit either a red solution to x1 + - -+ 4+ zx_1 = x4 with
T3 <xg < - - < g, or a blue solution to x1 +++-+x,_1 = xp
with 1 < o < -+ < x4

References: [41], (127, p. 77], [224]
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8.7. Improve upon the upper bound given for the strict Schur
numbers §(r) (from Theorem 8.25).
Reference: [45]

8.6. References

88.1. Theorem 8.1, Schur’s theorem, and Theorem 8.9 can be found in
[247]. See [273] for a brief summary of Wiles’ proof of Fermat’s Last
Theorem. Erdds and Szekeres’ rediscovery of Ramsey’s theorem can
be found in [101]. Goodman’s result on the number of monochro-
matic triangles in any 2-coloring of the edges of K, can be found
in [120]. The problem of finding the asymptotic minimum number
of Schur triples over all 2-colorings of [1,n] was first posed by Gra-
ham, Rédl, and Ruciniski in [125]. It was first solved, independently,
by Robertson and Zeilberger [225] and Schoen [248]. The proof of
Lemma, 8.11 can be found in [125]. The proof of Theorem 8.15 is
due to Datskovsky [75]. The coloring given in Theorem 8.14 is due to
Zeilberger. The fact that the coloring in Theorem 8.14 is essentially
the only minimal coloring is proved in [248]. Corollary 8.16 is from
[225). |

§8.2. The proof of Theorem 8.17 is from [222]. Theorem 8.17 proves
the existence, in particular, of S,.(k); however, this is implied by
Rado’s theorem (Theorem 9.2), which was established before Theo-
rem 8.17. The values for the 2-color generalized Schur numbers S(k, £)
were determined for k = £ in [36] and for all k and ¢ in [224].

§8.3. The proof of Theorem 8.24 is adapted from the proof of The-
orem 2 in [127, p. 70]. The proof of Theorem 8.26 is found in [45],
which improves upon Irving’s bound given in [149].

§8.4. Exercise 8.5’s coloring was discovered by Pablo Parrilo [203].

Additional References: For a tribute to Schur and an overview of
his work, see [190]. Exoo [106] and Fredricksen and Sweet [110] give
the current best known lower bounds for the Schur numbers s(5), s(6),
and s(7). Bergelson, in [27], uses ergodic theory to prove a density
statement which generalizes and strengthens Schur’s theorem. A com-
binatorial proof of Bergelson’s result is provided in [109]. Additional
density results appear in [31]. In [149], Irving considers m = M (r, k),
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the minimum number such that any r-coloring of [1,m] must admit
a monochromatic solution to z; + x5 + -+ + 2x_1 = x with all z;
distinct, and provides an upper bound for m. The case r = 2 can be
found in [251]. Schaal [239], and Schaal and Bialostocki [41], con-
sider variations of Schur numbers that are not guaranteed to exist.
The 1892 result of Hilbert [142] can be specialized to give Schur’s
theorem. Work on the numbers associated with Hilbert’s theorem
can be found in [57].



Chapter 9

Rado’s Theorem

The previous chapter, on Schur’s theorem, included the extension of
Schur’s theorem to equations of the form Zf__fll T; = Tk, where k > 4.
In other words, we found that for any finite coloring of Z* there is a
monochromatic solution to an equation of this form. The extension
can be taken further, and was taken further, by one of Schur’s Ph.D.
students, Richard Rado.

In a series of papers in the 1930’s, Rado determined, in partic-
ular, exactly which equations Zf=1 c;z; = 0 are guaranteed to have
monochromatic solutions under any finite coloring of the positive in-
tegers. In fact, part of this result is contained in his Ph.D. thesis.

9.1. Rado’s Single Equation Theorem

Before stating the goal of this section, we remind the reader that a
linear homogeneous equation is any equation of the form

k
E C;X; = 0,
i=1

where each ¢; € Z is a nonzero constant and each z; is a variable.
Since we will be considering only linear equations, when we use “ho-
mogeneous” we will mean “linear homogeneous.”

225



226 9. Rado’s Theorem

We saw in Chapter 8 (see Remark 8.28) that
1+ 22+ Tpo1 = Tk

is regular. In this section, we use this result and classify those ho-
mogeneous equations that, under any finite coloring of Z*, have a
monochromatic solution (z1,z2,...,zx € Z%1 all are of the same
color).

Considering Remark 8.28, we expand upon Definition 1.23 with
the following definition.

Definition 9.1. Let S be a system of linear homogeneous equations.
We say that S is r-regular if, for r > 1, for every r-coloring of Z*
there is a monochromatic solution to S. If § is r-regular for all r > 1,
we say that S is regular.

We will find a condition on the constants c; in the equation

k
(9.1) Zcix,« =0
=1

so that (9.1) is regular. Clearly, some restriction on the constants is
needed. For example, if all of the constants are positive, then there is
no solution in the positive integers, much less a monochromatic one.
So, at least one of the constants must be negative. We also know,
from Theorem 8.17, that if ¢; = cfori=1,2,...,k—1 and ¢, = —c,
then we are guaranteed a monochromatic solution (by factoring out
the ¢). This heads us in the right direction.

In this section we will be dealing with systems that consist of
only one equation. However, in Section 9.3 we consider systems in
general.

Theorem 9.2 (Rado’s Single Equation Theorem). Let k > 2. Let
ci € Z—{0},1 < i <k, be constants. Then (9.1) is regular if and
only if there erists a nonempty D C {c; : 1 < i < k} such that

2 4epd=0.

Proof. We first prove the ‘if’ part. We show that for all » > 1, if
there exists a nonempty subset D as above, then (9.1) is r-regular.
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We use induction on r, starting with the case of r = 1. Without
loss of generality, let D = {c1,...,cm} with ¢; > 0. If m = k, then we
may take z; = 1 for 1 < i < k as our monochromatic solution. Hence,
we assume that m < k. Thus, ¢pp1 + Cmgo--- + ¢k is a nonempty
sum. Let s = cyi1 + Cmi2 + - -+ + ¢ and note that s # 0.

Letzo =23 = =2, and Typ1 = Tyyo = -+ = 2. Equation
(9.1) reduces to

a1ty +2a(ca+c3+ 4 cm) + Tong1(Cmagr + Cm2+ - +c)=0.
Since ¢ + c2 + -+ - + ¢, = 0, we have
(92) C1 ({El - 522) + 8Tmy1 =0.

Any positive integers z; and z such that z, — z1 = s, together
with Z,11 = ¢1, provide a (monochromatic) solution to (9.2), com-
pleting the case when » = 1.

Now let r > 2 and assume that the result holds for 1 < ¢ < r —1.
We show that it holds for r. For each t < r — 1, let n(t) be the
least positive integer such that for every t-coloring of [1,n(t)] there
is a monochromatic solution to (9.1) (n(t) exists by the induction
hypothesis).

Assume, without loss of generality, that ¢; + cp + -+ + ¢,y = 0,
with m maximal and ¢; > 0. Again, we may assume that m # k, so
that s = cmq1 4 Cmy2+ - +ck is a nonempty sum. Note that s # 0.

Let b = Zle lc;| and let n = n(r — 1). We will show that
n(r) < bw(n + 1;7), where w represents the usual van der Waerden
function. We will show that every r-coloring of [1, bw(n+1;7)] admits
a monochromatic solution to (9.1).

Letzo =23 =" =2, and Tpyt1 = Tynyo = -+ - = 2. As in the
case when 7 = 1, (9.1) reduces to (9.2).

Let x be an r-coloring of [1,bw(n + 1;7)]. We shall now find z,
T2, and Tm 41 satisfying (9.2), with x(z1) = x(z2) = x(Zm41). We
see that by Theorem 4.9, x must yield an (n+1)-term monochromatic
arithmetic progression with gap a multiple of |s| (note that we have
1 <|s| <b). That is, we have that {a,a+d|s|,a+2d|s],...,a+nd|s|}
is monochromatic for some a,d > 1, with a + nd|s| < bw(n + 1;r).
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If there exists j € [1,n] such that x(jdc1) = x(a), then by letting
|z2 — 21| = jd|s| and &1 = jdc1, we have a monochromatic solution
to (9.2) and are done. If, on the other hand, for all j € [1,n] we
have x(jdc,) # x(a), then {dcy,2decy, ..., nder} = dei[1,n] is (r — 1)-
colored, and by Proposition 2.30 we are done.

For the ‘only if’ part of the theorem, we prove the contrapositive.
Let ¢1,c2,...,ci be fixed with no subset summing to zero. We prove
the existence of an r-coloring of Z*, for some r > 1, that admits no
monochromatic solution to (9.1).

Choose a prime p such that for any C C {c¢; : 1 < ¢ < k} we have
Pt Y .ccc Since C is a finite set, such a choice is obviously possible.

We now define a 2(p — 1)-coloring x : Z* — {1,2,...,2(p — 1)}.
For i # 0 (mod p), let x(i) =7 where ¢ =7(modp) and 1 <7< p—1.
For i = 0 (mod p), color i as follows. Let (%) be the maximal integer

such that —ie; € Z*. Thus, we may write i = 3 ;5 ;) a;jp’, where
the a;’s are positive integers. Now let x (i) = a,(;) +p — 1 (note that
1< au(i) < p).

To prove that x admits no monochromatic solution to (9.1), as-

sume, for a contradiction, that Y = {y1,¥2...,yx} is a monochro-
matic solution under x. We consider two cases.
Case 1. x(Y) =u < p. Then we have Zle c;y; = 0, which implies
that u ZLI ¢; =0 (mod p). Since u and E§=1 c; are both nonzero, p
divides u Ele c;. This is a contradiction, since p{ u and p { Zi;l Ci-
Case 2. x(Y) = u > p. Write yi = 35,40 a;jp’, and define
Y, = y; —ap*®) for 1 < i < k, where a = x(y;) —p+ 1. Let
p* = min{p(), w(ya), - -, 1(yx)}-

By assumption we have Ele ¢;y; = 0. Hence

k k
Y ey +apt Yy et TH =0,
i=1 i=1

Note that p# +1 divides Y r_, ¢;y). Thus,

k
ap*” z ciptWI R =0 (modp“”rl).

i=1
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Therefore, p divides a Zf=1 cip*W)—H" Since 1 < a < p, this implies
that p divides Zf=1 c;pW) =" By the definition of ©*, at least one
of the pu(y;)’s must equal p*. Letting M = {t : u(t) = u*}, we have

icipﬂ(i)—u* = Z ¢ + Z cpti =K
i=1

ieM @M
where the first sum on the right-hand side is nonempty.

Since p divides (Zz‘eM cip“(i)"“*) and we require p to divide

(ZieM Cit+ Yigm cip“(")““*>, we see that p divides (3¢, ¢i), con-
tradicting our choice of p. O

Example 9.3. Theorem 8.17 with k1 = ky = --- = k, follows from
Rado’s single equation theorem, since x; + 3+ -+ 4+ x)_1 — 2 = 0
satisfies the necessary subset requirement (cx_; + cx = 0).

Theorem 9.2 can be strengthened as seen in the following theo-
rem, which we offer without proof.

Theorem 9.4. Let r > 1. For every r-coloring of Zt there is a
monochromatic solution (b1,be,...,bx) to (9.1), where the b;’s are
distinct, if and only if (9.1) is reqular and there exist distinct inte-
gers (not necessarily positive) y1,ya, ..., Yn such that (y1,ya,...,Yn)
satisfies (9.1).

Example 9.5. Since r +y = 2z is another way of describing 3-term
arithmetic progressions, provided z # y, we see that Theorem 9.4
proves the existence of a monochromatic 3-term arithmetic progres-
sion in any finite coloring of Z*. However, Theorem 9.4 does not
imply the same result for arithmetic progressions of length more than
3. For this we need Rado’s “full” theorem, which is presented later
in this chapter as Theorem 9.27.

Rado’s single equation theorem deals only with homogeneous
equations. An obvious question is: is there a similar result con-
cerning nonhomogeneous linear equations, i.e., equations of the form
>; cizi = b, where b is a nonzero integer? As we will see, it is possible
in this setting to have a nonempty subset of the coefficients summing
to 0 while not being guaranteed a monochromatic solution. Know-
ing this, any regularity result will most probably be dependent upon
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the value of b. In the following proposition, we state what is known
about one of the simplest nonhomogeneous cases. Before doing so,
we introduce the following notation.

Notation. Let £ be a linear equation. Denote by r(&; s) the minimal
integer, if it exists, such that any s-coloring of [1,7(€; s)] must admit
a monochromatic solution to £. For s = 2 we write simply (£).

Definition 9.6. The numbers 7(£;s) are called s-color Rado num-
bers for equation E.

Proposition 9.7. Let b € Z — {0}. Then r(z —y = b;2) does not
ezist.

Proof. Consider the 2-coloring of Z+ defined by 0fl1/¥lglilel .
Clearly, under this coloring, no two positive integers having the same
color can have their difference equal to b. Hence, we cannot have a
monochromatic solution to z —y = b. O

We next present a theorem that generalizes the equation of Propo-
sition 9.7.

Theorem 9.8. Let b> 1, k > 3, and let £(b) represent the equation
T1+To+ -+ xp_1— 2k = —b. Then r(E(b)) does not exist precisely
when k is even and b is odd. Furthermore, we have

r(EB) =k +(b-1)(k+1)

whenever r(E(b); 2) exists.

Proof. We start by showing that r(£(b)) does not exist if k is even
and b is odd. We do this by giving a 2-coloring of Z* with no
monochromatic solution to £(b). To this end, color all even inte-
gers with one color and all odd integers with the other color. If all of
the z; are the same color, then x; + 2+ - -+ Zk—1 — T is even. Since
b is odd, we see that a monochromatic solution cannot exist under
this coloring.

Now assume that k is odd or b is even, and let

n=k*+(b-1)(k+1).
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We show that n is a lower bound for 7(£(b)) by providing a 2-

coloring x : [1,n — 1] — {0,1} that does not admit a monochromatic
solution to £(b). Define x as follows:

X(j) =0 if and only if j € [k+b— 1,k + (b— 2)k].

Assume, by way of contradiction, that Y = {y; : 1 <i < k} is a
monochromatic solution.

If x(Y)=0,theny; >k+b—1for1 <i<k—1. Hence

k-1
b+> yi>(k—1)(k+b-1) =k +(b—2)k+]1,
=1

a contradiction since yi, < k% + (b — 2)k.

Now assume x(Y) =1. fY — {y;} C [1,k+ b — 2], then
k-1
k+b—1<b+> y; <k®+(b—3)k+2.
i=1
'Note that since & > 2 we have k? + (b — 3)k +2 < k% + (b — 2)k.
ce <
Hence, b+ Y " 'y e [k+b— 1,k + (b— 2)k], a contradiction since
this interval is of color 0. Therefore, if x(Y) = 1 we must have
Yk—1 € [k2 + (b -k+1,n— 1]. Then
k-1
b+ yi2b+(k—2)+k2+ (b-2)k+1=n,
i=1
and again we have a contradiction, since y, < n — 1.
We conclude that x is a valid 2-coloring of [1,n — 1], so that
r(E(b)) > k2 + (b—1)(k +1).
For the upper bound, let m € Z* and let x : [1,m] — {0,1} be

a 2-coloring that admits no monochromatic solution to £(b). Define
the set

A(x) ={z:z€[l,m—1] and x(z) # x(z + 1)}.

Note that |A(x)| is the number of times the color changes as we
proceed from 1 to m.

We finish the proof via a series of claims.

Claim 1. If [A(x) N [1,k+b—2]| is even, then m < k + b — 2.
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Proof of Claim 1. Assume, for a contradiction, that m > k +b — 1.
By the definition of A(x) we have x(1) = x(k + b —1). Hence,

;=1 1<i<k-1;
r,=k+b-1

is a monochromatic solution to £(b), a contradiction.
Claim 2. If [A(x)N[L,k+b—2]| = 1, then m < k2 +(b—1)(k+1)—1.
Proof of Claim 2. Without loss of generality, assume there exists

a1 > 1 such that x([1,a1]) = 0 and x([a; + 1,k +b—1]) = 1. Note
that

(9.3) a1 <k+b-—2.

Since

zi=k+b-11<i<k-—1

Tp =k52+(b——2)k+1
is a solution to £(b), either |A(x)| = 1 and m < k? 4+ (b — 2)k, or
|A(x)| > 2. If |A(x)| = 1 we are done, so assume |A(x)| > 2.

Since |A(x)| > 2, we know there exists a; > k + b — 1 such
that x([1,a1]) = 0, x([a1 + 1,a2]) = 1, and x(az + 1) = 0. Now,
since x(a; + 1) = 1, we have that x((k — 1)(a1 + 1) +b) = 0 or
m < (k—1)(a1 + 1) + b. In either case we have

(9.4) ay < (k—1)(a1 +1)+b—1.
Next, since
;=1 1<i<k-—2
Tk-1=az2 +1;
Tx=a2+k+b—-1

is a solution to £(b), either m < ag+k+b—2or x(ag+k+b—1) =1.

We show that x(az + k + b — 1) = 1 contradicts the fact that x
is valid. Since [1,a;] has color 0, we see that [k+b—1,(k — 1)a; +b]
has color 1. Thus, az > (k — 1)a; + b. This implies that

ay+k+b—1>(k—1)(ay +1)+2b
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Since ag > 2, we have ag > %, ie., (k—2)ag > k—1. From this we
see that az + k+b—1 < (k — 1)az + b. Hence,

(k—=1)(a1+1)+b<ag+k+b-1<(k—-1)az+b

By the above equation and the fact that the interval [a; + 1, ag] has

color 1, there exist 1, z2,...,Zk—1 € [a1 + 1, a2] for which
k-1
domitb=as+k+b-1,
=1

and we have found a monochromatic solution to £(b), a contradiction.
Hence, we cannot have x(az + k + b — 1) = 1. We conclude that

(9.5) m<as+k+b—2.

Combining (9.5) with (9.3) and (9.4), we see that
m<k2+b-1)(k+1) -1,

thereby completing the proof of Claim 2.

Claim 3. If k is odd and |A(x) N [1,k + b — 2]| > 3, then we have
m < k?+(b—2)k —2.

Proof of Claim 3. Without loss of generality, assume there exist a;
and ap such that 1 < a1 < a2 < k+b-2, x(1) =0, x(a1) = 1,
x([a1 + 1,a2]) =0, and x(az + 1) = 1. Since

zi=a1+1, 1 <i< kL

Ti=ag Bl <i<k-1

T = &g—l(a2+a1+1)+b

satisfies £(b), we have either

(9.6) m< (51) (a2 +a1+1)+b
(9.7) x ((52) (a2 + a1+ 1) +b) =1.

However, if (9.7) holds, then we have the monochromatic solution:
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a contradiction. Hence, (9.6) holds. Since a; +1 < ay < k+b—2,
this gives
m <(k-1)(k+b—-2)+b-1
=k2—k+(b-2)(k—-1)+(b-2)+1
<K+ (b-2Dk-2,
as required. This completes the proof of Claim 3.
Claim 4. If k and b are both even and |A(x)N[l,k+b—2]|=%>3
with i odd, then m < k% + (b—2)k — 1.
Proof of Claim 4. Let
A(x)ﬂ[l,k+b—2]={a1 <ag <--- <ai}.
We assume, without loss of generality, that x(a;)=0 and x(a;+1)=1
for j = 1,3,5,...,4; and that x(a;) = 1 and x(a; + 1) = 0 for
j=2,4,...,i— 1. If there exists ¢ € [1,4— 1] such that a;11 # a¢ +1,
then we have the following two solutions to £(b):
zi=a, 1<i<
Ti=a1+1, E+1<i<k-1;
T = %(at) + (15‘ — 1)(at+1 + 1) + b—1

and

Tp—1 = Q41 — 1
T = %(at) + (% — 1)(at+1 + 1) + b—1.

One of these solutions must be monochromatic unless

k
mgg(at)+<§—1) (at+1+1)+b—2.

Since a; < az4+1 + 1 < k+ b — 1, this implies that
m<(k—1)(k+b-1)+b—2=k+(b—2)k—1.

Thus, we may assume that a;41 = a; + 1 for all j € [1,7 —1].

Since k + b — 2 is even, either a; # 1l or a; # k+b— 2.
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If a; # 1, then we can assume, without loss of generality, that
x(a1 — 1) = x(a1) = 0. Hence, the following solutions both satisfy
E(b):

Ti=a1+1, 1<i<k-1,;
o =(k—-1)(a1+1)+b
and
1 =a; — 1
T =a, 2§i§§—1;
T =a1 + 2, §5i§k—1;
zr = (k—1)(a1 +1) + b,
one of which is monochromatic unless m < (k — 1)(a; + 1) + b — 1.

Since ay +1 < k+b—3 and k > 3, this implies that
m <k + (b—4)k+2<k>+ (b—2)k — 4.

If a; # k+b—2, we may also assume that x(a;i—1) =0, x(a;) = 1,
and x([a; + 1,k + b — 1]) = 0. The following solutions both satisfy
E(b):

zi=a; -1 1<i<k;
Ti=ai+1, E+1<i<k-2
Tp-1=0; + 2
Tp = (k—l)ai+b
and
ZT; = a4, ISiSk—l;
Ty = (k — 1a; + b,
one of which is monochromatic unless m < (k — 1)a; + b — 1. Since
a; < k4 b - 3, this gives
m <k 4+ (b—4)k+2 <K+ (b—2)k —4.
This completes the proof of Claim 4.

To complete the proof of the theorem, it suffices to show that
the hypothesis of one of the above claims is true. For the cases when
|A(x)| € {0,1,2,4,6,...}, we see that the hypothesis of either Claim
1 or Claim 2 holds. If |A(x)| > 3 and |A(x)| and k are both odd, then
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the hypothesis of Claim 3 holds. Finally, if |A(x)| > 3 with |A(y)|
odd and k even, then the hypothesis of Claim 4 holds (according to
our earlier assumption, since k is even, b must be even).

We can now conclude that for any valid 2-coloring of [1,m] we
have m < k2 +(b—1)(k+1)— 1. This inequality, along with the lower
bound for 7(€(b)) given earlier, yields r(€(b)) = k®+(b—1)(k+1). O

A result analogous to, and as complete as, Theorem 9.8, but with
b negative, has yet to be found. However, some progress has been
made. In particular, for k = 3, we have the following result. We omit
the proof, which is is similar to that of Theorem 9.8; see also Exercise
9.6.

Theorem 9.9. Forb>1,r(z+y—2z=5b)=b— [%1 + L.

We noted before that any regularity result concerning nonhomo-
geneous equations will most likely be dependent upon the constant b
in

k
E c;x; =b.
=1

Let £(b) represent the above equation, and let £(b) denote this same
equation with the restrictions ¢; =cy =+ =c¢p_1 =1 and ¢ = —1.
From Proposition 9.7, we have that £(b) is not regular if k& = 2 (for
b # 0). Theorem 9.8 specifies those values (with the restriction that
b < 0) of k and b for which £(b) is 2-regular and those values for which
E(b) is not 2-regular. Ultimately, we would like to determine those
values of k and b (if any) for which £(b) is regular (i.e., r-regular for
all 7 > 1).

One reason we see more regularity with Theorem 9.8 than Propo-
sition 9.7 is that the more variables the equation has, the easier it is
to find solutions to £(b) in Z*. At the same time, the more colors we
use to color Z*, the harder it is to be guaranteed a monochromatic
solution to £(b). Fortunately, we have the following result, which
completely determines which equations are regular.

-
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Theorem 9.10. Let k > 2 and let b,cy,ca,...,c, be nonzero inte-
gers. Let £(b) represent the equation

k
(9.8) > cimi=b,
=1

and let s = Zi;l ci. Then E(b) is regular if and only if one of the
following two conditions holds:
()b ez*;

(i) % is a negative integer and £(0) is regular.

Proof. Let » > 1. We first prove the ‘if’ portion of the theorem.
If (i) holds, then x; = g, 1 < i < k, is a monochromatic solution
under any r-coloring of Z*. If (ii) holds, let x be any r-coloring of
Z*. Now, define v, an r-coloring of {|2|,|2|+1, |2|+2,...}, by
~¥(i — %) = x(#). By Proposition 2.30 and Rado’s single equation
theorem, we have a monochromatic solution to £(0) under v. We

may write y; — %, Yo — %, e Yk — % for such a solution. Since

Srofo-t)

=1

we have that

k
Z ¢y =b.
i=1
By the definition of v, we know that y1, s, . .., yx is a monochromatic

(under x) solution to (9.8). This completes the proof of the ‘if’ portion
of the theorem.

For the ‘only if’ part of the theorem, we will prove its contrapos-
itive. We first assume that s 1 b.

Note that we may rewrite (9.8) as

(99) Ci(.’Ei — .’L‘l) =b- Sxq.

k
=2

We consider two cases.
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Case 1. s =0. Let p be a prime such that p > b. By (9.9), we have

k
(9.10) Zcz(zz —x) =0b.
i=2

Define x : Z* — {0,1,...,p — 1} by x(i) = 7, where i = 7(mod p).
For any monochromatic solution to (9.10) we have, by the definition
of x, that p divides the left-hand side of (9.10). Hence, p must divide
b. However, this contradicts our choice of p. Hence, (9.8) is not
p-regular.

Case 2. s # 0. We assume, without loss of generality, that s > 0.
Define v : ZT — {0,1,...,s — 1} by (i) = 7, where i = 7(mod s).
Assume, for a contradiction, that yi,y2,...,yx is a monochromatic
solution to (9.9). By the definition of ~, s divides Zf___z ci(yi — y1).
Hence, we must have

b — sy; = 0(mod s),

i.e., b=0(mods). Thus, s divides b, a contradiction. Hence, (9.8) is
not |s|-regular.

Since we have shown that (9.8) is not p-regular in Case 1 and not
|s|-regular in Case 2, we have shown that if s { b, then (9.8) is not
regular.

To finish proving the contrapositive, assume that % is a negative
integer, but that £(0) is not regular. Then there exist a finite ¢ and
a t-coloring x of Z* such that, under x, there is no monochromatic
solution to £(0). Assume, for a contradiction, that (9.8) is regular.
Define the t-coloring v by (i) = x (i — %) Since % is a negative
integer, v is well-defined. By assumption, there exists, under v, a
monochromatic solution to (9.8), say y1,¥2, ..., Yk- By the definition
of 7, this means that y; — %,yg — %, e Yk — g are monochromatic

under x. Since

k b k L
Zcz’ <yi_ g) =Zciyi— E;Ci

i=1 =1

=b-0
=0,
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b

we have that y; — g’ Yo — %, ..., Yk — 5 is a monochromatic (under x)

solution to £(0), a contradiction. This concludes the proof. O

9.2. Some Rado Numbers

In this section we present several values and bounds for some 2-color
Rado numbers associated with various linear equations in 3 variables.
Theorems 9.11, 9.12, and 9.15 deal with equations that, by Rado’s
single equation theorem and Theorem 9.4, are regular.

Theorem 9.11. Let a,b > 1 with ged(a,b) = 1. Then

a?+3a+1 ifb=1,
r(ax +by = bz) = { b2 if a <b,
a?+a+1 if2<b<a.

Proof. We separate the proof into the three obvious cases.

Case 1. b= 1. Letn = a®+3a+ 1. Color [a+ 1,a(a + 2)] one
color and its complement in [1,n — 1] the other color. We leave it to
the reader in Exercise 9.7 to verify that this is a valid 2-coloring of
[1,n — 1], which implies that r(az +y = 2) > n.

For the upper bound, assume, for a contradiction, that there ex-
ists x : [1,n] — {0,1} that is valid. We may assume that x(1) = 0,
and hence x(a + 1) = 1, which in turn implies that x ((a + 1)) = 0.
Since (z,y,2) = (a+2,1,(a+ 1)?) satisfies the equation, we must
have x(a+2) = 1. Sothat (a +2,a +1,a® + 3a + 1) is not monochro-
matic we must have x (a2 +3a + 1) = 0. This gives us the monochro-
matic solution (1, (a + 1)?,a2 4 3a + 1), a contradiction.
Case 2. a < b. Let n = b?. We leave it to the reader in Exercise
9.7 to verify that a valid 2-coloring of [1,n — 1] is given by coloring
b[1,b — 1] one color and its complement the other color.

For the upper bound, assume, for a contradiction, that there
exists x : [1,n] — {0,1} that is valid.

Assume, without loss of generality, that y(b) = 0. We now show
that x(ib) = 0 for 1 < i < b by considering the following solutions
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(which require a < b) for 1 <i<b—1:

’31(7:) = (Zbal(b - a),ib),
s2() = (b, ib, ib + a),
s3(1) = ((i + 1)b,3(b — a),ib + a).

Since none of these solutions is monochromatic (by assumption),
we have, for i = 1,...,b — 1, in order, the following sequence of
implications:

51() not monochromatic implies x(i(b — a)) = 1;
52(1) not monochromatic implies x(ib + a) = 1;
53(4) not monochromatic implies x((i + 1)b) = 0.

Since b, 2b, ..., b? are all of color 0 and a < b, we have a monochro-
matic solution given by (b2, b(b — a),b?), a contradiction.

Case 3. 2<b<a. Let n =a%+a+ 1. We leave it to the reader in
Exercise 9.7 to verify that a valid 2-coloring of [1,n — 1] is given by
coloring b[1, a] one color and its complement the other color.

For the upper bound, assume, for a contradiction, that there
exists x : [1,n] — {0, 1} that is valid. Clearly, there exists a maximal
k such that, for all 4, 1 <14 < k, we have x(ib) = 0. We may rule out
k > a, since, in this case, (bz, b, (a + l)b) would be a monochromatic
solution.

We now show that k > a — 1. Assume, for a contradiction, that
x(kb) = 0 and x((k + 1)b) = 1 with k¥ < a — 1. To avoid the triple
((k 4+ 1)b,1,1 + (k + 1)a) being monochromatic, either x(1) = 0 or
x(1+ (k+1)a) = 0.

First, consider x(1) = 0. Let : € {1,2,...,k}. We must have
x(1 +ia) = 1 (so that (ib,1,1 + 7a) is not monochromatic). Next,
so that ((k +1)b,1 +4a,1+ (k4 i+ 1)a) is not monochromatic, we
have x(1 + (k + i + 1)a) = 0, provided k¥ + 4 < a. This implies
that x((k +i 4 1)b) = 1, so that ((k+i+ 1)b, 1,1+ (k+i+ 1)a)
is not monochromatic. Now, provided k + ¢ < a — 1, we have that
x((k +2)b) = 1 implies x(1 + (k + i+ 2)a) = 0, so that the solution
((k+2)b, 1+1a, 1+ (k+1i+2)a) is not monochromatic. Hence, we have
x(1+ (k+2)a) = x(1+ (k+3)a) = 0 (where 14+(k+3)a < 1+(a+1)a
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—

gince k < a—1). Thus, (b, 14 (k+2)a, 1+ (k+3)a) is a monochromatic
golution, a contradiction. So, if x(1) =0, then k > a — 1.

Next, consider x(14 (k+1)a) =0. We may assume x(1) = 1.
o that the solution (ib,1+ (k — i+ 1)a,1 + (k + 1)a) is not mono-
chromatic, we have x(1+ia) = 1 for 1 < i < k. Now, because
((k+1)b,141ia,1+ (k+i+1)a) cannot be monochromatic for i = 0, 1,
we have x(1 + (k+ 1)a) = x(1 + (k + 2)a) = 0. This gives the
monochromatic solution (b,1+4 (k+1)a,1+ (k+2)a), a contradiction.
Hence, if x(1+ (k+1)a) =0, then k > a — 1.

Since k > a — 1, from the above two paragraphs we have that
x(1+ia) =1 and x(ib) = 0 for 1 <7 < a— 1. Because gcd(a,b) =1,
{tb (mod a): 1 < i < a— 1} is a complete residue system modulo
a. Thus, there exists 2 € [1,a — 1] such that zb = 1 (mod a). Since
1 < zb < ab, we have zb € {1 +4a : 1 < i < a — 1}. This is
a contradiction, since x(1+¢a) = 1 for all 1 < ¢ < a — 1, while
x(zb) = 0. O

Note that as an immediate consequence of Theorem 9.11, we also
know the value of r(ax + by = bz) when gecd(a,b) # 1. To see this,

’let ged(a,b) = g, divide both sides of ax + by = bz by g to obtain

%x + gy = gz with (%, 3) = 1, and then apply Theorem 9.11. This
same analysis may also be applied to the next theorem.

Theorem 9.12. Let a,b > 1 with ged(a,b) = 1. Define n(a,b) to
be the least positive integer such that every 2-coloring of [1,n(a,b)]
admits a monochromatic solution to ax + by = (a + b)z, where x,y, z
are distinct. Then n(a,b) < 4(a+0b)+ 1.

Proof. By means of a computer search, it can be shown that
n(1,2) = 13, n(1,3) = 11, n(1,4) = 19, n(1,5) = 25, n(1,6) = 29,
and n(2,3) = 21. Furthermore, n(1,1) = w(3;2) = 9. These values
show that n(a,b) < 4(a+b)+1 for a+b < 8. Hence, in the remainder
of the proof we assume that a + b > 8. Let £ represent the equation
ax + by = (a+b)z.

Assume, for a contradiction, that x : [1,4(a+b)+1] — {red, blue}
is a coloring that admits no monochromatic solution to &.
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Consider
S={l+za+yb:0<z,y<4} C[1,4(a+b)+1].

We first show that the elements of S are distinct. Assume, for a con-
tradiction, that there exist iy,12,j1, j2 € [0,4] with (i1, 1) # (i2,J2)
such that. Since (i; — i2)a = (j2 — j1)b and ged(a,b) = 1, we have
i1 — 42 = kb and j3 — j; = ka for some k > 1. By the restriction on S,
i1 — 12 and jp — j; cannot both equal 4, and thus i1 — iy + j2 — j1 < 7,
a contradiction since i; — i+ j2 — 71 > a+b > 8.
Rewriting £ as

a(z — 2z) = b(z — y),
we see that (z/,9/,2') is a solution if and only if it has the form
(d+ kb,d — ka,d) for some d,k > 1 (provided d + kb < 4(a +b) + 1
and 1 < d — ka ). Hence, for any k € Zt, if

1<1+42a+yb—ka<l+2'a+yb+kb<4(a+b)+1,
then
{1+ —ka+ybl+a’atyb1+a'a+ (y + k)b}

cannot be monochromatic (or else we would have a contradiction).

Before going on with the proof, we introduce some notation: we
denote by A(, ;) the integer 1+ sa + tb. From the previous paragraph
we have the following fact.

Fact 1. For0<j<i<k, k#0, A(i—k,5)» Ai,j)> and A j4k) cannot
all have the same color.

We call the three integers A\;_g ;), Adi,j)s and Ag jk) an isosce-
les triple since, associating A ;) with the point (s, t), the associated
points form an isosceles (right) triangle in the plane:

7+ k A
J
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Applying Fact 1, we have the following two facts.

Fact 2. A(p,0), A(2,2), and A4 4) cannot all have the same color.
Fact 3. Fori € {0, 1,2}, /\(i,i), /\(i+1,i+1)a and )‘(i+2,i+2) cannot all
have the same color.

Fact 2 holds because otherwise A(g o), A(2,2), and A(a,4) are all the
same color, say red. By Fact 1, this implies that A ), A(s,0) and
A(4,2) are all blue, contradicting Fact 1. To prove Fact 3, assume it is
false. Then for some i € {0,1,2}, the integers X(;;), Ai+1,i+1), and
A(i+2,i+2) all have the same color, say red. By Fact 1, this implies
that A4y, AGyo,i), and A42,41) must all be blue, contradicting
Fact 1.

Consider all possible 2-colorings of the set
T={/\(I‘z) :0S.’L‘§4}§S.

By the pigeonhole principle, one color, say red, must occur at least
three times. From Facts 1, 2, and 3 the only possible colorings of

(x(X0,0)> X(A1,1)), X(A2,2)), X(A3.3))s X(Aa0))
(using 7 for red and b for blue) belong to
{(r,r,b,7,b),(b,7,7,b,7),(r,b,b,7,7), (7,7, b,7,7)} .

We illustrate these four colorings graphically as follows, associat-
ing A(s 1) with the point (s,t), and using the standard (z, y)-axes.

b r r r

r_ b_ r_ r_
b__ r__ b__ b__
r___ r___ b___ r___
r_ . b____ T____ r____

(M (2) 3) (4)

We finish the proof graphically by determining, for each of the
colorings, the colors of most of the remaining elements of T. The
steps consist solely of avoiding monochromatic isosceles triples (see
Fact 1). By obtaining the colors of enough of the elements, we will
arrive at a contradiction in each case.
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Coloring 1.
b b b b b
r_ T_ T_ r_ rr
b__ b_r b_r b_r b_r
P r_b. r_b_ r_b.  r_br
T rb_b_ rbrb._ rbrbb rbrbb

Regardless of how we color the remaining points, we have a monochro-
matic isosceles triple, a contradiction.

Coloring 2.
r r r r r
b_ b_ br br br
r__ r_b r_b r_b_) r_b
.. rb_b__ rbrb _ rbrb rbrb
b____ b__r._ b__r._ b_br_ bxbrr

Whichever color we assign to z, we have a monochromatic isosceles
triple, a contradiction.

Coloring 3.
r r r r r
r_ rb rb rb rb
b__ b__ b__ b__ b_x
b_____* br___—q br-r—-a br_r_—ﬁ brrr
r____ r__bb rr_bb rrbbb rrbbbd

We again obtain a monochromatic isosceles triple for each coloring of
x, a contradiction.

Coloring 4.

b__ b__

—
T - - r-_-T

r____ rb_bb

For either coloring of z we have a monochromatic isosceles triple, a
contradiction.
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Since we are led to a contradiction using each of the possible
colorings, the proof is complete. O

Before moving on to the next equation, we mention a couple of
examples that are interesting consequences of Theorem 9.12 and its
proof.

Example 9.13. In this book we focus on coloring integers; however,
we may also color the set of real numbers by using 7-colorings with
domain R and range {1,2,...,7}. We can, of course, define an r-
coloring on any set, for example the real plane R2?. Using this domain,
as an immediate consequence of the proof of Theorem 9.12, we have
the following, rather formidable sounding, result: any 2-coloring of
R? must admit an isosceles right triangle with vertices all of the same
color. (In fact, any 2-coloring of {(z,y) : z,y € 2,0 < y < z < 4}
admits such a triangle, but this may not seem as grand a statement.)

Example 9.14. (A Tic-Tac-Toe Type Triangle) A 2-player game is
played on a board B, where B = {(z,y) : 0 < y < < 4}. Graphi-
cally, B looks like

This game is played on the above board, with one player being X
and one player being O. The object is to be the first player to create
an isosceles right triangle with the same orientation as the board (i.e.,
the right angle is to the bottom right) with all vertices marked by the
player’s letter (X or O). As we have seen from the proof of Theorem
9.12, unlike the standard Tic-Tac-Toe game, it is impossible not to
have a winner.

The next theorem refines Theorem 9.12 for the cases when a = 1
and a < b.
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Theorem 9.15. Let b > 1 and define n(b) to be thg least positive
integer such that for any 2-coloring of [1,n(b)], tﬁe?"e is @ monochro-
matic solution to x + by = (1 +b)z with z,y,2 distinct. Then

n(b) = 4b+5 if 41b

and
n(b) > 4b+ 3 if 4Jb.

Proof. First note that if 4 { b, then n(b) < 4b+5 is immediate from

Theorem 9.12.

To establish the desired lower bounds, we consider. thre?e casesi.
For each case we give a valid 2-coloring of thc? appropriate 1nter.va ,
and leave it to the reader, in Exercise 9.9, to verify that these colorings

are indeed valid. .
Case 1. 4lb. Let b = 4k. We want to find a valid 2-colo;1};1g ;f
[1,4(145)—2] = [1,16k+2]. Let § = [4k+1,8k+1]U[8k+3, 12K+ .
Define the coloring o on [1,4b + 2] as follows:
0 if 1€ S,ieven,
a(i)=< 0 ifi¢S,iodd,

1 otherwise.

Case 2. bis odd. Let T = [1,2b+ 2]. Define the coloring § on
[1,4(1 + b)] by

0 ifi€T,ieven,
BE)=< 0 ifi¢gT,iodd,

1 otherwise.

Case 3. b= 2(mod4). Define v on [1,4(1 + b)] as

0 if i=1(mod4) or i = 2(mod4),
") = 1 if i =0(mod4) or i = 3 (mod4).

- 9.2. Some Rado Numbers 247

By Theorems 9.2 and 9.4, the Rado numbers given in the last
three theorems are guaranteed to exist since the corresponding equa-
tions each satisfy the subset condition of Theorem 9.2. We have
seen in Theorem 9.8 that some equations that do not satisfy the re-
quirements of Theorem 9.10 (and hence are not regular) are, in fact,
r-regular for some 7 > 2. In the following three theorems, we consider
some homogeneous equations that do not satisfy the subset condition
of Theorem 9.2 (which is needed for regularity) that are, nevertheless,
2-regular.

Theorem 9.16. Fora > 1, r(az +ay = 2) = a(4a® + 1).

Proof. Let £ represent the equation ax + ay = z. To show that
r(ax +ay = z) > a(4a® + 1), we give a 2-coloring of [1,a(4a? +1) — 1]
with no monochromatic solution to £. Color [2a, 4a®—1] one color and
its complement a different color. It is left to the reader in Exercise 9.10
to show that no monochromatic solution exists under this coloring.

We complete the proof by showing that any given 2-coloring of
[1,a(4a+1)] must admit a monochromatic solution to £. Assume, for

a contradiction, that x : [1,a(4a®+1)] — {0, 1} admits no monochro-
matic solution.

We may assume, without loss of generality, that x(1) = 0. There-
fore, x(2a) = 1. Define k > 2 to be the maximal integer so that
X([1,k - 1]) = 0. Note that we must have k < 2a, and that (k) = 1.
This implies that x(2ak) = 0, since (z,y, z) = (k, k, 2ak) is a solution.
Since x(1) = x(k — 1) = 0, we have x(ak) =1 (to avoid (1, k — 1, ak)
being of color 0). Since x(ak) = 1, we have x(202k) = 0. This, in
turn, gives x(2ak — (k — 1)) = 1, so that (k — 1,2ak — (k — 1), 2a2k)
is not of color 0. To avoid (2ak — (k — 1), k, a(2ak + 1)) being of color
1, we have x(a(2ak + 1)) = 0. Therefore, (1,2ak,a(2ak + 1)) is a
monochromatic solution, a contradiction. O

Theorem 9.17. Fora > 1, r(az + ay = 22) = 2@
Proof. Let £ represent the equation az + ay = 2z. Let n(a,b) =

r(az 4 ay = bz) and let n = n(a,2). From Theorem 9.16, if a is even

2
1y .
we have n = a(“—;—), since n = n (%,1). Furthermore, for a = 1 we
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have the trivial monochromatic solution x = y = z = 1. Hence, we
assume that a > 3 is odd.

To show that n > ﬁz’;ﬂ, we will give a 2-coloring of the inter-
val I = [1, &’?—1) - 1] with no monochromatic solution to £. Color
[a,a® — 1] red and its complement in I blue. It is left to the reader in
Exercise 9.12 to show that under this coloring there is no monochro-
matic solution to £.
a(a®+1)
=

To finish the proof we show that n < Assume, for a

contradiction, that there exists a 2-coloring x : [1, kaz;—l)] — {0,1}
that admits no monochromatic solution to £. Then neither (1,1,a)
nor (a,a,a?) is monochromatic; therefore 1 and a® must have the
same color. We may assume that x(1) = x(a?) = 0 and x(a) = 1.

Consider the solutions

s10) = (La? — (a—1)j, §(a® — (a— 1)j +1)), and
507) = (L,a> = (a = 1) +1), §(a> — (a = 1)j + 1)

for0<j<a-1
Denote s;(j) by (1, 3(2)(]'), sl(-s)(j)) fori=1,2and 0<j <a-1.

i
Since none of these solutions s;(j) may be monochromatic, we have,
for j =0,1,...,a—2, in order, the following sequence of implications:

51(j) and s2(j) not monochromatic implies x (s&B)(j)) =1,

x (s(4)) = 1 implies x ng)(j)) =0,

X s§2)(j) = 0 implies x 5(13)(j + 1)) =1

Since x (sg)(a - 1)) = x(a®—(a—1)?) = 0, we have that

(1,a% — (a —1)?,a?) is a monochromatic solution, a contradiction.
O

The above two theorems are implied by the the following, broader,
result, which gives the value of r(azx + ay = bz) for all a and b. We
present this without proof.
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Theorem 9.18. Assume ged(a,b) =1 and let r = r(az + ay = bz).
Then

a(4a®+1) if b=1,

2
r = a(a2+1) Zf b:2)
9 if b=3and a =1,
10 if b=3 and a = 2.

Forb=3 anda24,
w if a=1(mod 9),
allaltat9) =9

4042 .
a(4a”+2a+9) aza+9) ifa=4

(

(

(
w if a =5 (mod 9),

(

(

w if a=7(mod 9),
alla’rat6)  yf g =8

mod 9)
Forb >4,
r= b+1) 1/f1<as4_ti,
o r=[%] if 2<a<?,
r=a if%<a<b,

r=[%la ifb<a.

9.3. Generalizations of the Single Equation
Theorem A

We present two main results in this section, one without proof, both
of which generalize Rado’s single equation theorem (Theorem 9.2).
The way that the first result generalizes Theorem 9.2 is similar to
the way in which the Ramsey numbers R(kq,ko,...,k,) generalize
R.(k). Recall, for example (taking r = 2), that Ro(k) = R(k,k)
is the least positive integer such that every 2-coloring of the edges
of the complete graph on R(k, k) vertices admits a monochromatic
complete graph on k vertices. Meanwhile, the more general Ramsey
number R(k, ) denotes the least positive integer such that for every
red-blue coloring of the edges on R(k, £) vertices, there is either a red
complete graph on k vertices or a blue complete graph on ¢ vertices.
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The numbers R(k, k) are called diagonal Ramsey numbers, and when
k #1, R(k,¢) is called an off-diagonal Ramsey number

Now consider Rado’s single equation theorem. The theorem guar-
antees a monochromatic solution to certain equations. This has a fla-
vor similar to that of the diagonal Ramsey numbers, and we call the
analogous Rado numbers diagonal Rado numbers. Now, if we have
two different homogeneous linear equations, is it true that under any
red-blue coloring of Z* there must be either a red solution to the first
equation or a blue solution to the second? What we are considering
here are off-diagonal Rado numbers (if they exist). The next theorem
proves their existence and is easily derived from the proof of Theorem
9.2.
Theorem 9.19. Let r > 1. For1 < j < r, let nj > 2 and let &;
represent the equation 37, ¢z, = 0. If each &, 1 < j < r, is
r-reqular, then there is a least positive integer n so that for every
r-coloring of [1,n], there exists t € {1,2,...,r} such that & has a
solution of color t.

If a set S of r homogeneous equations satisfies the conditions of
Theorem 9.19, we will say that S is r-regular.

Before delving into the proof of this theorem, we look at an ex-
ample to help solidify the implication of Theorem 9.19.
Example 9.20. Consider the three equations given below:
~x1 +2x9 + 23 =0,
31 —x9+x3+Try =0,
2x1 + 4xo — 3x3 + x4 + 625 = 0.

Each of these equations is regular by Rado’s theorem, since each has a
nonempty subset of coefficients that sums to zero: (using the notation
of Theorem 9.19) ¢ 1)+03 =0, c(2)+c(2) =0, and 0(3)+cg )+c(3) 0.
Applying Theorem 9.19, we are guaranteed that any 3-coloring, say
red-blue-green, of Z* must contain one of the following:

a red solution to —x; + 2x9 + 3 = 0;
a blue solution to 3xzy — 9 + 23 + Tx4 = 0;

a green solution to 2x; + 4z — 3x3 + x4 + 625 = 0.
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We now present a sketch of the proof of Theorem 9.19. The proof
is very similar to that of Theorem 9.2 so we leave some justification
to the reader as Exercise 9.13.

Proof of Theorem 9.19 (sketch). Let S = {&,&,...,&,.}. The
proof is by induction on 7. The case r = 1 holds by Theorem 9.2.
Let n = n(S;r — 1) be the least positive integer such that for any
(r — 1)-coloring of [1,n] there is a solution to & of color 4 for some
ie{l,2,...,r—1}.

Assume that for each j, 1 < j <r,
e+t =0

with m; < n; maximal, and that s; = cgzﬂ + ngw +cPisa
nonempty, nonzero sum (this needs to be justified).

Let b; = >0, |c§])|. Define b = [[7_, b; and s = []_, [s;].
We claim that n(S;r) < 0"w(n + 1;7). We show that any r-coloring
of [1,b"w(n + 1;7)] must admit a solution to & of color 1, for some
ie{l,2,...,r}.

Let x : [1,0"w(n+1;7)] — {0,1,...,7}. Let 2g = a3 = - - - = T,
and Ty, 41 = Tm;4+2 = -+ = Ty, for each j, 1 < j < r. Hence, we
can write &;, for 1 < j < r, under these conditions, as

ci’)(xl — Z2) + 8jTm,4+1 = 0.

By Theorem 4.9, x admits an (n+1)- term monochromatic arith-
metic progression with gap a multiple of s. Let {a a+ds, .,a+nds}
be one such arithmetic progression of color, say, ¢t. If there ex-
ists j € [1,n] such that x (jdcgt)) = t, then we are done (this
needs to be justified). If, on the other hand, for all j € +[1,n] we
have y (jdcgt)) # t, then dc(t) *[1,n] is (r — 1)-colored (verify that
dcgt)in <b"w(n+1;7)). Let 8’ = S — &,. Since we have an (r — 1)-
coloring of %[1, n] using the colors 1,2,...,t—1,¢t+ 1L,t+2,...,r, by
the inductive assumption there exists ¢ € [1,7] — {t} such that &, has
a solution of color ¢. This completes the proof. O

Example 9.21. Let S = {€1,&,.. &} with & =& = -+ = €,.
Then Theorem 9.19 reduces to Theorem 9.2.
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Just as Rado’s single equation theorem was strengthened to show
the existence of monochromatic solutions consisting of distinct inte-
gers, Theorem 9.19 can be strengthened in the same way. This is
given by the next theorem, which we state without proof.

Theorem 9.22. Let r > 1. Let S = {&1,&s,...,E,}, where the & s
are defined as in Theorem 9.19. There exist j, 1 < j < r, and distinct
b, 1 <14 < ny, of color j, that satisfy £;, if and only if S is r-regqular
and for all j, 1 < 7 <r, there exist distinct y(j) €Z,1<1i< ny, that
satisfy £;.

As an interesting application of Theorem 9.22, we look at the
following example.

Example 9.23. Consider the set of equations {z+y = z,z+y = 2z}.
By Theorem 9.22, there exists a minimal integer n such that any red-
blue coloring of [1,n] must contain either a red solution to z +y = z
(of distinct integers) or a blue solution to x +y = 2z (of distinct
integers). In other words, there must exist either a red Schur triple
or a blue 3-term arithmetic progression. In fact, n = 8. To see that
n > 8, color 1,4,7 red, and color 2,3,5,6 blue. The fact that every
2-coloring of [1,8] admits either a red Schur triple or a blue 3-term
arithmetic progression is left to the reader as Exercise 9.4.

We now state, without proof, the full version of Rado’s theorem,
for which Rado’s single equation theorem (Theorem 9.2) is a special
case. This is a very powerful theorem, as it describes precisely when
we are guaranteed monochromatic solutions to a homogeneous system
of linear equations. In order to state Rado’s full theorem clearly, we
make the following definition.

Definition 9.24. Let C = (¢1 ¢ ... ¢,) be a k x n matrix, where
G; € ZF for 1 < i < n. We say that C satisfies the columns condition
if we can order the columns ¢; in such a way that there exist indices
ip =1 <13 < iy <--- < iy = nsuch that the following two conditions
hold for & =377 |, & (2<j <)

1. & = 0.

2. 8 can be written as a linear combination of ¢y, é,...,¢;_,

for2<j<t.
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To help clarify this rather cumbersome definition, we look at a
couple of examples.

Example 9.25. Consider the following matrix:

1 0 2 -3 2
0 -1 2 -2 1
4 2 -5 1 6

To see that this matrix satisfies the columns condition, rearrange the
columns to obtain

1 2 -3 0 2
0 2 -2 -1 1
4 -5 1 2 6

Using the notation of Definition 9.24, take t = 2, i; = 3, and i, = 5.
Then & = 0 € Z3 and § = (2 08)* = 2¢, (where t denotes the
transpose).

Example 9.26. The following matrix does not satisfy the columns
condition:

By inspection (check!) we see that there does not exist a set of
columns that sums to the zero vector.

The key to comprehending Rado’s full theorem is having a clear
understanding of the columns condition. We now state Rado’s full

theorem. We do not include its proof, as it is beyond the scope of
this book.

Theorem 9.27 (Rado’s Full Theorem). Let S be a system of linear
homogeneous equations. Write S as A% = 0. S is regular if and only
if A satisfies the columns condition. Furthermore, S has a monochro-
matic solution of distinct positive integers if and only if S is reqular
and there ezist distinct (not necessarily monochromatic) integers that
satisfy S.
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Rado’s full theorem opens the door to many new Ramsey-type
numbers, one of which is presented in the next two examples.

Example 9.28. For r > 1, there exists n = n(r) such that under
any r-coloring of [1,n] we must have both a monochromatic Schur
triple and a monochromatic, of the same color, 3-term arithmetic
progression.

To show the existence of such a monochromatic structure, con-
sider the following system in the variables z1,zo,...,Zs,y:

1 + T2 = T3,
Ty —T5 =Y,
Ts5 —Te =Y.
If z;, 1 < i < 6, are all the same color, then z; + zo = 3 is a

monochromatic Schur triple and zg, x5, z4 is a monochromatic 3-term
arithmetic progression with gap y.

Writing the above system in matrix form (using the notation of
Definition 9.24 and Theorem 9.27) with & = (z1 z2 ...z6 y)*, we get
C# = 0, where

11 -10 0 0 O
C=|100 01 -1 0 -1
00 0O 1 -1 -1

Rearranging the rows of C, we have

1 -1 0 0 01 O
(c1é& ...¢s)=1 0 01 -1 0 0 -1
0 00 1 -1 0 -1

Since Eleé‘i =0¢€Z3 & = &, and & = & + 25, we have
satisfied the columns condition. By Rado’s full theorem we know that
for any finite coloring of Z™, there is a monochromatic solution to the
given system of equations. Hence, we have a monochromatic Schur
triple and a monochromatic 3-term arithmetic progression (with gap
y) of the same color. Note that, in addition, y has this same color.

Example 9.29. Let n be the least positive integer such that any 2-
coloring of [1,n] must contain a Schur triple and a 3-term arithmetic
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progression, both monochromatic of the same color. We show that
n < 16.

We know that s(2) = 5 and w(3) = 9, where s and w are the usual
Schur and van der Waerden functions, respectively. Clearly, in any
red-blue coloring of [1,16] there exist both a monochromatic Schur
triple and a monochromatic 3-term arithmetic progression. Assume,
for a contradiction, that the colors of every such pair of triples are
different.

Let a,a + d,a + 2d be, say, a red 3-term arithmetic progression.
Since a + a = 2a, a+ (a +d) = 2a + d, and a+ (a+2d) = 2a + 2d,
we must have 2a,2a + d, and 2a + 2d all be blue in order to avoid a
red Schur triple. Note that 2a + 2d < 16, since w(3) = 9 implies that
a+2d<9anda<7.

Hence, we have that 2a,2a+d, 2a +2d is a blue 3-term arithmetic
progression, a contradiction since we now have a Schur triple and a
3-term arithmetic progression with the same color.

In this section we have seen two generalizations of Rado’s single
equation theorem: Theorem 9.19 and Rado’s full theorem. Rado’s full
theorem is clearly more powerful, as it completely classifies regular
systems. Its strength is also made apparent by comparing Examples
9.23 and 9.29.

9.4. Exercises

9.1 Prove that in the statement of Theorem 9.2 we may take
£ € Q[x], i.e., the coefficients may be rational.

9.2 Which of the following equations are regular?
a)x—y =Tz
b) z1 + 2z2 + 323 + 424 = 5x5;
C) T1 — 2w + 423 — 874 + 16z5 — 3226 = 0;
d) %xl — %172 + 223 — -1-15.15 =0.

9.3 Give two different equation(s)/system(s) whose r-regularity
proves the existence of monochromatic 3-term arithmetic pro-
gressions in any r-coloring of Z%.

9.4 Show that the minimal integer n such than any red-blue col-
oring of [1,n] must admit either a red Schur triple, or a blue
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9.5

9.6

9.7

9.8

9.9

9.10

9.11

3-term arithmetic progression is n = 8. The fact that n > 8
comes from the coloring given in Example 9.23.

The following system is regular according to Rado’s full theo-
rem (Theorem 9.27). Prove this. Also, what monochromatic
object is guaranteed to exist?

ry — X2 = X7

o9 — XT3 =27
r3 — X4 = I7
Ty — s =T7
rs — Xg =T7.
Let b # 0. Let £(b) represent the equation x +y — 2 = b.
Define the 2-coloring x : [1,b— [2]] — {0,1} by

0 ifze [[g] +1, V’%ﬂﬂ

1 otherwise.

x(z) =

Show that  is a valid coloring for £(b).

Verify the fact that the three colorings used in the proof of
Theorem 9.11 are each valid colorings.

In the proof of Theorem 9.12 it is stated that n(1,2) = 13,
n(1,3) = 11, n(1,4) = 19, n(1,5) = 25, and n(2,3) = 21.
Verify this. (A computer may be helpful, but is not neces-
sary.)

Verify the fact that the three colorings used in the proof of
Theorem 9.15 are each valid colorings. Also, what is the
standard notation for n(1) in this context?

Do the following problems concerning the proof of Theorem
9.16.

a) Show that the coloring given for the lower bound is valid.
b) The statement that (1, 2ak, a(2ak+1) is a monochromatic
solution, which is given at the end of the proof, is not valid
unless k < 2a. Verify this.

c) What is the standard notation for n(1) in this context?

Prove that for a > 4, we have r(z + y = az) = (anrl)'
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9.12

9.13
9.14

9.15

Verify the fact that the coloring given in Theorem 9.17 is
valid. Also, for the upper bound, why must we insist that
a> 37

Fill in the details for the proof of Theorem 9.19.

Deduce the existence of the off-diagonal generalized Schur
numbers using one of the theorems in this chapter.

Find the exact value of the number n of Example 9.29.

9.5. Research Problems

9.1

*9.2

9.3

*9.4

9.5

9.6

x9.7

Find an extension of Rado’s full theorem which is analogous
to Theorem 9.19’s extension of Rado’s single equation theo-
rem.

Reference: [69]

Theorem 9.10 characterizes those nonhomogeneous equations
that are not regular. Further characterize these equations
by the greatest number, m, of colors for which they are m-
regular (i.e., by their degrees of regularity).

The exact value of r(az+by = (a+1b)2) is known when a = 1
and b # 0 (mod4). Determine r(az + by = (a + b)z) for all
other pairs (a,b). Bounds for these remaining pairs are given
by Theorems 9.12 and 9.15.

Reference: [69]

Determine the 2-color Rado numbers for aw + bz + cy = cz
for all a, b, and c. Start witha=b=1,¢> 1.
References: [139], [140], [224]

Complete the result analogous to Theorem 9.8 for b < 0 (the
references listed directly below indicate which cases remain
open).

References: [159], [239]

Extend Theorem 9.8 to r > 3 colors.

Reference: [239]

Let x be a given red-blue coloring of [1,n]. Define Sy to
be the number of red Schur triples in [1, n] under x, and V,
to be the number of blue 3-term arithmetic progressions in
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[1,n] under x. Determine the asymptotic minimum sum of
the number of red Schur triples and the number of blue 3-
term arithmetic progressions; i.e., find min(S, + Vy), where
the minimum is over all red-blue colorings x of [1,n].
References: [75], [225], [248]

%9.8 Let x be a given red-blue coloring of [1,n]. Define S, to be
the number of monochromatic Schur triples in [1,n] under
X, and V, to be the number of monochromatic 3-term arith-
metic progressions in [1,n] under x. Determine the asymp-
totic minimum sum of the number of monochromatic Schur
triples and the number of 3-term arithmetic progressions; i.e.,
find min(Sy + V4), where the minimum is over all red-blue
colorings x of [1,n].
References: [75], [225], [248]

9.6. References

§9.1. Bergelson, Deuber, and Hindman [29] extend Rado’s theorem
to hold over finite fields. The proof of Theorem 9.4 can be found in
[127, p. 77]. Theorem 9.8 and its proof appear in [239]. Rado [214]
classifies those nonhomogeneous linear systems that are regular. In
[70], Theorem 9.9 is given. Extensions of Rado’s full theorem are
given in [32] and [181]. Generalizations to abelian groups can be
found in [80] and [81].

§9.2. Burr and Loo [69] present Theorems 9.11, 9.12, and 9.15 with
different proofs for 9.11 and 9.12. Theorem 9.16 and Exercises 9.6 and
9.11 may be found in [70]. Harborth and Maasberg prove Theorem
9.17 in [140] and Theorem 9.18 in [139]. Theorem 9.19 is noted,
without proof, in [224].

§9.3. Rado’s full theorem’s (Theorem 9.27) original proofs are in the
series of papers [215], [214], and [213]. Other proofs can be found
in [77] and [127].

Additional References: For a survey with an extensive reference
list, see [77]. In [108], bounds are given for the number of monochro-
matic solutions in a regular system. Probability results concerning
Rado’s full theorem can be found in [226]. Deuber [79] gives a strong
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generalization of Rado’s theorem. An extension of Deuber’s result is
in [178].

Systems of linear homogeneous inequalities are dealt with in [242].
Values and bounds for such inequalities are given by Schaal in [241],
while in [240] he gives values and bounds for linear nonhomogeneous
inequalities. Homogeneous systems whose solutions satisfy a linear

inequality are presented in [147]. Nonlinear homogeneous equations
are studied in [67] and [180].



Chapter 10

Other Topics

The previous chapters were primarily devoted to three classical the-
orems of Ramsey theory — van der Waerden’s theorem, Schur’s theo-
rem, and Rado’s theorem — and to many generalizations, extensions,
and other modifications of these three theorems. There are quite a
few interesting topics and problems that are not in the aforementioned
category, but which definitely belong to the area of Ramsey theory
on the integers. In this chapter we touch upon a few such topics.

10.1. Folkman’s Theorem

Folkman’s theorem, also known as the Folkman-Rado-Sanders theo-
rem, involves the existence of certain sets of sums that are monochro-
matic under any finite coloring of the positive integers. We begin
with a definition.

Definition 10.1. Let T C Z* be finite. We define

S(T):{ZT:RQT,R;EQ)}

TER

and call S(T) the sumset of T.

Note that the sumset of a set T' consists only of sums of distinct
elements of T'. In particular, if ¢ € T, then 2t ¢ S(T).

261
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Example 10.2. Let T= {2,5,8}. Then S(T)= {2,5,7,8,10,13,15}.
The number 2+2 = 4, or any sum with the same summand appearing
more than once, is not a member of S(T').

We now state Folkman’s theorem.

Theorem 10.3 (Folkman’s Theorem). For all k,r > 1, there exists
a least positive integer F = F(k;r) such that for every r-coloring
of [1,F), there is a k-element subset T C [1,F] such that S(T') is
monochromatic.

Note that the statement of Theorem 10.3 is the “finite” form of
Folkman’s theorem. This is equivalent (by means of the compactness
principle) to the “infinite” form: if » > 1, then for every r-coloring
of Z%, there are arbitrarily large sets T such that S(T") is monochro-
matic.

Example 10.4. Consider F(2;7). If n = F(2;r), then for each r-
coloring of [1,n| there are integers a and b such that the set {a, b, a+b}
is monochromatic. This may look familiar: it is the statement of
Schur’s theorem, which says that for any r > 1, there is an integer n =
s(r) such that for every r-coloring of [1,n], there is a monochromatic
solution to x +y = 2.

The astute reader may notice that Folkman’s theorem is a special
case of Rado’s full theorem (Theorem 9.27); it follows by elementary,
although somewhat untidy, means. However, Folkman’s theorem is
of sufficient independent interest to warrant our providing a different
proof. We will use the following lemma (which is similar to Definition
2.33) to prove Theorem 10.3.

Lemma 10.5. For allk,r > 1, there is an integer n = n(k;r) so that
for any r-coloring of [1,n], there exist 11 < z2 < --- < z € [1,n]
with Zle z; < n such that

S; = {Zx,:RQ [l,k],rglea})z(rzt}

T€ER

is monochromatic fort =1,2,... k.
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Proof. We use induction on k, with k = 1 being trivial. Let k > 1,
let 7 be arbitrary, and assume that n(k;r) exists. We will show that
n(k + 1;7) < 2w(n(k;r) + 2;7), where w(k;r) is the usual van der
Waerden function.

Let m = 2w(n(k;r)+2;7), and consider an arbitrary r-coloring of
[1,m]. By van der Waerden’s theorem, using Proposition 2.29, there
is a monochromatic arithmetic progression

A={a+jd:0<j<n(kr)+1} C [%,m].
Now consider the set
D ={d,2d,...,n(k;r)d}.

Using Proposition 2.30, along with the inductive assumption, there
exist £1 < 3 < --- < z in D such that the associated S,’s are
monochromatic for t = 1,2,... k. Our goal is to find an Tk+1 SO that
Sk+1 is also monochromatic.

We will show that we may take zx1; = a + d. Since a > % and
a+n(k;r)d < m, we see that n(k;r)d < 5. Hence, a +d > z, since
zk € D. Because (a+d)+ D C A, by taking 251, = a + d we have
Tk+1 > Tk and

Sk+1 C (a+d)+D§A.

Hence, Sy is monochromatic, thereby completing the induction. [1
We now apply the above lemma to prove Folkman’s theorem.

Proof of Theorem 10.3. We show that F(k;r) < n((k—1)r+1;7),
where n(k;r) is defined as in Lemma, 10.5.

Let ry <y < -+ < Z(k—1)r+1 Satisfy Lemma 10.5, with associ-
ated sets S1,.5,,..., S(k-1)r+1. By the pigeonhole principle, k of these
sets must have the same color. Denote these k sets by Sy Sigse iy Siy

Consider T = {41, 13,...,ix}. Then

S(T) = {Zmr:RQT,R#Q}

TER

is monochromatic, since max{r : r € R} € {i1,4s,...,ix}. O
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Now that we have proven the existence of F(k;r) for all k,r > 1,
we refer to F(k;r) as a Folkman number. We also offer, after a
definition, an immediate corollary of Folkman’s theorem.

Definition 10.6. Let T C Z% be finite. Define

’P(T)z{Hr:RQT,R#(Z)}

TER
and call P(T) the product-set of T

Example 10.7. For T = {2,5,8}, P(T) = {2,5,8,10, 16,40, 80}.

Corollary 10.8. For all k,r > 1, there exists a least positive integer
F* = F*(k;r) such that for every r-coloring of [1,F*], there is a
k-element subset T C [1, F*] with P(T) monochromatic.

Proof. We will show that F*(k;r) < 2F*), Let n = 2F(*") and let
x be an r-coloring of [1,7n]. Consider {2 :1 <14 < F(k;7)}. Let v be
the r-coloring of [1, F(k;r)] defined by (i) = x(2¢).

Let T = {t; < ta < -+ < tg} C [1,F(k;7)] be a k-element
set such that S(T') C [1, F'(k;r)] is monochromatic under «. By the
definition of ~, this implies that Q = {2% < 22 < ... < 2%} is
monochromatic under x. Since §(T') is monochromatic and

12 = prrer’s
TER
for any R C T, we see that P(Q) C [1,n] is monochromatic. O

With regard to bounds on the Folkman numbers, we see from
the proofs of Theorem 10.3 and Lemma 10.5 that F(k;r) is bounded
from above by 2w(t;r) for some suitably large ¢, where w is the usual
van der Waerden function. As such, Gower’s bound for the van der
Waerden numbers (Remark 2.22) also provides an upper bound for
the Folkman numbers. For a lower bound, we turn to a result of
Erdds and Spencer, which we offer without proof.

Theorem 10.9. F(k;2) > gck?/log k for some fized constant ¢ > 0.

A question you may have considered, based on the above results,
is: for any k,r > 1, does every r-coloring of Z* admit a k-element

10.2. Doublefree Sets 265

subset T' C Z*, such that S(T)UP(T) is monochromatic? The answer
to this question is unknown, even for k = 2.

10.2. Doublefree Sets

Taking k = 2 in Folkman’s theorem, we have a “strengthened” Schur’s
theorem, which says that, under any given r-coloring of Z*, there
exist  # y such that {z,y,z + y} is monochromatic. We call this a
strengthened Schur’s theorem since we are requiring = # y, something
that is not required in Schur’s theorem. So, can we go the other way
and require z = y? In other words, does every r-coloring of Z* admit
a monochromatic set of the form {x,2x}? The answer is no. Consider
the 2-coloring x of Z*1 defined as follows: for i = 27q, where q is odd,
let x(i) = 0if j is even, and x(i) = 1 if j is odd. After a moment of
thought, we see that such a coloring is indeed a well-defined coloring
of Z* with no monochromatic set of the form {z,2z}.

Definition 10.10. A subset T' C [1,n] is called doublefree if T' con-
tains no set of the form {z,2z}.

Since colorings of [1,n| are just partitions of [1,n] into subsets,
we consider the question: what is the size of the largest doublefree
subset of [1,n]? The following result answers this question.

Theorem 10.11. The largest size of a doublefree subset of [1,n] is
|T|, where
T = {ud' : u odd and u4* < n}.

Proof. Each positive integer can be expressed uniquely in the form
u2%, where u is odd and i > 0. For each fixed odd positive integer
u < n, let i, denote the largest integer such that u2% < n.

Consider T, = {u2® : 0 < i < 4,}. Assume T is a double-free
subset of [1,n]. Then T cannot contain a pair of elements u2'~! and
u2', with u odd and i > 1. Therefore, for each fixed odd positive

integer u, a maximum-sized subset of T, that is contained in T is
Ay, = {u20,u22 u24, ... u2™}, where

» if 4fi,,
m =
=1 if 414,
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Therefore, the size of T is no larger than the size of
S = {u22k :u is odd and u2%F < n}:{u‘”c s is odd and ud® < n}.

Since S is doublefree, we are done. O

10.3. Diffsequences

In Chapter 4 we investigated the Ramsey properties of certain sub-
families of the family of arithmetic progressions, where the common
gap between consecutive integers is restricted to a prescribed set. In
particular, recall that if D C Z*, then Ap denotes the family of all
arithmetic progressions with gaps belonging to D. We remind the
reader also that a set D is called large if for all k,r > 1, there is
a least positive integer R(Ap, k;r) such that every r-coloring of Z*
yields a k-term member of Ap (when this condition is satisfied for a
fixed r, D is said to be r-large). In this section we consider a notion
related to largeness. Yet, the topic of this section could be consid-
ered more like the families we encountered in Chapter 3, where we
“loosened” the requirements in the sense that the gaps were allowed
some “slack.” How can these two contrasting concepts be somehow
blended? Actually, it is quite simple: we restrict the gaps to a pre-
scribed set D, but we throw out the requirement that the terms of
the sequence form an arithmetic progression.

We begin with some terminology.

Definition 10.12. Let D C Z*. A sequence of positive integers
Ty <22 < --- < Ty is called a k-term D-diffsequence if x; —x;_1 € D
fori=2,3,...,k.

Example 10.13. Let D = {1,5} and let E = 2Z*. The sequence
of integers 3,8,9,14,19 is a 5-term D-diffsequence, and the sequence
1,2,7,8 is a 4-term D-diffsequence. A set is an E-diffsequence if and
only if it consists entirely of even numbers or entirely of odd numbers.
Thus, for example, 3,7,21,25,31,41 is an E-diffsequence.

Definition 10.14. Let r > 1. A set of positive integers D is called
r-accessible if for every k > 1, there exists a least positive integer
A = A(D,k;r) such that whenever [1,A] is r-colored, there is a
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monochromatic k-term D-diffsequence. If D is r-accessible for all
positive integers r, we say that D is accessible.

Note that by the compactness principle, the following is an al-
ternate definition for a set D being r-accessible: whenever Z% is r-
colored, there are arbitrarily long monochromatic D-diffsequences.

Let us consider some examples.

Example 10.15. Consider D = {10n : n > 1}. We know from The-
orem 4.9 (or Example 2.2) that for every finite coloring of the positive
integers, there are arbitrarily long monochromatic arithmetic progres-
sions whose gaps belong to D. Certainly, if we remove the requirement
of being an arithmetic progression, and instead require merely that
the difference between consecutive terms of the progression be a mul-
tiple of 10, the corresponding Ramsey property will still hold; i.e., D
is accessible.

Example 10.16. Let D be the set of odd positive integers. Coloring
Z* as101010. .. shows that D is not 2-accessible (in fact, this coloring
even avoids monochromatic 2-term D-diffsequences).

We remark that, as made evident in Example 10.15, if a set is
r-large, then it must also be r-accessible.

We start our investigation of the Ramsey theory of diffsequences
with a very useful lemma. Recall that, for S a set and c€ R, S+ ¢
denotes the set {s +c: s € S}.

Lemma 10.17. Let ¢ > 0 and r > 2, and let D be a set of pos-
itwe integers. If every (r — 1)-coloring of D yields arbitrarily long
monochromatic (D + c)-diffsequences, then D + c is r-accessible.

Proof. Let D = {d; :i=1,2,...} and assume every (r — 1)-coloring
of D admits arbitrarily long monochromatic (D + c)-diffsequences.
Let x be an r-coloring of Z*. By induction on k, we show that,
under x, there are k-term monochromatic (D + c¢)-diffsequences for
all k. Since there are obviously 1-term sequences, assume k& > 1 and
that under x there is a k-term monochromatic (D + c)-diffsequence
X = {z1,z2,...,7}. We may assume X has color red. Consider the
set A= {xy +d; +c:d; € D}. If some member of A is colored red,
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then we have a red (k + 1)-term (D + c¢)-diffsequence. Otherwise we
have an (r—1)-coloring of A and therefore, by the hypothesis, A must
contain arbitrarily long monochromatic (D + c)-diffsequences. a

Remark 10.18. The converse of Lemma 10.17 is false. As one ex-
ample, let S be the set of odd positive integers, and let D = SU{2}.
Let x be the 2-coloring of D defined by x(z) =1 if z = 1 (mod4) or
z =2, and x(z) = 0 if £ = 3 (mod4). Then x does not yield arbi-
trarily long monochromatic D-diffsequences (there are none of length
four). On the other hand, Theorem 10.24 below tells us that D is
3-accessible (and, in fact, A(D, k;3) < 6k% — 13k + 6).

We now present two additional lemmas, the proofs of which are
left to the reader as Exercises 10.3 and 10.4.

Lemma 10.19. Let m > 2 and i > 1, and assume ged(i,m) = 1.
Let D ={z € Z* : z =i(modm)}. Then D is not 2-accessible.

Lemma 10.20. If D is not r-accessible and E is not s-accessible,
then D U E is not rs-accessible.

We next investigate the accessibility of some specific sets.
Theorem 10.21. Let D ={2":i=1,2,...}. Then
8(k—3)+1<A(D,k;2) <2 —1.

Proof. We start with the upper bound. Let o : [1,2F — 1] — {0,1}.
We show that under « there must be a monochromatic k-term D-
diffsequence. We do this by induction on k. Obviously, it holds for
k = 1. Now assume k > 2, and that A(D,k — 1;2) < 25=1 — 1. Let
X = {z1,22,...,2k-1} be a monochromatic D-diffsequence, say of
color 0, that is contained in [1,2%~1 — 1]. Consider the set

A={zp_1+2":i=0,1,...,k—1}.

Note that A C [1,2%—1]. If there exists y € A of color 0, then X U{y}
is a monochromatic k-term D-diffsequence. If, on the other hand, no
such y exists, then A is a monochromatic k-term D-diffsequence.
For the lower bound, first note that by direct calculation we find
that A(D,3;2) = 7 and A(D,4;2) = 11 (see Table 10.1 at the end
of this section). To complete the proof we show by induction on k

10.3. Diffsequences 269

that, for k > 5, the 2-coloring xi of [1,8(k — 3)] that is represented
by (10010110)*~3 avoids monochromatic k-term D-diffsequences. It
is easy to check that this statement is satisfied by k = 5. So now
assume k > 5, that x, avoids k-term D-diffsequences, and consider
Xk+1-

Let X = {z1,22,...,2m} be a maximal length monochromatic
D-diffsequence under xx4+1. We wish to show that m < k. Assume,
by way of contradiction, that m > k + 1. Then z,,_; and z,, both
belong to [8(k — 3) + 1,8(k — 2)], or else the inductive assumption
would be contradicted. We have the following two cases.

Case 1. xk+1(X) = 1. We consider 2 subcases.

Subcase i. Tpm—2 € [8(k—3)+1,8(k—2)]. We have x,,_, = 8k —20,
ZTm—1 = 8k—18, and x,,, = 8k—17. By the structure of x4, we see that
ZTm-3 = 4 (mod 8). Hence, there exists, under y, a monochromatic
D-diffsequence of length m — 1, contradicting our assumption about
Xk-

Subcase ii. xpm_2 & [8(k—3)+1,8(k—2)]. Then z,,_; = 8k—18 and
ZTm = 8k — 17. By the structure of xy, this implies z,,_2 = 6 (mod 8).
Then there is an (m — 1)-term monochromatic D-diffsequence under
Xk, & contradiction.

Case 2. xk+1(X) = 0. We again consider 2 subcases.

Subcase i. Tp—2 € [8(k—3)+1,8(k—2)]. We have z,,,_o = 8k —22,
ZTm-1 = 8k — 21, and z,, = 8k — 19. Then either z,,_3 = 8(k — 3) or
Tp—3 = 2(mod8). If z,,,—3 = 8(k — 3), then m — 3 < k — 3, because
there can be only one term of a D-diffsequence per 10010110-string,
a contradiction. If z,,_3 = 2 (mod8), then there is an (m — 1)-term
D-diffsequence of color 0 under xi, a contradiction.

Subcase ii. Ty—2 & [8(k—3)+1,8(k—2)]. Then z,,_; = 8k—21 and
T = 8k—19, and hence z,,_2 = 3 (mod 8). This is not possible, since
there would then be a monochromatic (m — 1)-term D-diffsequence
under xy. O

Before continuing, we need one more definition.

Definition 10.22. If D C Z* is not accessible, the degree of acces-
stbility of D is the largest value of r such that D is r-accessible.
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We denote the degree of accessibility of a set D by doa(D).

As a corollary to Theorem 10.21, we have the following result
concerning the degree of accessibility of the set of powers of 2. The
proof is left to the reader as Exercise 10.5.

Corollary 10.23. Let D = {2':i=1,2,...}. Then doa(D) = 2.

As mentioned in Remark 10.18, if D consists of the set of odd pos-
itive integers along with 2, then doa(D) > 3. The following theorem
tells us more.

Theorem 10.24. Let D = {2i+1:i >0} U{2}. Then doa(D) = 3.
Furthermore,

3k—4 ifkis odd,

(10.1) A(D, k;2) =
3k —3 ifk is even.

Proof. We first show that doa(D) > 3. Assume, for a contradic-
tion, that v : ZT — {0,1,2} is a 3-coloring with no arbitrarily
long monochromatic D-diffsequence. Let s; < s9 < --- < 8, be
a monochromatic D-diffsequence of maximal length. We may assume
this diffsequence has color 2. Then

{sm+2}U{sm+j:j€Z",jodd}
must be void of color 2. We may assume, without loss of generality,
that y(sm + 2) = 0. Since m is maximal, at most m — 1 elements of
{$m +Jj : j € Z* odd} may have color 0. Let y(s,, +n) = 0 with n
maximal. Then {s,, +j : j € Z* odd,j > n} must be of color 1, a
contradiction since this is a monochromatic D-diffsequence of infinite
length.

The fact that doa(D) < 4 follows from Lemma 10.20. To see
this, note that by Example 10.16 the set of odd positive integers
is not 2-accessible, and that the 2-coloring of Z* represented by
001100110011 ... shows that {2} is not 2-accessible. Thus, by Lemma
10.20, doa(D) < 3, and hence doa(D) = 3.

Let f(k) be the function on the right side of (10.1). We next
prove that f(k) is an upper bound for A(D,k;2). First, by direct
computation, we find that this is true for ¥ = 2 and k = 3. To prove
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that f(k) serves as an upper bound if k>4, it is sufficient to
show that for every x : [1, f(k)] — {0,1}, there exist D-diffsequences
S = {s1,82,...,8K,} and T = {t1,t2,...,tk,} such that x(S) = 0,
X(T) =1, and k; + ko > 2k — 1. We leave it as Exercise 10.6 to show
that this condition holds for ¥ = 4 and k = 5. To show it holds for
all k, we proceed by induction on k, showing that its truth for k + 2
follows from its truth for k.

Assume that k£ > 4, and that every 2-coloring of [1, f(k)] ad-
mits monochromatic sequences S and T as described above. Let
x : [1, f(k+2)] — {0,1} be an arbitrary 2-coloring. To complete
the proof we show that there exist a kj-term D-diffsequence of color
0 and a kj-term D-diffsequence of color 1 such that

(10.2) ki + kb > 2k + 3.
We may assume, without loss of generality, that k; > ko. Let
U= {5k1 +1,Sk1 +2,...,Sk1 +6}.

We consider three cases.

Case 1. There exist at least four elements of U that have color 0. It
is easy to see that by appending these four elements to .S, we have a
monochromatic D-diffsequence, and hence (10.2) holds.

Case 2. Exactly three elements of U have color 0. Then there exist
two of these three elements, a and b, such that S U {a,b} forms a
(k1 + 2)-term D-diffsequence. Likewise there exist two elements, ¢
and d, of T, with color 1 and such that T'U {¢,d} forms a (ko + 2)-
term T-diffsequence. This implies that (10.2) holds for this case.

Case 3. At most two elements of U have color 0. Then we may ex-
tend T to a D-diffsequence, monochromatic of color 1, having length
ky > ko + 4. Again (10.2) holds.

To complete the proof, we show that A(D,k;2) > f(k) by ex-
hibiting a specific 2-coloring of [1, f(k) —1] that avoids monochro-
matic k-term D-diffsequences. Starting with the case in which k is
even, let

Xk : [1,3k — 4] — {0,1}

k-2

be the 2-coloring represented by 1(000111) = 0. By symmetry it
suffices to show that, under x4, there is no k-term D-diffsequence with



272 10. Other Topics

color 1. We show this by induction on j, where k = 2j. Obviously
the coloring 10 avoids 2-term monochromatic D-diffsequences, and
the coloring 10001110 avoids 4-term monochromatic D-diffsequences,
and hence the result holds for j =1 and j = 2.

Now assume j > 2, and that xj, does not yield any k-term
monochromatic D-diffsequences with color 1. Note that xx.+2 may be
represented by xx001110. Let A be a monochromatic D-diffsequence,
under y, of color 1, and having maximal length. Obviously, at least
one of 3k—7, 3k—6 belongs to A, which implies that 3k—5 also belongs
to A. Therefore, at most two members of {3k — 1,3k, 3k + 1} may
be tacked on to A to form a monochromatic D-diffsequence. Thus,
under the coloring X2, there is no (k+ 2)-term D-diffsequence with
color 1. This completes the proof for k even.

Next, consider k& odd. Let Ay be the coloring represented by
11(000111)%00. The proof is completed in a straightforward man-
ner, similar to the even case, by induction on £ = %, by show-
ing that the longest D-diffsequence with color 1 cannot have length
greater than k — 1. We leave the details to the reader as Exercise

10.7. O

One very intriguing area of research that remains rather open
is the relationship between accessibility and largeness. Clearly, no
matter how we decide to do the counting, for any given (nontrivial) k
and D, there are a lot more k-term D-diffsequences than there are k-
term members of Ap (arithmetic progressions with gaps in D). Yet,
it is currently unknown whether there exist any accessible sets that
are not large. Perhaps settling this question is not a very difficult
problem.

There are, however, some fundamental differences between acces-
sibility and largeness that are known. For example, currently there
are no known sets that are r-large for some r > 2, but which are not
large. In fact, it has been conjectured that any set that is 2-large is
also large (the conjecture remains open). In contrast to this, we have
the following theorem concerning r-accessibility.
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Theorem 10.25. For each r > 1, there exists a set D C Z%1 such
that doa(D) = r.

As stated, it may seem a daunting task to prove this theorem,
especially given the rather complete lack of such information about
r-large sets. However, Theorem 10.25 is an immediate corollary of
the following result, which is, itself, rather easy to prove.

Theorem 10.26. Form > 2, let V,,, be the set of all positive integers
not divisible by m. Then doa(V,,) = m — 1.

Proof. We first show that doa(V,,) < m —1 by proving the following
more general result: if » € Z* and D contains no multiples of r, then
D is not r-accessible. To see this, consider x : Z* — {0,1,...,r — 1}
defined by x(z) = ¢ if = i(modr). It is obvious that y avoids
2-term monochromatic D-diffsequences. Thus, since (by definition)
Vi contains no multiple of m, we conclude that doa(V,,) < m — 1.

Since V5 is the set of odd positive integers which, as we have al-
ready seen is not 2-accessible, we need only consider m > 3. Let x be
any (m — 2)-coloring of V,,,. By the pigeonhole principle, some color
must yield an infinite number of elements from each of at least two
of the congruence classes 1 (modm), 2 (modm),...,(m—1) (modm).
Thus, some color admits arbitrarily long V,,,-diffsequences. By Lemma,
10.17, V;,, is (m — 1)-accessible, and the proof is complete. O

As mentioned above, the question as to whether every accessible
set is also a large set is still open. If there do exist any accessible sets
that are not large, then the following theorem seems like a good place
to start looking.

Theorem 10.27. Let T C Z* be infinite. Then
ToT={t-s:s<tand s,t €T}

18 accessible.

Proof. Let r > 1, and consider any r-coloring of T& T. Fix s € T.
Let {t1 <ty <---}={t€T:t> s} and define

A:{ti—SZiZI,Q,...}.



274 10. Other Topics

Obviously, there exists a monochromatic infinite B C A. Since B is
a (T © T)-diffsequence, by Lemma 10.17, T © T is (r + 1)-accessible.
Since 7 is arbitrary, T © T is accessible. O

From the above theorem, we see that a set can be very “sparse”
and still be accessible. For example, the set {t! —s!: 1 < s <t} is
accessible. It would be desirable to know if it is large.

The last stop on our tour of accessibility concerns the set of
primes, which we will denote by P. We know that P is not a large
set; in fact, it is not even 2-large, because a necessary condition for
a 2-large set is that it contain a multiple of every positive integer (P
contains no multiple of 4, for example). An open question is whether
any translation of P (i.e., a set ¢+ P where c € Z%) is large, or per-
haps r-large for some r > 2. We may ask analogous questions in the
context of accessibility; that is, what can we say, if anything, about
the degree of accessibility of P + c for ¢ > 0.

First of all, what about P itself? Is it 2-accessible? As we ex-
plained in the previous paragraph, P is not 2-large; but the reason we
gave does not apply to 2-accessibility (for example, the set of powers
of 2 is 2-accessible, but has no multiple of 3). On the other hand,
we do know, by Theorem 10.26, that P is not 4-accessible, since it
is, in particular, a subset of V4. In fact, we do not know whether P
is 2-accessible. By the next theorem, however, we do know for sure
that it is not 3-accessible.

Theorem 10.28. Let P be the set of primes. Then doa(P) < 2.

Proof. It suffices to find a 3-coloring of the positive integers that does
not yield arbitrarily long monochromatic P-diffsequences. Consider
the coloring x : Z* — {0, 1,2} defined by

0 if9li,
x(i) =< 1 if i is even and 914,
2 if iis odd and 9 1.

It is clear that there is not even a 2-term P-diffsequence of color 0.
Consider the elements of color 1. For any sequence a; < az < --- < a9
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of color 1, there must be some i, 2 < 5 <9, such that a; —a;_; exceeds
2'(a.nd is even). Hence there is no 9-term P-diffsequence of color 1.
Similarly, there is no 9-term P-diffsequence of color 0. O

If we consider P + ¢, with ¢ > 2 even, then it is not hard to show
that doc.z(P +¢) < 3. However, we do not know if any such even
translations are 2-accessible, let alone 3-accessible.

Based on what we have presented above, we could say that we do
not have any positive results about the accessibility of even transla-
tions of P (we still do not know if there exists an even translation that
is 2-accessible). We do, however, have a nice positive result for odd
translations, presented below as Theorem 10.30. Before stating it, we

give a lemma that, when used with Lemma 10.17, gives us Theorem
10.30.

The next lemma we present says that for any odd positive inte-

ger c, there exist arbitrarily (P + c)-diffsequences consisting of only
primes.

Lemma 10.29. Let ¢ € Z* be odd. Then for any k > 2, there exist
P1,P2,. .., Dk € P such that p; — p;_, € P+cforalli,2<i<k.

We do not include the proof of Lemma 10.29, which is beyond
the scope of the book. Using Lemma 10.29, the following result can
be shown. We leave the proof to the reader as Exercise 10.12.

Theorem 10.30. Let P be the set of primes. If ¢ is an odd positive
integer, then P + c is 2-accessible.

.T'h.ere are many interesting questions left unanswered about ac-
cessibility. We present several of these in Section 10.8.

We end this section with a table of values of A(D, k; 2) for several
chgices of D and small k. The symbols T, F, P, and V,, denote
{2*: ¢ > 0}, the set of Fibonacci numbers, the set of primes, and the
set of positive integers not divisible by n, respectively. ’
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(v 234 567 [s]9]10]

T 31 7 [11]17]25(35|51| 7 |7
F 3|59 |11|15(19(21| 7|7
P 519 |13]21]25|33|37]|42|49
P+1| 7 |13|21(27|35 |72 7|77
P42 9 |17|25(33 |2 |72 |7 |77
P+3j11|21|31({42|? |2 7|77
P+4||13|25(37( 2 |2 | 2|77 |7
P+5|15(29| 2 (2|22 [?2]|7?]7?
P+6117(33| 7 O O A I O I
P+719|37 |2 (2?2?2777
Vs 315 |7 [11]13[15]19] 7 |7
Ve 305|719 |13[1517| 7|7

Table 10.1: Values of A(D, k)

10.4. Brown’s Lemma

The main result of this short section could have been included in the
last section, since it is so closely related to diffsequences. However,
the result is of sufficient interest to warrant its own section. We will
formalize this result after presenting a definition.

Definition 10.31. A set S C Z* is called piecewise syndetic if there
exists d € Z*t such that S contains arbitrarily long {1,2,...,d}-
diffsequences.

Theorem 10.32 (Brown’s Lemma). Let r > 1. Any r-coloring of
7t admits a monochromatic piecewise syndetic set.

Proof. We induct on the number of colors. For r = 1, the result
is trivial since ZT is clearly piecewise syndetic. Assume the result
holds for r > 1 colors and let x : ZT — {0,1,...,7} be an arbitrary
(r + 1)-coloring.

If the color 0 occurs only finitely many times, then there exists
n such that {n,n +1,...} is r-colored. By Proposition 2.30 and the
inductive hypothesis, we are done. Hence, we assume that the color 0
occurs infinitely often. Let R = {r; < r < ...} be the set of integers
with color 0.
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If R is piecewise syndetic we are done, so we assume that R is
not piecewise syndetic. Hence, the differences between consecutive
elements of R are not bounded. Let r, — 1y = k. Then there exists
an 43 > 2 such that r;, 41 — r;; = ki > ko, so that the interval
[ré, + 1,75,41 — 1] is void of color 0. Similarly, we may choose i > i;
such that r;,41 — 75, = ko > k;. Repeating this process, for each
J 2 2, denote by I; the interval [ri, +1,7; ,+1 — 1], where i; is chosen
so that r;, 11 —Ti; > 7y 41 —Ti;_, and i; > i,_;. Hence, the interval
I; is void of color 0 and |I;| > |I;_1] for j > 2.

We now define v, an r-coloring of Z*, as follows. Denote by I (k)
the k** smallest element of I;. Within x (/1 (1)), x(I2(1)), x(I3(1)),.
some color (not 0, since the I;’s are void of the color 0) must occur
an infinite number of times. Call this color ¢; and let v(1) = c;. Let
7, be the set consisting of those intervals I; such that (I (1) = e1.
Within {x(/;(2)) : I; € 71} there must be some color ¢y that occurs
an infinite number of times. Let y(2) = ¢, and let 75 be the set of
those intervals I; € 77 such that x(I;(2)) = c,. We continue in this
way to find, for each ¢ > 2, some color ¢; such that

Ti={L € T,_1: x(I;(3)) = ¢;}

is infinite, and we define v(z) = ¢;. The coloring y : Z+ — {1,2,...,r}
has the property that for any n > 1, 7,, is the set of intervals I; such
that x(I;(¢)) = (i) fori =1,2,... n.

By the inductive assumption, +y yields a monochromatic piecewise
syndetic set, say X. Thus, X contains arbitrarily long {1,2,...,d}-
diffsequences for some d € Z*. Let {a; < ap < --- < an} C X be one
such diffsequence. Let I € 7, and consider

S={I(a1) < I(az) < -~ < I(an)}.

By the definition of , S is monochromatic. By construction, S is
piecewise syndetic. Since n can be arbitrarily large, we have found an
arbitrary large monochromatic (under x) piecewise syndetic set. [J

There is also a “finite form” of Brown’s lemma. The fact that this
is equivalent to Theorem 10.32 is left to the reader as Exercise 10.13.
To state it, we define, for a finite set A = {a; < ap < --- < an} CZ7F,
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the gap size of A to be
gs(A) = max{aj;1 —a;: 1 <j<n—1}
If |[A| = 1, we set gs(A) = 1.

Theorem 10.33. Let f : Zt — Z% be any function, and let r > 1.
Then there ezists a least positive integer B(f;r) such ?hat for eve‘ry
r-coloring of (1, B(f,7)], there ezists a monochromatic set A with

|Al > f(gs(A))-

Proof. Assume, without loss of generality, that f is nondecreasi.ng.
For simplicity of notation, denote B(f,r) by B(r). We use induction
onr.

Clearly B(1) = f(1)+1, since if the interval [1, f(1)+1] is'colored
with one color, the interval itself constitutes a monochromatic set A
with gs(A) = 1, so that |A| > f(gs(A)) = f(1).

Now, let » > 2 and assume that B(r — 1) exists. Let

(10.3) m=rf(B(r—1))+1.

We will show that B(r) < m. Assume, for a contradiction, th.at there
is an 7-coloring x of [1,m] such that for every monochrqmatlc set A
we have |A| < f(gs(A)). Let C; = {j : x(j) = i}, 1 <4 < r. Then
ICi| < f(gs(Cy))- '

Also, gs(C;) < B(r —1) for each ¢, 1 < i < r; otherwise, for some
a>1,theset {a+1,a+2,...,a+ B(r—1)} C [I,m] W{)l}ld have
only 7 — 1 colors (it would be void of color i). By Proposmlon' 2.30
and the inductive assumption, this would give a monochromatic set
T with |T| > f(gs(T)), contradicting our assumption about x.

Since f is nondecreasing, f(gs(C;)) < f(B(r —1)). Hence,
ICi| < f(gs(Cy)) < f(B(r—1))

for all 5, 1 < 4 < 7. Since [1,m] = C;UC U "-U.C’T, we get
m < rf(B(r—1)), contradicting (10.3). Thus, any r-colormg of [1,m]
satisfies the conditions of the theorem. This proves the existence (E]f
B(r), since B(r) <m =rf(B(r-1)) +1.

We may rephrase Brown’s lemma (Theorem 10.32) as follows:
for any r-coloring of Zt, there exists d > 1 such that for any n > 2,
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there exists a monochromatic set A — {a1 <ay < -+ < an}, where
aj+1—a; <dforl <j<n-1. Comparing this statement to the
statements given in Theorem 2.5, we see that Brown’s lemma is very
reminiscent of van der Waerden’s theorem. However, it is known that

Brown’s lemma neither implies, nor is implied by, van der Waerden’s
theorem.

10.5. Patterns in Colorings

Most of this book has dealt with the presence of specific monochro-
matic structures under finite colorings of the integers. In this section,
rather than being concerned with finding structures, we will investi-
gate colorings themselves.

For convenience, we will be working with colorings of Z* or [1,n]

(n € Z7); however, the integers are used only as placeholders for the
colors.

Definition 10.34. Let n,7 > 1 and let x be an r-coloring of [1,n]
or Zt. We call y squarefree if we cannot write y = zzzy where
each of z,y, 2 is an r-coloring (written as a string of colors) and z
is nonempty. We call s cubefree if we cannot write s — Tz222y where
Z,y, 2 are r-colorings and z is nonempty.

Note that Definition 10.34 does not say that z or y must be
nonempty.

Example 10.35. There are no 2-colorings of [1,4] that are square-
free. To see this, assume y : [1,4] — {0,1} is a squarefree coloring.
Without loss of generality, we may assume that x(1) = 0. Since x is
squarefree, x(2) must be 1. Likewise, x(3) = 0, and x(4) = 1. Now
we have the coloring 2z, where z = 01, a contradiction.

Since it is quite easy to show that there is no squarefree 2-coloring
of an interval of length more than three (by Example 10.35), the next
result might seem somewhat remarkable.

Theorem 10.36. Let r > 3. There erists ¥:Zt = {0,1,...,r -1}
such that v is squarefree.

Concerning cubefree colorings, we have the following result.
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Theorem 10.37. Let r > 2. There exists v : ZT — {0,1,...,r — 1}
such that v is cubefree.

We next provide the colorings that are used to establish Theorems
10.36 and 10.37. The proofs that these colorings yield the desired
conclusions are left to the reader as Exercise 10.14.

Definition 10.38. Let ¢ be a string of colors 0 and 1. Let f act on
¢ from left to right by
f-0=01 and f-1=10.
The Thue-Morse sequence, also known as the Prouhet-Thue-Morse
sequence, is
lim f™-0=01101001100101101....

n—oo

To understand the Thue-Morse sequence, consider the first few
iterations of f acting on 0. We have

02 01 % 0110 % 01101001 £ 0110100110010110 = £* - 0.
We see that the action of f appears to be such that f*~! -0 is a
leftmost substring of f™ - 0. This is indeed true, but will not be
proven here.

Using the Thue-Morse sequence, we can derive a related sequence.
Definition 10.39. Let {t1,%2,t3,...} be the Thue-Morse sequence.
Let s = {s1, 2, 83,...} be the sequence defined by s; = t;—1t; (con-
catenation, not multiplication) so that

S ={01,11,10,01,10,00,01,11,10,... }.
Define M to be the sequence obtained from S by replacing every 01
by 0, every 10 by 1, and every 00 and every 11 by 2 to get
M =1{0,2,1,0,1,2,0,2,1,...}.
We call M the Morse-Hedlund sequence.

We leave it to the reader as Exercise 10.14 to prove that the
Thue-Morse sequence is an example of a cubefree 2-coloring of Zt,
and that the Morse-Hedlund sequence is an example of a squarefree
3-coloring of Z*.

Some natural questions we may now ask are:
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1. For n > 1, how many squarefree 3-colorings of
length n are there?
2. For n > 1, how many cubefree 2-colorings of
length n are there?

In investigating these questions we will use the following notation.

Notation. For n € Z*, let sq(n) denote the number of squarefree
3-colorings of length n, and let ¢(n) denote the number of cubefree
2-colorings of length n.

For small n, the exact values of sq(n) and ¢(n) are known. We
give the first 10 values of each:

[n [ sa(n) [ () |

1 1 1
2 3 2
3 6 4
4 12 6
5 18 10
6 30 16
7 42 24
8 60 36
9 78 56
10| 108 | 80

Table 10.2: Number of squarefree and cubefree colorings

Although no exact formula for sq(n) or ¢(n) is known, the fol-
lowing result, which we present without proof, gives upper and lower
bounds for these functions.

Theorem 10.40. Let n > 1. There exist constants a,b > 0 such
that
(1.118)" < 110% < sq(n) < a(1.3021)™,

2-(1.080)™ < 25+ < ¢(n) < b(1.4576)™.

10.6. Zero-sums

This section seems a fitting way to conclude this book, insomuch as
it involves results obtained from the pigeonhole principal, the most
basic principle of Ramsey theory. We begin with a definition.
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Definition 10.41. Let k,r > 1 and let x : Z* — {0,1,...,7 —1} be
an r-coloring. For z1,zs,...,2x € Z* we say that (x1,a,...,Tk) is
a zero-sum sequence if Zle Xx(z;) = 0 (modr).

It is convenient to use the language “S is zero-sum” when we
want to say that S is a zero-sum sequence.

Before stating perhaps the most well-known zero-sum theorem,
we start with two nice applications of the pigeonhole principle.

Theorem 10.42. Letr > 1. Let x : [1,7r] — {0,1,...,7 — 1} be an
r-coloring. There exist i, € [1,7] with i + j < r such that

(,i+1,0+2,...,14+7)
18 zero-sum.

Proof. Assume, for a contradiction, that no such ¢ and j exist. For
k=1,2,...,r define

k
Sk = Z x(2) (modr).

i=1
By assumption, s; # 0 for k = 1,2,...,r. By the pigeonhole princi-
ple, there exist z,y, 1 <z < y < r, such that s, = s,. Thus,

T y

> x(i) =) x(4) (modr).

i=1 i=1
This yields

y
Z x(¢) = 0 (mod ),
i=z+1

and we are done by takingi=x+1land j=y—z — 1. O

Lemma 10.43. Let r > 2, and let x : Z+ — [0,7 — 1] be an r-
coloring. Let A C Z* be such that |{x(a):a € A} =k >1+1% and
write {x(a) : a € A} = {c1,¢c2,...,cx}. Then, for any c € [0,7 — 1],
there ezist i,5, 1 <1i < j < k, such that ¢ = (¢; + ¢;) (modr).

Proof. Let x and A be as in the statement, and let ¢ € [0,7 — 1] be
given. Let

B = {(c —¢1) (modr), (¢ — ¢z) (modr),...,(c—ck) (modr)}
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(so that |B| = k). Since |[ANB| = |A|+|B|—|AUB| and |A| + |B| >
24 r, while |AU B| < r, we see that A and B must have at least 3
elements in common. Say x,y,z € AN B. Thus,

z=(c—2') (modr), y=(c—y)(modr), 2= (c—2')(modr)

for some z',y',2" € A. If we have z # 2/, y # o/, or z # 2, then
we are done because we have two distinct elements of A summing
(modulor) to c. Hence, assume x = z/,y = ¢/, and z = 2’. Since
2z = 2y = 2z = c(modr) we have

2(z —y)=0(modr), 2(z—2)=0(modr), 2(y—z)=0(modr),

i.e., there are three solutions to 2t = 0 (modr). Since we may have
at most two distinct solutions to 2t = 0 (modr) (check!), one of the
following must hold:

(i) z— 2= (y—2) (modr);
(i) z —y = (z — 2) (mod r);
(ili) z — y = (y — 2) (mod ).

If (i) holds, then = y, contradicting the fact that z and y are
distinct. If (ii) holds, then y = z, again a contradiction. If (ii)
holds, we have  + z = 2y = ¢(modr), which implies that z = 2

since 2z = z + 2 = c¢(mod ), contradicting the fact that z and z are
distinct. O

We now state and prove the main theorem of this section.

Theorem 10.44 (Erd6s-Ginzburg-Ziv Theorem). Let r > 2. Let S
be a set of 2r—1 elements. For anyr-coloring x : S — {0,1,...,r—1},
there exist distinct t,ty,...,t, € S such that (t1,ts,...,t,) is zero-
sum.

Proof. Let x be a given r-coloring. We use induction on the number
of (not necessarily distinct) prime factors of r. We start with the base
case: r is prime. Let 0 < ¢; < c3 < --- < ¢9,_1 be the colors used
by x (all of the colors are not necessarily used). If ¢; = ¢;4r_; for
some i < 7—1, then we are done since Z;J;:_l ¢; = 0 (modr). Hence,
assume C; = {¢;,¢;iyr-1},3=1,2,...,7 — 1, are 2-element sets.
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Define, for 1 <k <r —1,

i=1

k
X = {in(modr):xiECi,izLQ’“.,k}'

We will show that |Xj| > k41 by means of induction on k. For k =1
the result is trivial. Let £ < r — 1 and assume | Xj| > k + 1. We will
show that |Xy41| > k + 2. Clearly, the set

Y = {(s; + cky1) (modr) : s; € Xi,i=1,2,...,|Xk|}
consists of | Xj| distinct elements. We may assume that |Xy| = k+1,
or else |Y| > k + 2 and we are done since Y C Xj41.

Hence, it remains to show that there exists s; € Xj such that
(sj+crik) (modr) € Y. Assume, for a contradiction, that no such s;

exists, i.e., for each s;, 7 = 1,2,...,k + 1, there exists s; € X} such
that
(10.4) 85 + k1 = (85 + crpr) (mod 7).

Let d = ckx+1 — ¢ryk- Then d # 0, and hence we can rewrite (10.4) as

(10.5) s; = (s; — d) (mod ).

Since |Xi| = k+ 1, there exist ¢, tg, ..., t,—k—1, distinct residues
modulo 7, that are not members of X;. Note that k < r — 1 gives
us 7 — k —1 > 1. Since r is prime, there exists s € X} such that
s —d = t; (modr) for some i, 1 < i < r—k — 1, contradicting the
existence of an s; € Xy satisfying (10.5). This completes the proof
that | Xg| > k+1for1<k<r-1.

Let X = X,_1. Hence, |X| = r (since there are only r residues
modulo 7). Consider ¢g,-—1, which is not a member of any C;. Since
X contains all residues modulo r, there exist ; € C;, 1 <i<r—1,
such that

E x; = —cor—1 (mod ).

Hence,
T1+ T3+ + Tpo1 + C2r—1 = 0 (mod7),
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and we have r elements that satisfy the conclusion of the theorem.
This completes the base case.

Now, let 7 = pm with p a prime and m # 1. Clearly, the number
of prime factors of m is less than the number of prime factors of r.
Taking all colors modulo p, there exists a p-element subset Ty C S
such that 37, x(t) = 0(modp). Consider S; = S — T1, so that
[S1] =2(m —1)p — 1. Again, taking all colors modulo D, there exists
a p-element subset 7, C S;, such that > ter, X(t) = 0(modp). Let

Sy = 81 — T». Continuing to view all colors modulo p, for each i,
2 < i < 2m — 1, there exists a p-element subset T; C S;_; where
Si-1 = Si—2 — Ti_1 (taking Sy = S). Hence, there exist 2m — 1
pairwise disjoint subsets of S, say, T1,Ts,...,Tom—1, with each T}
satisfying 3, x(t) = 0 (mod p).

For i =1,2,....,2m — 1, let k;p = > ter, X(t) and consider the
set S" = {k; : i =1,2,...,2m — 1}. By the induction hypothesis,
S contains k;, , k22, ..., k;_ such that 2311 k;; = 0 (modm). Hence,

=T, UT;, U---UT;, is a subset of S with pm elements such that
ZteT x(t) = (mod pm) which completes the proof. O

As can be seen from the above proof, the fact that the set S has
2r — 1 elements is crucial. To see that we cannot r-color a set with
only 2r — 2 elements and expect the same result to hold, consider the
following example.

Example 10.45. For all r > 2, there exists  : [1,2r =2] —[0,r—1]
such that for any distinct ¢1,t,,....t,. € (1,2r — 2], (t1,t0,..., t,)
is not zero-sum. To show this, let ¥ to be the coloring defined by

x(i) =0fori=1,2,...,r—1, and x(i) =1fori=rr4+1,...,2r—2
(x uses only 2 of the possible r colors). Since Y | x(z;) < r —1
and is positive, for any distinct t,¢s,...,¢, € [1,2r — 2], we see that
(t1,t2,...,t,) is not zero-sum.

In Example 10.45, we used only 2 colors. In fact, it is known
that for any r-coloring y : § — {0,1,...,7 — 1}, where S is a set
of 2r — 2 elements, if there do not exist t1,t2,...,t. € S such that
(ti,t2,...,t,) is zero-sum, then, in fact, it must be the case that
X : S — {z,y}, where 7 — 1 elements of S have color z, and the
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remaining 7 — 1 elements of S have color y. Hence, if x is an 7
coloring that uses at least three colors, then we may use |S| = 2r — 2
in Theorem 10.44.

Based on the previous example, we refine Theorem 10.44 by
means of the following definition and subsequent results.

Definition 10.46. For 1 < k < r, define g = g(r, k) to be the least
integer such that for all S with |S| =gandallx: S — {0,1,...,r—1},
whenever |x(S)| = k (i.e., the range of x has size k), there exist
ti,t2,...,t. € S such that (t1,t2,...,t,) is zero-sum.

Note that Theorem 10.44 implies that g(r, k) is well-defined, since
g(r, k) <2r—1.

From the discussion after Example 10.45, we see that the follow-
ing result is true.

Proposition 10.47. Let 2 < k < r. Then ¢(r,2) = 2r — 1 and
g(r,k) <2r —2.

Investigating g(r, k) further, we have the following two theorems.

Theorem 10.48. Forr > 1,

r if r is odd,
g(r,r) = . .
r+1 ifris even.
Proof. By definition, g(r,r) > r for all r. For an upper bound, let
|S| = r and let x be a coloring of S such that x(S) = {0,1,...,7r—1}.
First consider » odd. By definition, all colors are used by ¥, so
that

= r(r—1)
(10.6) Zx(s) = Zz ==

sES 1=0

Since r is odd we see that T;—l € Z*, and hence the elements of S are
zero-sum.
Now let 7 be even, so that § € Z*. By (10.6), since r > 2, we
have ged(r,7 — 1) = 1, so that § # 0 (modr). Hence, g(r,7) > r + 1.
Now let T = {t1,ta,...,tp41t and v : T — {0,1,...,r — 1}, with
|[v(S)| = r. We may assume that y(¢,4+1) is the sole duplicate color.
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Hence, for r even,

Z’Y(tz’) = il = s (modr)
i=1 i=0

for some s # 0. Let d = s+7(t,41). Then there exists j € {1,2,...,r}
such that y(t;) = d. Thus,

Z'Y(ti) = (s —d) (modr),

which gives us

Y(try1) + Z’Y(ti) = 0 (modr),

i)

and hen(?e .(tl, to,. . tj—1,tj41,...,tr41) is zero-sum. Since ~ is arbi-
trary, this implies that g(r,7) < r + 1. Hence, we have g(r,7) = r+1
for r odd, thereby completing the proof. O

Theorem 10.49. Ifr > 5 and 145 <k <r-1, then g(r, k) = r+2.

Proof. To show that g(r, k) < r+2, let y : (L,r+2] = {0,1,...,7—1}

be a coloring that uses exactly k colors. Let s = S 2 x(3) (mod r).

By Lemma 10.43, there exist T,y € 1,7 + 2], with z < y, such that

s = (z +y) (modr). Hence,
(1,2,...,z—1,z+1,x+2,...,y—1,y+1,y+2,...,r+2)

is zero-sum. This proves that g(r k) <r+2.

To prove that g(r,k) > r + 2 we present a valid 2-coloring of
(1,7 + 1]. We leave to the reader, as Exercise 10.15, the existence of
x €{2,3,...,k} such that

2z = ((;) + 1) (mod 7).

Let x : [1,7 +1] — {0,1,...,2 — Lz +1,...,k} be the k-coloring
represented by

0...01123 ... (z—1)(z+1)(z+2) ... k.
r—k+1
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Let
k

S=1+ZZ3

i=1

so that
s = (g) — 2+ 1=z (modr).

For any 7 elements in [1,7 + 1], the sum of their colors, under Y, is
(s — t) (modr) for some t € {0,1,...,z — 1,z + 1,z+2,...,k}. By
our choice of z, we have s —t = (x — t) # 0 (modr). Hence, there is
no collection of r elements which is zero-sum under x. This proves
that g(r, k) > r + 2, and completes the proof. ]

10.7. Exercises

10.1 Find F(3;2).

10.2 Let F be the least positive integer such that for any 2-coloring
of [1, 13] there exist x,y € [1, F], not necessarily distirl\ct, such
that {z,y,z + y,zy} is monochromatic. Show that F' = 39.

10.3 Prove Lemma 10.19.
10.4 Prove Lemma 10.20. (Hint: see Theorem 4.32.)
10.5 Prove Corollary 10.23 by showing that D is not 3-accessible.

10.6 Using the notation of the proof of Theorem 10.24, show that
for k = 4 and k = 5, for every 2-coloring of [1, f(k)], there
exist S and T as described in the proof.

10.7 Complete the proof of Theorem 10.24.

10.8 Prove that a = 2 is the only value of a, a > 2, for which
{a*:i=0,1,2,...} is 2-accessible.

10.9 Let F = {Fy, F1,...} be the set of Fibonacci numbers ini-
tialized by Fy = Fy = 1. Show that A(F,k;2) < Fyy3 — 2.

10.10 Let k£ > 2. Show that A(S3,k;2) = 4k — 5 and

3k — 4 if k is odd,

A(S4,k;2) = { 3k — 3 if k is even.
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10.11 Let V;,, ,, be the set of positive integers divisible by neither
m nor n. Do parts (a) and (b) to show that A(V34,k;2) =
Tk — 12 for k > 3.

a) Show that A(V34,k;2) > 7k — 12 for k > 3 by proving:
i) for k even, the coloring 1(10011000110011)¥ avoids
monochromatic k-term V3 4-diffsequences, and
ii) for k odd, the coloring 1(10011000110011)% (1001100)
avoids monochromatic k-term V3, 4-diffsequences.
b) Show that A(Va4,k;2) < 7k — 12 for k > 3. (Hint: show
that every 2-coloring of [1, 7k — 12] has monochromatic V; 4-
diffsequences X = {z1,zs,...,2,} and Y = {v1,22,...,yn},
of different colors, such that m 4+ n > 2k — 1. Then consider
Zm — Ypn =1(mod12) for i =0,1,...,11.)
10.12 Prove Theorem 10.30.
10.13 Prove that Theorems 10.32 and 10.33 are equivalent.

10.14 Prove that the Thue-Morse sequence is cubefree and that the
Morse-Hedlund sequence is squarefree.

10.15 Finish the proof of Theorem 10.49 by proving the existence
of z. Also, where is r > 5 needed?

10.8. Research Problems

*10.1 Prove or disprove: For all r > 1, any r-coloring of Z* must
admit a monochromatic set of the form {z,y, = + y, xy}.
References: [212], [232]

10.2 Define f(n) to be the least positive integer such that for every
2-coloring of [1, f(n)] there is an n-element set with no pair
of elements differing by exactly 2. For example, the subset
{1,2,5} of [1,5] shows that f(3) < 5. On the other hand,
it is impossible to find a 3-element subset of [1,4] for which
no pair differs by exactly 2. Hence f(3) > 5. Do a study of
f(n). Try the same problem when the difference 2 is replaced
by some other constant. Try more than two colors.
References: [156], [157], [158]

*10.3 Determine if P, the set of primes, is 2-accessible. More gen-
erally, does there exist an even number e such that P + e
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is 2-accessible? If so, what is the order of magnitude of
A(P +e,k;2)?
Reference: [174] \

%10.4 Let ¢ be an odd positive integer. What is doa(P + ¢)? In
particular, is P + ¢ 3-accessible? Run a computer prog‘ram
to calculate various values of A(P + ¢, k;2) (some are given
in Table 10.1) and A(P + ¢, k;3).

Reference: [174]

10.5 Let S = {2} U{2i +1:4 > 1}. Study the function A(S, k; 2).
Reference: [174]

10.6 Determine the true order of magnitude of A(F,k;2), where
F is the set of Fibonacci numbers.

Reference: [174]

10.7 Let T = {2¢ : i > 0}. Determine the true order of magni-
tude of A(T, k;2) (the present authors have conjectured that
A(T,k;2) = 8k — 23, the lower bound given by Theorem
10.21).

References: [174]

10.8 Extend the results on A(T, k;2) (see Research Problem 10.7)
and A(F,k;2) (see Research Problem 10.6) to more than 2
colors.

Reference: [174]

10.9 Does there exist an accessible set that is not large (see Defi-

nition 4.28)?
References: [62], [174]

10.10 Find a formula for f(Vin, k;2) for m > 5.

Reference: [174)]

10.11 Find a formula for f(Vin n, k;2) for 3 <m <n. (See Exercise
10.11 for the definition of Vi, ».)
Reference: [174]

10.12 Improve the bounds found in Theorem 10.40.
References: [50], [83], [201], [262]

10.13 Find g(r, k) for 5 < k <1+ % (see Definition 10.46).
References: [11], [37], [40], (48], [49], [117]
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10.9. References

§10.1. The original proof of Folkman’s theorem is unpublished, but
reproduced in [127]. The proof presented in this section is essentially
this proof. It was also proved by Rado [212] and, independently, by
Sanders [232]. The proof of Theorem 10.9 can be found in [97]. A
proof based only on Ramsey’s theorem (and not van der Waerden’s
theorem) can be found in [197]. A powerful generalization of Folk-
man’s theorem is due to Hindman [143] (it is known as Hindman’s
theorem). A simpler proof of Hindman’s theorem was given by Baum-
gartner [19]. Related work is found in [144] and [145]; also see [146]
for an excellent survey, and [253].

§10.2. Extensions of doublefree sets can be found in [98].

§10.3. All results presented concerning diffsequences are from (174],
which contains further work on the subject. The conjecture that the

set of large sets is equal to the set of accessible sets was posed by Tom
Brown.

§10.4. Brown’s lemma is due to Tom Brown and is taken from [52].
We have denoted the numbers in Theorem 10.33 by B(f;r) in honor
of his contributions to the field of Ramsey theory on the integers. A
generalization of Brown’s lemma is investigated in [54].

§10.5. The Thue-Morse sequence was defined originally by Prouhet
[208], and rediscovered by Thue (see [268]) with additional work by
Morse [193]. For a good expository article about Thue, see [35]. The
Morse-Hedlund sequence is from [194]. Regarding Theorem 10.40,
the lower bound for sq(n) is from [262], the upper bound for sq(n)
is from [201], the lower bound for ¢(n) is from [50], and the upper
bound for ¢(n) is from [83]. Good general references for this section
are [13], [182], and [183].

§10.6. There are at least five different proofs of the Erdés-Ginzburg-
Ziv theorem. The one given here follows the original [91], which can
be found in [14], along with four other proofs of the Erdés-Ginzburg-
Ziv theorem. Some generalizations of the Erdés-Ginzburg-Ziv theo-
rem are discussed in [38]. The definition of g(n, k) is given in [40].
Theorem 10.42 can be found in [11]. The proof of Lemma 10.43 is
from [117], but was first proved in (48]. In [49], Brakemeier also
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considers g(n,k) for n prime. Proposition 10.47 is from [37]. The
cases k = 3,4 of g(n, k) are studied in [40]. Theorem 10.49 was first
proved in [49] and then independently in [117].

Additional References: There are many other Ramsey-type prob-
lems that have not been discussed in this book, but which are cer-
tainly of interest. Abbott, Liu, and Riddell [10] considered a function
much like the Erdés and Turén function (see Section 2.5), but where
one tries to avoid arithmetic progressions in a set of n real numbers,
rather than in [1,n]. Let m(n) represent the largest integer m such
that there exists a k-term sequence in [1, m] with the property that no
member of the sequence is equal to the mean of the other members.
Bounds on m(n) are given in [1], 2], [47], [96], and [100].

Notation

Notation Description Page
M1 Ceiling function 10
L] Floor function 10
@ Modular addition 107
[a, b] {a,a+1,...,b} 9
A-B {xre A:z¢ B} 9
Ap Family of arithmetic progressions with gaps 104

in D
AP Family of arithmetic progressions 14
APy (m) Family of arithmetic progressions with gaps 163

congruent to a (mod m)
AP;(m) APa(m) U A(m} 168
AP(p) Set of arithmetic progressions (mod m) 164
AUG, Family of augmented progressions with tail b 152
B(f;r) Brown number 278
cul; Culprit of color j 32
Avtab,c} Triangle on vertices a, b, c 205
A(D, k;r) Diffsequence Ramsey-type number 266
doa Degree of accessibility 270
dor Degree of regularity 138
dory Degree of regularity for Tx_1(a) 145
DW (k) Descending wave 2-color Ramsey-type number 70
F(k;r) Folkman number 262
T'm(k) Least s guaranteeing k-term arithmetic 73

progressions in all s-term [1, m}-gap

sequences
GQs(k) 2-color Ramsey-type function for generalized 67

quasi-progressions

—

293



294 Notation
Notation Description Page
g(r, k) Least integer such that for all S with |S| =g 286

and all x : S — {0,...,7 — 1}, whenever
|x(S)| = k there exist ti,t2,...,t, € S with
(t1,t2,...,ts) zero-sum
gs Gap size ' 278
(k, n, d)-progression k-term quasi-progression with diameter n 57
and low-difference d
H(s1,...,8k) 2-color Ramsey-type function for homothetic 147
copies of {1,1+s1,...,1+ 51+ -+ sk}
A, k; ) Special r-coloring of [1, cr(k — 1)?] that 112
avoids monochromatic k-term c-a.p.’s
L(t) Equation 1 + - + £4—1 = 74 212
n(k) min{|€]: T = (V, £) is a hypergraph not 36
satisfying Property B and |E| = k
for all E € £}
My (n) Number of monochromatic Schur triples 205
in [1,n] under x
v(k) Erdés and Turén function 41
Qm (k) Least n so that every {z1,...,zn,} with 182
A z; € [(3 — 1)m,im — 1] contains a k-term
arithmetic progression
P, Family of sequences generated by iteration 81
of a polynomial of degree n
P,k Family of k-term members of P, 81
Qn (k) 2-color Ramsey-type function for 57
quasi-progressions
R(AP;(m), k,l;r) Generalization of R(AP:(m), k;r) 168
r(€;s) Rado number for equation £ 230
R(F,k;r) Ramsey-type number for family F 14
R(k1,...,kr) r-color (classical) Ramsey number 8
R, (k) R(k,...,k) 8
N —
ke
RR(S;r) Reverse r-regular number 185
S(ky, ..., kr) Generalized Schur number 212
S’(kl, oy k) Strict generalized Schur number 218
Sn Family of sequences generated by iteration 82
of a polynomial of degree at most n
Snk Family of k-term members of S, 82
SPn,(k) Ramsey-type number for semi-progressions 72
s(r) Schur number 201
3(r) Strict Schur number 217
Ta,b Set of (a, b)-triples 136
T(a,b;r) Ramsey-type number for (a, b)-triples 136

Positive integers

Notation 295
Notation Description Page
T(a1,...,ak-1) Ramsey-type function for generalization 145

of (a, b)-triples
O(n) Set of permutations of [1,n] with no 3-term 194
arithmetic progression
6(n) |8(n)| 193
Vi {z€zZt:m¢ta} 273
Vion {z€Z" :mtz,ntz} 289
w(k) w(k; 2) 25
w(k;r) van der Waerden number 11
w(ki, ..., ky; r) Mixed van der Waerden number 33
w’(c, k; T) Ramsey-type number for arithmetic progressions 111
with gaps at least c
w’(f(x), k; T) Ramsey-type number for f-a.p.’s 116
w*(k, j) Ramsey-type number for arithmetic progressions 187
N with color discrepancy at least j
A
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Errata for Ramsey Theory on the Integers by Bruce M. Landman and Aaron Robertson
Date: June 23, 2004

FRONT MATTER
p. xi, Table 4.1: change “w” to “w’”

CHAPTER 1

p- 12, line -11: change “We” to “The”
12, line -4: insert “monochromatic” before “integers’
15, line -5: change “F” to “F”
16, line 2: change “exists” to “exist”
17, line 17: change “M (k;1)” to “M(k + 1;1)”

p- 20, line -3: change “contain” to “contains”
CHAPTER 2

p- 24, line -2: change “exist” to ”exists”

Y

T T e

p. 29, line -15: change “w(3,4)” to “w(3;4)”

p. 34, Table 2.1: change “w(5,3,3;3) = 77" to “w(5,3,3;3) = 80”

p. 37, line 3: change “k > 1”7 to “k > 27

p. 42, line -2: change “"*” to “mTfl”

p. 48, lines 5-8: replace the definitions of the z’s by: z({, = d; 2} = x;_q for 1 <i <t +1.

p. 49, exercise 1: Should read: “Show that within [1,n] there are 2(]?—:)(1 + 0(1)) k-term arithmetic progres-
sions.”

p. 50, exercise 6: change “w(k,2;r)” to “w(k,2;2)”

2 2
- +0(n) > a1y Fe(1)) 2
)
p. 50, exercise 8: in (b) change “ ; 21—k — %—"_1(71) 7 to ¢ ; 21k — (k:—nw(l +o0(1)).”
2 o) 2
p. 50, exercise 8: in (c) change “ %4_1(71) <1” to “ (k—nw(l +o(1)) <1”

k-1
5 7

p. 50, exercise 8: in (d) change “n = 2¥/2" to “n =k —1-2
p. 52, line -3: change “w(5;2)” to “w(5,5;2)”
CHAPTER 3
p- 61, line -8: change the first occurrence of “t” to “i”
p. 69, Table 3.2: replace the functions in the first column by the functions x — 1,2 — 2,2 — 3,z —4 and x — 5
(in that order)
p. 71, line 2: change “zg =0 and z; = 1" to “co =n+1 and ;1 =n”

p- 71, line 4: change “min” to “max” and change “y — z;” to “ax; —y”

p. 71, line 5: change “r1,x2,...,x” to “Tg, Tp_1,...,T1"
p. 71, line 6: change “and that z; < n” to “that is contained in [1,n])” (Note: the proof of Theorem 3.21 given
in the text is for ascending waves.)
p. 84, line 8: change “(1 —a)d” to “(1 —a)+d”
p. 88, line 10: change “AP U Py_5" to “R(AP U Py_9,k)”
CHAPTER 4
p. 105, line -12: change “k” to “n +1”
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p- 109, line 9: change “j” to “¢”
p. 111, Theorem 4.9: change “mZ*” to “A,,z+”
p. 111, Corollary 4.10: change “Z* — F” to “Ag+_p”

CHAPTER 5
p- 136, line 5: change “k” to “3”
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p. 137, line 9: change “w” to “w’”
p. 138, proof: there are 3 occurrences of w that should be w’

p- 151, line 3: change “<” to “<”

CHAPTER 7

p. 192, line -7 and -9: delete “= 57" and “= 55"
CHAPTER 8

p- 210, line -9: change “the same color” to “of different colors”
CHAPTER 9

p- 242, line 5: insert “1 4+ i1a + j1b = 1 + ioa + job” after “such that”
p. 251, line 17: change “{0,1,...,r}” to “{1,2,...,r}"
p. 252, line 6: change “There” to “For every r-coloring of Z*, there”
CHAPTER 10
p. 261, last line: change “if t € T, then 2t & T” to “t € T does not imply that 2t € T”

p- 262, line 2: insert “obtained only” after “sum”

p. 263, lines 3, 5, and 8: change “n(k;r)” to “kn(k;r)”

p- 263, line 8: change “[%,m} 7 to “(%,m] )

p. 263, lines 17 and 19: change “(a +d) + D” to “(a +d) + Z xp 7
r€RC[1,k]

p.268, Lemma 10.20: before “then” insert “and if either D+ FE ={d+e:de D,ec E} C Dor D+ ECE,
p- 270, replace the first paragraph of the proof of Theorem 10.24 with the following:

We first show that doa(D) > 3. Assume, for a contradiction, that v : Z* — {0,1,2} is a 3-coloring without
arbitrarily long monochromatic D-diffsequences. Let s1 < so < -+ < s, be a monochromatic D-diffsequence
of maximal length. We may assume this diffsequence has color 2. Then S = {s,, + j : j odd} is void of color
2. Let S = U;>05i, where S; = {sy, +2i(m+1)+7:5 € {1,3,5,...,2m + 1}} are sets of m + 1 elements.
Define, for i > 0, T; = {sy, + 2i(m + 1) +j : j € {2,4,6,...,2m + 2}}, which are also sets of m + 1 elements.
Each T; must contain an element of either color 0 or color 1, for otherwise T; would be an (m + 1)-term
D-diffsequence of color 2, contradicting the choice of m. Furthermore, each .S; must contain elements of both
color 0 and color 1 (since it is void of color 2), for otherwise S; would be an (m + 1)-term monochromatic
D-diffsequence. Since some color, say color 0, must occur an infinite number of times in the T;’s, there exist
ziy € Ty, x5, € Ty, x4y € Thy,y ..., where 4511 > 45 + 1, all of color 0. For each j > 1, let Yi; € Sl-j+1 be of color
Then z;,,yi,, Tiy, Yiy, - - - is an infinitely long D-diffsequence of color 0, contradicting the existence of m.
275, line 15: insert “long” after “arbitrarily”

285, line 7: change “2(m —1)p —1” to “(2m — 1)p — 1”

288, exercise 9: change each occurrence of “Fj” to “F}” and each occurrence of “F}” to “Fy”

288, exercise 10: change “S3” to “V3” and “Sy” to “Vy”

290, exercises 10 and 11: change “f” to “A” in each problem
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