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Two Types of SAT

1. kSAT-b: Clauses have ≤ k literals, each var occurs ≤ b
times.

2. EU-kSAT-b: Clauses have k literals, each var occurs ≤ b
times.

Caveat Do not allow x and ¬x in same clause.
Caveat Do not allow x and x in same clause.
Occur (x ∨ y) ∧ (¬x ∨ z): x occurs TWICE.
SAT means no bound on number of literals-per-clause.
We will look at all four of these for various values of k , b.
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No Bound on b

1. 1SAT:

P,
φ ∈ 1SAT iff there is no x such that both x and ¬x occur.

2. 2SAT: P. Known result. Sketch: Convert every clause
L1 ∨ L2 into (¬L1 → L2) ∧ (¬L2 → L1). Make a directed
graph with literals as vertices and the → as edges. φ ∈ 2SAT
iff there is no path from an x to a ¬x .

3. 3SAT: NPC by Cook.

The k = 1 and k = 2 cases are of course still in P if you bound b.
Hence we look at k = 3 and bound on b.
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k = 3 and b = 1, 2

3SAT-1:

P. Always satisfiable, just set all literals that appear to T.
EU version would still be in P.

3SAT-2: P? NPC? Work on in Breakout Rooms.
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3SAT, all vars occur ≤ 2. P

1) Input φ in 3CNF, all vars occurs ≤ 2.

2) If a literal is only pos, set T, if only neg, set F. If clause has 1
literal, set true.
These operations may solve problem.
3) Every clause has 2 or 3 literals, every literal occurs as pos and
neg. We show SAT.
4) A clause with all NEG literals we call a NEG-clause.
If no NEG-clauses then SAT easily.
IF there is a NEG-clause then set a var in it to F.
(Numb NEG-clauses) + (Numb of clauses) DECREASES.
Eventually satisfy all clauses.
Moral This was a clever trick! To prove P 6= NP would need to
show that no clever trick will get SAT into P. Hard!
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3SAT, all vars occur ≤ 3. NPC

We will prove this NPC. Erika- how will we do it?

By a Reduction
1) Input φ in 3CNF. Want φ′ 3CNF with all vars occurring ≤ 3
times such that φ ∈ SAT iff φ′ ∈ SAT.
2) If a var occurs ≤ 3 times then leave it alone.
3) If a var occurs m ≥ 4 times then
a) Add new vars x1, . . . , xm. Replace ith occurrence of x with xi .
b) Add the clauses x1 → x2, x2 → x3, . . ., xm−1 → xm, xm → x1.
(Formally x1 → x2 is (¬x1 ∨ x2.)
Clearly φ ∈ 3CNF and all variables occur ≤ 3 times.
Clearly φ ∈ SAT iff φ′ ∈ SAT
Moral Going from b ≤ 2 to b ≤ 3 matters!
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occurs ≤ 3 times. P? NPC?
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EU-3SAT-3 is in P

EU-3SAT-3 with b ≤ 3 is in P.

This needs a known Theorem and its Corollary.
For this slide G = (A,B,E ) is a bipartite graph.
A Matching of A into B is a set of disjoint edges so that every
element of A is an endpoint of some edge. View as an injection of
A into B.
X ⊆ A. E (X ) = {y ∈ Y : (∃x ∈ X )[(x , y) ∈ E ]}].

Hall’s Matching Theorem If, for all X ⊆ A, |E (X )| ≥ |X | then
there exists a matching from A to B.

Corollary If there exists k such that (1) for every x ∈ A,
deg(x) ≥ k , and (2) for every y ∈ B, deg(y) ≤ k , then there is a
matching from A to B.

We will use these on the next slide.
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Every EU-3CNF-3 fml is Satisfiable

Let φ be EU-3CNF-3. φ = C1 ∨ · · · ∨ Cm.
Form a bipartite graph:

1. Clauses on the left, variables on the right.

2. Edge from C to x if either x or ¬x is in C .

Every clause has degree 3.

Every variable has degree ≤ 3.
By Corollary there is a matching of C ’s to V ’s. This gives a
satisfying assignment.
Moral The algorithm used a THEOREM in math that perhaps you
did not know. To prove P 6= NP would need to say this can’t
happen. Hard!
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A Variant of SAT

Exposition by William Gasarch—U of MD



1-in-3-SAT

Def 1-in-3-SAT (1-in-3-SAT) is the problem of, given a formula
D1 ∧ · · · ∧ Dm find an assignment that satisfies exactly one
literal-per-clause. We will show that 1-in-3-SAT is NPC.

Is this a Natural Question? VOTE, though this is an opinion
question.
My Opinion The problem is not natural.
So why are we studying it Discuss.
Its a means to an end We will show natural problems NPC by
using reductions from 1-in-3-SAT. We will do a reduction from a
variant of 1-in-3-SAT.
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Its a means to an end We will show natural problems NPC by
using reductions from 1-in-3-SAT. We will do a reduction from a
variant of 1-in-3-SAT.
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1-in-3-SAT is NPC

Given φ = C1 ∧ · · · ∧ Cm in 3CNF create the φ′ as follows:

Replace clause (L1 ∨ L2 ∨ L3) with

(¬L1 ∨ a ∨ b) ∧ (b ∨ L2 ∨ c) ∧ (c ∨ d ∨ ¬L3).

where a, b, c , d are new variables.
Leave it to the reader to prove

φ ∈ 3SAT iff φ′ ∈ 1-in-3-SAT.



1-in-3-SAT is NPC

Given φ = C1 ∧ · · · ∧ Cm in 3CNF create the φ′ as follows:
Replace clause (L1 ∨ L2 ∨ L3) with

(¬L1 ∨ a ∨ b) ∧ (b ∨ L2 ∨ c) ∧ (c ∨ d ∨ ¬L3).

where a, b, c , d are new variables.

Leave it to the reader to prove

φ ∈ 3SAT iff φ′ ∈ 1-in-3-SAT.



1-in-3-SAT is NPC

Given φ = C1 ∧ · · · ∧ Cm in 3CNF create the φ′ as follows:
Replace clause (L1 ∨ L2 ∨ L3) with

(¬L1 ∨ a ∨ b) ∧ (b ∨ L2 ∨ c) ∧ (c ∨ d ∨ ¬L3).

where a, b, c , d are new variables.
Leave it to the reader to prove

φ ∈ 3SAT iff φ′ ∈ 1-in-3-SAT.



Mono 1-in-3-SAT

Mono 1-in-3-SAT (mono-1-in-3-SAT): Given a formula
E1 ∧ · · · ∧ Ep where all vars occur positively, is there an assignment
that satisfies exactly one literal-per-clause.

Thm 1-in-3-SAT ≤ mono-1-in-3-SAT
Given 3CNF form φ(x1, . . . , xn) = C1 ∨ · · · ∨ Ck want φ′ such that
φ ∈ 1-in-3-SAT iff φ′ ∈ mono-1-in-3-SAT.
1) New Vars t, f and new clause E = (t ∨ f ∨ f ). Any 1-in-3-SAT
assignment of φ will set t to T and f to F .
2) For each xj have new var x ′j and clause Dj = (f ∨ xj ∨ x ′j ). Any
1-in-3-SAT assignment for φ will set xj , x

′
j to opposites.

3) For each Ci let C ′i be obtained by replacing every xj with x ′j .

φ′ = C ′1 ∧ · · · ∧ C ′k ∧ D1 ∧ · · · ∧ Dn ∧ E .

Leave it to the reader to show φ ∈ 1-in-3-SAT iff
φ′ ∈ mono-1-in-3-SAT.
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A Puzzle we Prove Hard
Using mono-1-in-3-SAT

Exposition by William Gasarch—U of MD



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem!

NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!

We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms

1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.

2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.

3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



Why is mono-1-in-3-SAT Important?

We care about the mono-1-in-3-SAT problem! NOT!
We will use it to show that a puzzle we DO care about is NPC

S E N D
+ M O R E

M O N E Y

The SEND MORE MONEY Cryptarithms
1) A carry can be at most 1. Hence M = 1.
2) Since M = 1, S + M + poss carry ≤ 10. Since there is a carry,
S + M + poss carry = 10 so O = 0.
3) Can keep on reasoning like this and we find:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The Solution to The SEND MORE MONEY Cryptarithms



How Did We Solve SEND+MORE=MONEY ?

We initially did some reasoning to cut down the number of poss.

But past a certain point we had to try all possibilities.

Is the general problem NPC?
Spoiler Alert: Yes
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Definition of Cryptarithms Problem

We want to show that Cryptarithms is NPC. We need a definition.

CRYPTARITHM
Input B,m ∈ N. Σ is alphabet of B letters.
x0, . . . , xm−1. Each xi ∈ Σ.
y0, . . . , ym−1. Each yi ∈ Σ.
z0, . . . , zm. Each zi ∈ Σ. The symbol zm is optional.
Question Does there exists injection Σ→ {0, . . . ,B − 1} so that
the arithmetic below is correct in base B?

xm−1 · · · x0
+ ym−1 · · · y0
zm zm−1 · · · z0
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We Show CRYPTARITHM is NPC

Thm CRYPTARITHM is NPC.

Erika- How will we prove this?
We show mono-1-in-3-SAT ≤ CRYPTARITHM. We show an
algorithm that will:
Input φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm where all vars occur positive.
Output An instance J of CRYPTARITHM such that TFAE

1. Exists assignment that satisfies exactly one var per clause.

2. Exists solution to CRYPTARITHM J.

We do the reduction in three parts, so three more slides!
We call the parts gadgets.
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0 and 1

We have 0, 1 ∈ Σ that will live up their name.

We have p, q ∈ Σ that will help 0 maps to 0, 1 maps to 1.
We then make this part of J:

0 p 0
0 p 0

1 q 0

We leave it to the reader to show that this ensures 0 maps to 0
and 1 maps to 1.
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Vars ≡ 0, 1 (mod 4)

For every variable v we have a symbol v ∈ Σ. Our intent is

If v is true then v ≡ 1 (mod 4).
If v is false then v ≡ 0 (mod 4).
The following gadget ensures that v ≡ 0, 1 (mod 4).

0 b c 0 a 0
0 b c 0 a 0

0 v d 0 b 0

Since a + a = b with no carry, b ≡ 0 (mod 2).

Since c + c = d the carry is C ∈ {0, 1}.
Since b + b = v , v = 2b + C , so v ≡ 0, 1 (mod 4).

Note Do this for all vars v , using a different a, b, c for each one.
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Clauses Need to have Exactly One Var True

Clause is (x ∨ y ∨ z).

Gadget is:

0 I 0 x 0 1 0 b 0 a 0
0 z 0 y 0 c 0 b 0 a 0

0 d 0 I 0 d 0 c 0 b 0

a + a = b, so b ≡ 0 (mod 2).

b + b = c , so c ≡ 0 (mod 4).

d = c + 1 so d ≡ 1 (mod 4).

x + y = I so x + y ≡ I (mod 4).

I + z = d so x + y + z ≡ 1 (mod 4).

Note For each clause use a different a, b, c , I .

So if J has a solution then φ has a 1-in-3 assignment.
Need if φ has a 1-in-3 assignment then J has sol. Left to reader.
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