
BILL START
RECORDING

HW 10 Solutions

Problem 1 Set Up

Def Let G = (V ,E) be a graph. A vertex cover (VC) for G of
size k is a set U ⊆ V such that

1) |U| = k

2) (∀(a, b) ∈ E)[(a ∈ U) ∨ (b ∈ U)]

VC = {(G , k) : G has a VC of size ≤ k}.
It is known that VC is NP-complete.

Problem 1 Set Up

Def Let G = (V ,E) be a graph. A vertex cover (VC) for G of
size k is a set U ⊆ V such that

1) |U| = k

2) (∀(a, b) ∈ E)[(a ∈ U) ∨ (b ∈ U)]

VC = {(G , k) : G has a VC of size ≤ k}.
It is known that VC is NP-complete.

Problem 1 Set Up

Def Let G = (V ,E) be a graph. A vertex cover (VC) for G of
size k is a set U ⊆ V such that

1) |U| = k

2) (∀(a, b) ∈ E)[(a ∈ U) ∨ (b ∈ U)]

VC = {(G , k) : G has a VC of size ≤ k}.
It is known that VC is NP-complete.

Problem 1 Set Up

Def Let G = (V ,E) be a graph. A vertex cover (VC) for G of
size k is a set U ⊆ V such that

1) |U| = k

2) (∀(a, b) ∈ E)[(a ∈ U) ∨ (b ∈ U)]

VC = {(G , k) : G has a VC of size ≤ k}.

It is known that VC is NP-complete.

Problem 1 Set Up

Def Let G = (V ,E) be a graph. A vertex cover (VC) for G of
size k is a set U ⊆ V such that

1) |U| = k

2) (∀(a, b) ∈ E)[(a ∈ U) ∨ (b ∈ U)]

VC = {(G , k) : G has a VC of size ≤ k}.
It is known that VC is NP-complete.

Problem 1a

Want: a connected graph on 1000 vertices that has a VC of size 1.

V = {1, . . . , 1000}
E = {(1, 2), (1, 3), . . . , (1, 1000)}

U = {1} is a VC of size 1.

Problem 1a

Want: a connected graph on 1000 vertices that has a VC of size 1.

V = {1, . . . , 1000}

E = {(1, 2), (1, 3), . . . , (1, 1000)}

U = {1} is a VC of size 1.

Problem 1a

Want: a connected graph on 1000 vertices that has a VC of size 1.

V = {1, . . . , 1000}
E = {(1, 2), (1, 3), . . . , (1, 1000)}

U = {1} is a VC of size 1.

Problem 1a

Want: a connected graph on 1000 vertices that has a VC of size 1.

V = {1, . . . , 1000}
E = {(1, 2), (1, 3), . . . , (1, 1000)}

U = {1} is a VC of size 1.

Problem 1b

Want: a connected graph on 1000 vertices so that the smallest
vertex cover for it has size 999.

Take the complete graph on 1000 vertices.
V = {1, . . . , 1000}
E = {(i , j) : 1 ≤ i < j ≤ 1000}
U = {1, 2, . . . , 999} is a VC of size 999.
We leave it to the reader that there is not a smaller VC.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.

G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:

V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}

E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

Want: a connected graph G on 1000 vertices s.t.:

G has a VC of size 500.
G does not have a VC of size 499.

We take the cycle on 1000 vertices. Formally:
V = {1, . . . , 1000}
E = {(1, 2), (2, 3), . . . , (999, 1000), (1000, 1)}

U = {2, 4, . . . , 1000} is a VC of size 500.

No set of size 499 works. Left to the reader.

Problem 1c

VC1000 = {G : G has a VC of size 1000}.

Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.

ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM

1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.

2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.

(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)

If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.

3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.

END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002).

Thats a polynomial!

Problem 1c

VC1000 = {G : G has a VC of size 1000}.
Show that VC1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all U ⊆ V of size 1000 test if U is a vertex cover.
(Test: Visit each edge. Need that one of its ends is in U.)
If YES then jump out of the loop and output YES.
3) (If got here then no U worked.) Output NO.
END OF ALGORITHM

Number of U’s tested is
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).
So time is O(n1002). Thats a polynomial!

Problem 1d: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 1d: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 1d: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:

∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 1d: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).

Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 1d: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).

The question is UNKNOWN TO SCIENCE!

Problem 1d: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 1d

∃ an algorithm that is substantially better than O(n1002).
We sketch two algorithms.

Problem 1d

∃ an algorithm that is substantially better than O(n1002).

We sketch two algorithms.

Problem 1d

∃ an algorithm that is substantially better than O(n1002).
We sketch two algorithms.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b).

a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)

Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.

Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.

4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.

5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.

6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.

Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.

Much better in practice, and has been improved.

Problem 1d-Algorithm 1

Input G . Form a tree of depth ≤ 1000 as follows

1) Root is G .

2) Pick an edge (a, b). a or b must be in VC.

3)
Left side is G − {a}. Think of a as being put into a VC.
Right side is G − {b}. Think of b as being put into a VC.
4) Repeat on each side until depth 1000.
5) If some leaf node is empty then have VC of size ≤ 1000.
6) If all leaf nodes have some edge then NO VC of size ≤ 1000.
Algorithm takes time O(n) but the mult constant is 21000.
Much better in practice, and has been improved.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Problem 1d-Algorithm 2

Input G = (V ,E). |V | = n. |E | = m.

1) If ∃v of deg ≥ 1001 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 999 sized VC for G .

If ∃v of deg ≥ 1000 then put v in the VC. (easy to prove that v
must be in the VC) and G ← G − {v}. Want 998 sized VC for G .

2) Repeat until seek a VC for G of size k and G has all vertices of
degree ≤ k where k ≤ 1000.

3) (comment) If G = (V ,E) has a VC of size ≤ k then note that
each element of the VC covers ≤ k edges, so |E | ≤ k2, so
|V | ≤ |E | ≤ k2.

4) Look at all k-sized subsets of the V to see if any form a VC.

Takes time O(n + m) + kk
2 ≤ O(n) + 10001000

2
.

Best Known VC Algorithm for fixed k

VCk = {G : G has a VC of size k}.

Our Alg 1 can be generalized to solve VCk in time O(2kn).

Our Alg 2 can be generalized to solve VCk in time O(n + kk
2
).

The Best Known Algorithm takes time O(kn + 1.2738k).

It works very well in practice.

Best Known VC Algorithm for fixed k

VCk = {G : G has a VC of size k}.

Our Alg 1 can be generalized to solve VCk in time O(2kn).

Our Alg 2 can be generalized to solve VCk in time O(n + kk
2
).

The Best Known Algorithm takes time O(kn + 1.2738k).

It works very well in practice.

Best Known VC Algorithm for fixed k

VCk = {G : G has a VC of size k}.

Our Alg 1 can be generalized to solve VCk in time O(2kn).

Our Alg 2 can be generalized to solve VCk in time O(n + kk
2
).

The Best Known Algorithm takes time O(kn + 1.2738k).

It works very well in practice.

Best Known VC Algorithm for fixed k

VCk = {G : G has a VC of size k}.

Our Alg 1 can be generalized to solve VCk in time O(2kn).

Our Alg 2 can be generalized to solve VCk in time O(n + kk
2
).

The Best Known Algorithm takes time O(kn + 1.2738k).

It works very well in practice.

Best Known VC Algorithm for fixed k

VCk = {G : G has a VC of size k}.

Our Alg 1 can be generalized to solve VCk in time O(2kn).

Our Alg 2 can be generalized to solve VCk in time O(n + kk
2
).

The Best Known Algorithm takes time O(kn + 1.2738k).

It works very well in practice.

Best Known VC Algorithm for fixed k

VCk = {G : G has a VC of size k}.

Our Alg 1 can be generalized to solve VCk in time O(2kn).

Our Alg 2 can be generalized to solve VCk in time O(n + kk
2
).

The Best Known Algorithm takes time O(kn + 1.2738k).

It works very well in practice.

Respect Lower Bounds!

You probably thought that VCk required roughly nk time.

A clever trick got the run time so that the the degree of the poly
does not depend on k .

Any proof of a lower bound has to show that there is no clever
trick.

Respect lower bounds!

Respect Lower Bounds!

You probably thought that VCk required roughly nk time.

A clever trick got the run time so that the the degree of the poly
does not depend on k .

Any proof of a lower bound has to show that there is no clever
trick.

Respect lower bounds!

Respect Lower Bounds!

You probably thought that VCk required roughly nk time.

A clever trick got the run time so that the the degree of the poly
does not depend on k .

Any proof of a lower bound has to show that there is no clever
trick.

Respect lower bounds!

Respect Lower Bounds!

You probably thought that VCk required roughly nk time.

A clever trick got the run time so that the the degree of the poly
does not depend on k .

Any proof of a lower bound has to show that there is no clever
trick.

Respect lower bounds!

1e-Graph Where Greedy Alg Is Not Opt

1 2

3

4

5

6

7

8

9

Greedy algorithm produces {1, 2, 3, 4, 5}, 5 vertices.
Optimal is {2, 3, 4, 5}, 4 vertices.

1e-Graph Where Greedy Alg Is Not Opt

1 2

3

4

5

6

7

8

9

Greedy algorithm produces {1, 2, 3, 4, 5}, 5 vertices.
Optimal is {2, 3, 4, 5}, 4 vertices.

1e-Graph Where Greedy Alg Is Not Opt

1 2

3

4

5

6

7

8

9

Greedy algorithm produces {1, 2, 3, 4, 5}, 5 vertices.

Optimal is {2, 3, 4, 5}, 4 vertices.

1e-Graph Where Greedy Alg Is Not Opt

1 2

3

4

5

6

7

8

9

Greedy algorithm produces {1, 2, 3, 4, 5}, 5 vertices.
Optimal is {2, 3, 4, 5}, 4 vertices.

Problem 2 Set Up

Def Let G = (V ,E) be a graph. A Dom Set (DS) for G of size
k is a set D ⊆ V such that

1) |D| = k

2) (∀v ∈ V)[(v ∈ D) ∨ ((∃w ∈ D)[(v ,w) ∈ E]]

DS = {(G , k) : G has a DS of size ≤ k}.
It is known that DS is NP-complete.

Problem 2 Set Up

Def Let G = (V ,E) be a graph. A Dom Set (DS) for G of size
k is a set D ⊆ V such that

1) |D| = k

2) (∀v ∈ V)[(v ∈ D) ∨ ((∃w ∈ D)[(v ,w) ∈ E]]

DS = {(G , k) : G has a DS of size ≤ k}.
It is known that DS is NP-complete.

Problem 2 Set Up

Def Let G = (V ,E) be a graph. A Dom Set (DS) for G of size
k is a set D ⊆ V such that

1) |D| = k

2) (∀v ∈ V)[(v ∈ D) ∨ ((∃w ∈ D)[(v ,w) ∈ E]]

DS = {(G , k) : G has a DS of size ≤ k}.
It is known that DS is NP-complete.

Problem 2 Set Up

Def Let G = (V ,E) be a graph. A Dom Set (DS) for G of size
k is a set D ⊆ V such that

1) |D| = k

2) (∀v ∈ V)[(v ∈ D) ∨ ((∃w ∈ D)[(v ,w) ∈ E]]

DS = {(G , k) : G has a DS of size ≤ k}.

It is known that DS is NP-complete.

Problem 2 Set Up

Def Let G = (V ,E) be a graph. A Dom Set (DS) for G of size
k is a set D ⊆ V such that

1) |D| = k

2) (∀v ∈ V)[(v ∈ D) ∨ ((∃w ∈ D)[(v ,w) ∈ E]]

DS = {(G , k) : G has a DS of size ≤ k}.
It is known that DS is NP-complete.

Problem 2a

Want: connected graph on 1000 vertices that has a DS of size 1.

V = {1, . . . , 1000}
E = {(1, 2), (1, 3), . . . , (1, 1000)}

D = {1} is a DS of size 1.

Problem 2a

Want: connected graph on 1000 vertices that has a DS of size 1.

V = {1, . . . , 1000}

E = {(1, 2), (1, 3), . . . , (1, 1000)}

D = {1} is a DS of size 1.

Problem 2a

Want: connected graph on 1000 vertices that has a DS of size 1.

V = {1, . . . , 1000}
E = {(1, 2), (1, 3), . . . , (1, 1000)}

D = {1} is a DS of size 1.

Problem 2a

Want: connected graph on 1000 vertices that has a DS of size 1.

V = {1, . . . , 1000}
E = {(1, 2), (1, 3), . . . , (1, 1000)}

D = {1} is a DS of size 1.

Problem 2b

Want: graph on 1000 vertices, smallest DS has size 1000.

V = {1, . . . , 1000}
E = ∅

For all vertices there are no neighbors, so every vertex is in the DS.

Problem 2b

Want: graph on 1000 vertices, smallest DS has size 1000.

V = {1, . . . , 1000}

E = ∅

For all vertices there are no neighbors, so every vertex is in the DS.

Problem 2b

Want: graph on 1000 vertices, smallest DS has size 1000.

V = {1, . . . , 1000}
E = ∅

For all vertices there are no neighbors, so every vertex is in the DS.

Problem 2b

Want: graph on 1000 vertices, smallest DS has size 1000.

V = {1, . . . , 1000}
E = ∅

For all vertices there are no neighbors, so every vertex is in the DS.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.
G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.
V = {1, . . . , 1000}
E = {(1, 2), (3, 4), . . . , (999, 1000)}
Dom Set: {1, 3, . . . , 999}.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.

G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.
V = {1, . . . , 1000}
E = {(1, 2), (3, 4), . . . , (999, 1000)}
Dom Set: {1, 3, . . . , 999}.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.
G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.
V = {1, . . . , 1000}
E = {(1, 2), (3, 4), . . . , (999, 1000)}
Dom Set: {1, 3, . . . , 999}.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.
G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.

V = {1, . . . , 1000}
E = {(1, 2), (3, 4), . . . , (999, 1000)}
Dom Set: {1, 3, . . . , 999}.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.
G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.
V = {1, . . . , 1000}

E = {(1, 2), (3, 4), . . . , (999, 1000)}
Dom Set: {1, 3, . . . , 999}.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.
G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.
V = {1, . . . , 1000}
E = {(1, 2), (3, 4), . . . , (999, 1000)}

Dom Set: {1, 3, . . . , 999}.

Problem 2c

Want a graph on 1000 vertices s.t.:

G has a DS of size 500.
G does not have a DS of size 499.

We take the set of 500 pairs of disjoint edges.
V = {1, . . . , 1000}
E = {(1, 2), (3, 4), . . . , (999, 1000)}
Dom Set: {1, 3, . . . , 999}.

Problem 2c: Making it Connected
I originally asked for a connected graph on 1000 vertices that has
a DS of size 500 but not 499.

I thought C1000 would work but Nolawe-Isaac-Felix told me it does
not.

I didn’t intend for this to be a hard problem so I removed
connected but also asked the class to, if they DID find a
connected graph, email it to me for mine and the classes
enlighentment.

The following people emailed me a solution:
Aiden Paul
Alex Mendelson (TA)
Anish Bhupalam
Ethan Price
Roc Yu

The next two slides show graphs on 12 vertices that have a DS of
size 6 but not 5. They convey the ideas.

Problem 2c: Making it Connected
I originally asked for a connected graph on 1000 vertices that has
a DS of size 500 but not 499.

I thought C1000 would work but Nolawe-Isaac-Felix told me it does
not.

I didn’t intend for this to be a hard problem so I removed
connected but also asked the class to, if they DID find a
connected graph, email it to me for mine and the classes
enlighentment.

The following people emailed me a solution:
Aiden Paul
Alex Mendelson (TA)
Anish Bhupalam
Ethan Price
Roc Yu

The next two slides show graphs on 12 vertices that have a DS of
size 6 but not 5. They convey the ideas.

Problem 2c: Making it Connected
I originally asked for a connected graph on 1000 vertices that has
a DS of size 500 but not 499.

I thought C1000 would work but Nolawe-Isaac-Felix told me it does
not.

I didn’t intend for this to be a hard problem so I removed
connected but also asked the class to, if they DID find a
connected graph, email it to me for mine and the classes
enlighentment.

The following people emailed me a solution:
Aiden Paul
Alex Mendelson (TA)
Anish Bhupalam
Ethan Price
Roc Yu

The next two slides show graphs on 12 vertices that have a DS of
size 6 but not 5. They convey the ideas.

Problem 2c: Making it Connected
I originally asked for a connected graph on 1000 vertices that has
a DS of size 500 but not 499.

I thought C1000 would work but Nolawe-Isaac-Felix told me it does
not.

I didn’t intend for this to be a hard problem so I removed
connected but also asked the class to, if they DID find a
connected graph, email it to me for mine and the classes
enlighentment.

The following people emailed me a solution:
Aiden Paul
Alex Mendelson (TA)
Anish Bhupalam
Ethan Price
Roc Yu

The next two slides show graphs on 12 vertices that have a DS of
size 6 but not 5. They convey the ideas.

Problem 2c: Making it Connected
I originally asked for a connected graph on 1000 vertices that has
a DS of size 500 but not 499.

I thought C1000 would work but Nolawe-Isaac-Felix told me it does
not.

I didn’t intend for this to be a hard problem so I removed
connected but also asked the class to, if they DID find a
connected graph, email it to me for mine and the classes
enlighentment.

The following people emailed me a solution:
Aiden Paul
Alex Mendelson (TA)
Anish Bhupalam
Ethan Price
Roc Yu

The next two slides show graphs on 12 vertices that have a DS of
size 6 but not 5. They convey the ideas.

First Graph on 12 Vertics, DS Size 6, Not 5

Second Graph on 12 Vertics, DS Size 6, Not 5

Problem 2d

DS1000 = {G : G has a DS of size 1000}.

Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.

ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM

1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.

2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.

(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)

If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.

3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.

END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002).

Thats a polynomial!

Problem 2d

DS1000 = {G : G has a DS of size 1000}.
Show that DS1000 ∈ P.
ALGORITHM
1) Input G = (V ,E). Let n = |V |.
2) For all D ⊆ V of size 1000 test if D is a DS.
(Test: see if each vertex is in D or has a neighbor in D.)
If YES then jump out of the loop and output YES.
3) (If got here then no D worked.) Output NO.
END OF ALGORITHM

Number of tests:
(n
1000

)
≤ n1000.

Each test took O(|E |) = O(n2).

So time is O(n1002). Thats a polynomial!

Problem 2e: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 2e: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 2e: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:

∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 2e: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).

Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 2e: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).

The question is UNKNOWN TO SCIENCE!

Problem 2e: Think About

Your algorithm in Part d ran in time O(nd) for some d .

The algorithm was in time O(n1002).

VOTE:
∃ an algorithm that is substantially better than O(n1002).
Does not ∃ an algorithm that is substantially better than O(n1002).
The question is UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.

Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.

Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.

Still UNKNOWN TO SCIENCE!

Problem 2f

UNKNOWN TO SCIENCE.

Def A problem of the form

{(G , k) : G does the hokey pokey ≤ k times }

is Fixed Parameter Tractable (FPT) if,

for all k , there is an algorithm for

{G : G does the hokey pokey ≤ k times }

with run time f (k)nO(1) where the O(1) is ind. of k .

We showed that VC is FPT.

There is a complexity theory of FPT.
Theory says DS is prob not FPT.
Similar to NP-completeness saying SAT is prob not in P.
Still UNKNOWN TO SCIENCE!

