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Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.
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Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If we R then w+0=w.

If weRthen wx1=w.

If wis a string of a's and b's, then w - e = w (this is
concatenation).

Notation ¥* = Y9 U X U---. is the set of all strings including e.
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Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If A BCYX*then A-B={x-y:x€ ANy € B}.
Note that ¥ is ¥ - 2.

If x € {a, b}* then #,(x) is the number of a's in x.
Same for #p, #o, etc.

If x,y € {a, b}* then x < y means that x is a prefix of y.
For example, aab is a prefix of aabbaaba.
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Modular Arithmetic Il: Convention

Common usage:
100=2 (mod 7)

Commonly if we are in mod n we have a large number on the left
and then a number between 0 and n — 1 on the right.

When dealing with mod n we assume the entire universe is
{0,1,...,n—1}.



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1.

Addition: x 4+ y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

—7 = x where 0 < x < 25.



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.

Shortcut to avoid big numbers:



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.

Shortcut to avoid big numbers:

20x10=-6x10=-2%x30=-2x4=-8=18.



Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.
Shortcut to avoid big numbers:

20x10=-6x10=-2%x30=-2x4=-8=18.

4. Division: Next Slide.
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= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic: )1/ is the number such that y X
3=09since9x3=27=1

Shortcut: there is an algorithm that finds % quickly.
We will NOT study the algorithm later.

11,
y

3 = x where 0 < x < 25. Think about it.

No such x exists.

Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1,3,5,7,9,11,15,17,19, 21, 23,25}
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A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2), #p(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.
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Thm Any DFA for the lang has at least 6 states.

Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.

On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state g.p.

On input abb goes to state q,pp-

Since < 5 states two of these go to the same state, say q,, and
Abb-

aa - abb goes to state g which must accept since aaabb € L.
bb - abb goes to state g which accepts. OH, but bbabb ¢ L.
Contradiction.

Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.
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L={w:#,(w) =0 (mod 8)}

Thm Any DFA for L has at least 8 states.
Might be on a HW or exam.
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Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

On input a end in g;. From here a* gets to an accept.
On input a° end in g>. From here a® gets to an accept.
On input a3 end in g3. From here a® gets to an accept.
On input a* end in g4. From here a® gets to an accept.
On input a® end in gs which accepts.

On input a° end in gs.

Two of g;, gj are the same state. See next slide.



Continuing proof

Assume i < j and g; = g; = q.

Note that i < 5.

Input a’ ends in state g;.

Input & ends in state q;-

a'a®" = a® ends in ACCEPT state.

@2 = a®~' ends in REJECT state since 5+ j — i > 5.
But these strings end in SAME state, so contradiction.
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Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length < n.
Make the states for strings in L accept states.

This will take ~ 2" states. For many finite sets can do it with far
fewer states.



DFA Intuitively

1. A DFA reads the input a letter at a time and never looks at it
again. So one-scan.

2. A DFA only has a finite number of states, so O(1) memory.
3. Contrast:

3.1 A DFA can keep track of #,(w) (mod 17).
3.2 A DFA cannot keep track of #,(w).



DFA Formally

Def A DFA is a tuple (Q, X, 0, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. 0: Q x ¥ — Q is the transition function.
4. s € Q is the start state.
5. F C Q is the set of final states.
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DFA Formally

Def A DFA is a tuple (Q, X, 0, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. 0: Q x ¥ — Q is the transition function.
4. s € Q is the start state.
5. F C Q is the set of final states.

Def If M is a DFA and x € * then M(x) accepts if when you
run M on x you end up in a final state.

Def If M is a DFA then L(M) = {x : M(x) accepts}.

Def Let L C X*. If there exists a DFA M such that L(M) = L then
L is regular.
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> If it's a particular example and not too many states, like those
drawn a few slides ago, then draw it.



Can Represent DFA’s as Diagram or Transition
Table

> If it's a particular example and not too many states, like those
drawn a few slides ago, then draw it.

» If it is many states or a general case (next slide) then give the
transition table (the definition of ¢).
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{w:#,(w) =0 (mod n) A #, =0 (mod m)}

Q@={0,...,n—1} x{0,...,m—1}

s =(0,0)

F={(0,0)}

3((i,j),a) = (i+1 (mod n),J).

5((i,j), b) = (i,j+ 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a

smaller DFA?
No. We may prove this later in the term.



