BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Deterministic Finite
Automata (DFA)

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

222222{010’2:0162/\0262}.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

222222{010’2:0162/\0262}.
2322222{010203201EZ/\UQGZ/\U3€Z}.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

222222{010’2:0162/\0262}.
2322222{010203201EZ/\UQGZ/\U3€Z}.
zi:{dl'“J;ZUl,...,U;EZ}

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.
Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.
zi:{dl"-J;ZUl,...,U,'EZ}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.
Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.
Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

222222{010’2:01 €Y Noo EZ}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.

Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If we R then w+0=w.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.

Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:

If weRthen w+0=w.
If weRthenw x1=w.

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.
Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If we R then w+0=w.

If weRthen wx1=w.

If wis a string of a's and b's, then w - e = w (this is
concatenation).

Alphabets and Strings

¥ will be our alphabet. Usually ¥ = {0,1} or X = {a, b}.
Sometimes ¥ = {a, b, c} or bigger.
A sequence of symbols of an alphabet is a string.

Y2 =YY ={o100:01 €L Aoy € L}.

Y3 =3%Y ={010203: 01 €L N0 EXLNo3 € L}.
Y ={oy---0;:01,...,0, €L}

i=1caseis just ¥1 = ¥.

What about i = 0 case?

Y0 = {e}, the empty string.

The empty string is useful for the same reason 0 and 1 are useful:
If we R then w+0=w.

If weRthen wx1=w.

If wis a string of a's and b's, then w - e = w (this is
concatenation).

Notation ¥* = Y9 U X U---. is the set of all strings including e.

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If ABCS*then A-B={x-y:xc ANy € B}

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If A BCYX*then A-B={x-y:x€ ANy € B}.
Note that ¥ is ¥ - 2.

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If A BCYX*then A-B={x-y:x€ ANy € B}.
Note that ¥ is ¥ - 2.

If x € {a, b}* then #,(x) is the number of a's in x.

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If A BCYX*then A-B={x-y:x€ ANy € B}.
Note that ¥ is ¥ - 2.

If x € {a, b}* then #,(x) is the number of a's in x.
Same for #p, #o, etc.

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If A BCYX*then A-B={x-y:x€ ANy € B}.
Note that ¥ is ¥ - 2.

If x € {a, b}* then #,(x) is the number of a's in x.
Same for #p, #o, etc.

If x,y € {a, b}* then x < y means that x is a prefix of y.

Concatenation, number-of-a’s, Prefix

Let x,y € £*. Then xy is the concatenation of x and y. We
sometimes write it as x - y.

If A BCYX*then A-B={x-y:x€ ANy € B}.
Note that ¥ is ¥ - 2.

If x € {a, b}* then #,(x) is the number of a's in x.
Same for #p, #o, etc.

If x,y € {a, b}* then x < y means that x is a prefix of y.
For example, aab is a prefix of aabbaaba.

Modular Arithmetic: Definitions

Modular Arithmetic: Definitions

» x =y (mod N) if and only if N divides x — y.

Modular Arithmetic: Definitions

» x =y (mod N) if and only if N divides x — y.

> 25 =35 (mod 10).

Modular Arithmetic: Definitions

» x =y (mod N) if and only if N divides x — y.
> 25 =35 (mod 10).

» 100 =2 (mod 7) since 100 =7 x 14 + 2.

Modular Arithmetic Il: Convention

Common usage:

100=2 (mod 7)

Modular Arithmetic Il: Convention

Common usage:
100=2 (mod 7)

Commonly if we are in mod n we have a large number on the left
and then a number between 0 and n — 1 on the right.

Modular Arithmetic Il: Convention

Common usage:
100=2 (mod 7)

Commonly if we are in mod n we have a large number on the left
and then a number between 0 and n — 1 on the right.

When dealing with mod n we assume the entire universe is
{0,1,...,n—1}.

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1.

Addition: x 4+ y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

—7 = x where 0 < x < 25.

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.

Shortcut to avoid big numbers:

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.

Shortcut to avoid big numbers:

20x10=-6x10=-2%x30=-2x4=-8=18.

Modular Arithmetic: +, —, X

= is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., 20+ 10 = 30 = 4.
Only use the number 30 as an intermediary value on the way
to the real answer.

2. —7 = x where 0 < x < 25.

Pedantic: —y is the number such that y + (—y) = 0.
—7 =19 (mod 26) because 1947 =0 (mod 26).
Shortcut: —y =26 — .

3. Mult: xy is easy: wrap around. E.g., 20 x 10 = 200 = 18.
Shortcut to avoid big numbers:

20x10=-6x10=-2%x30=-2x4=-8=18.

4. Division: Next Slide.

Modular Arithmetic: -

is mod 26 for this slide.

% x where 0 < x < 25.

Modular Arithmetic: -

is mod 26 for this slide.
%Exwhere0§x§25.

Pedantic:)1/ is the number such that y X

Modular Arithmetic: -

= is mod 26 for this slide.
%Exwhere0§x§25.
Pedantic:)1/ is the number such that y X

1=0since9x3=27=1.

Modular Arithmetic: -

= is mod 26 for this slide.
%Exwhere0§x§25.

Pedantic:)1/ is the number such that y X
1=0since9x3=27=1.

Shortcut:

Modular Arithmetic: -

= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic:)1/ is the number such that y X
1=0since9x3=27=1.

Shortcut: there is an algorithm that finds % quickly.

11,
y

Modular Arithmetic: -

= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic:)1/ is the number such that y X
3=09since9x3=27=1

Shortcut: there is an algorithm that finds % quickly.
We will NOT study the algorithm later.

11,
y

Modular Arithmetic: -

= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic:)1/ is the number such that y X
3=09since9x3=27=1

Shortcut: there is an algorithm that finds % quickly.
We will NOT study the algorithm later.

11,
y

%Exwher60§x§25.

Modular Arithmetic: -

= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic:)1/ is the number such that y X
3=09since9x3=27=1

Shortcut: there is an algorithm that finds % quickly.
We will NOT study the algorithm later.

11,
y

3 = x where 0 < x < 25. Think about it.

Modular Arithmetic: -

= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic:)1/ is the number such that y X
3=09since9x3=27=1

Shortcut: there is an algorithm that finds % quickly.
We will NOT study the algorithm later.

11,
y

3 = x where 0 < x < 25. Think about it.
No such x exists.

Modular Arithmetic: -

= is mod 26 for this slide.
%EXWhEI’EOSX§25.

Pedantic:)1/ is the number such that y X
3=09since9x3=27=1

Shortcut: there is an algorithm that finds % quickly.
We will NOT study the algorithm later.

11,
y

3 = x where 0 < x < 25. Think about it.

No such x exists.

Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1,3,5,7,9,11,15,17,19, 21, 23,25}

Examples of DFA’s Before Formal Def

We do examples of DFA's before defining them formally.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

{w : #,(w) (mod 2) A #p(w) (mod 3)}

{w : #,(w) (mod 2) A #p(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.

{w : #,(w) (mod 2) A #p(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2), #p(w) (mod 3))

{w : #,(w) (mod 2) A #p(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2), #p(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

{w : #.(w) (mod 2) A #p(w) (mod 3)}

A DFA-classifier does not ACCEPT and REJECT. It classifies.
If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2), #p(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.
On input e, the empty string, goes to state ge.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.
On input a goes to state gs.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.
On input a goes to state gs.

On input b goes to state gp.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.
On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.
On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state g.p.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.
Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.
On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state g.p.

On input abb goes to state q,pp-

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.

Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.

On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state q,p.

On input abb goes to state q,pp-

Since < 5 states two of these go to the same state, say q,, and

qbb-

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.

Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.

On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state q,p.

On input abb goes to state q,pp-

Since < 5 states two of these go to the same state, say q,, and

dbb-
aa - abb goes to state g which must accept since aaabb € L.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.

Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.

On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state g.p.

On input abb goes to state q,pp-

Since < 5 states two of these go to the same state, say q,, and
Qbb-

aa - abb goes to state g which must accept since aaabb € L.
bb - abb goes to state g which accepts. OH, but bbabb ¢ L.
Contradiction.

{w:#,(w) =1 (mod 2) A #p(w) =2 (mod 3)}

Thm Any DFA for the lang has at least 6 states.

Proof Assume DFA M has < 5 states.

On input e, the empty string, goes to state ge.

On input a goes to state gs.

On input b goes to state gp.

On input bb goes to state gpp.

On input ab goes to state g.p.

On input abb goes to state q,pp-

Since < 5 states two of these go to the same state, say q,, and
Abb-

aa - abb goes to state g which must accept since aaabb € L.
bb - abb goes to state g which accepts. OH, but bbabb ¢ L.
Contradiction.

Would need to do this argument with all pairs OR do it in a more
general way. Might be on a HW, MIDTERM, or FINAL.

{w:#.,(w) =0 (mod 8)}

©
-

(Do

o

(-

DFA-Classifier for {w : #,(w) =0 (mod 8)}

L={w:#,(w) =0 (mod 8)}

Thm Any DFA for L has at least 8 states.

L={w:#,(w) =0 (mod 8)}

Thm Any DFA for L has at least 8 states.
Might be on a HW or exam.

Example of DFA: {w : aab < w}

Example of DFA: {w : aab < w}

Example of DFA: {w : w < aab}

Example of DFA: {w : w < aab}

Example of DFA: {aaaaa}

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

On input a end in g;. From here a* gets to an accept.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.
On input a end in g;. From here a* gets to an accept.

On input a° end in g>. From here a® gets to an accept.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.
On input a end in g;. From here a* gets to an accept.
On input a° end in g>. From here a® gets to an accept.

On input a3 end in g3. From here a® gets to an accept.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

On input a end in g;. From here a* gets to an accept.
On input a° end in g>. From here a® gets to an accept.
On input a3 end in g3. From here a® gets to an accept.

On input a* end in g4. From here a® gets to an accept.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

On input a end in g;. From here a* gets to an accept.
On input a° end in g>. From here a® gets to an accept.
On input a3 end in g3. From here a® gets to an accept.
On input a* end in g4. From here a® gets to an accept.

On input a° end in g5 which accepts.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

On input a end in g;. From here a* gets to an accept.
On input a° end in g>. From here a® gets to an accept.
On input a3 end in g3. From here a® gets to an accept.
On input a* end in g4. From here a® gets to an accept.
On input a® end in gs which accepts.

On input a° end in gs.

Number of states: {aaaaa}

The DFA we drew for this had 7 states.
Thm Any DFA for this lang has > 7 states.
Pf Assume there is a DFA with 6 states.

Start state is qp.

On input a end in g;. From here a* gets to an accept.
On input a° end in g>. From here a® gets to an accept.
On input a3 end in g3. From here a® gets to an accept.
On input a* end in g4. From here a® gets to an accept.
On input a® end in gs which accepts.

On input a° end in gs.

Two of g;, gj are the same state. See next slide.

Continuing proof

Assume i < j and g; = g; = q.

Note that i < 5.

Input a’ ends in state g;.

Input & ends in state q;-

a'a®" = a® ends in ACCEPT state.

@2 = a®~' ends in REJECT state since 5+ j — i > 5.
But these strings end in SAME state, so contradiction.

Example of DFA: {bb, aba}

Example of DFA: {bb, aba}

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length < n.

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length < n.

Make the states for strings in L accept states.

Any Finite Set can be recognized by a DFA

Let L be a finite set. Let the longest string in L be of length n.
Draw a DFA with a diff state for every string of length < n.
Make the states for strings in L accept states.

This will take ~ 2" states. For many finite sets can do it with far
fewer states.

DFA Intuitively

1. A DFA reads the input a letter at a time and never looks at it
again. So one-scan.

2. A DFA only has a finite number of states, so O(1) memory.
3. Contrast:

3.1 A DFA can keep track of #,(w) (mod 17).
3.2 A DFA cannot keep track of #,(w).

DFA Formally

Def A DFA is a tuple (Q, X, 0, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. 0: Q x ¥ — Q is the transition function.
4. s € Q is the start state.
5. F C Q is the set of final states.

DFA Formally

Def A DFA is a tuple (Q, X, 0, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. 0: Q x ¥ — Q is the transition function.
4. s € Q is the start state.
5. F C Q is the set of final states.

Def If M is a DFA and x € * then M(x) accepts if when you
run M on x you end up in a final state.

DFA Formally

Def A DFA is a tuple (Q, X, 0, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. 0: Q x ¥ — Q is the transition function.
4. s € Q is the start state.
5. F C Q is the set of final states.

Def If M is a DFA and x € * then M(x) accepts if when you
run M on x you end up in a final state.
Def If M is a DFA then L(M) = {x : M(x) accepts}.

DFA Formally

Def A DFA is a tuple (Q, X, 0, s, F) where:
1. @ is a finite set of states.
2. X is a finite alphabet.
3. 0: Q x ¥ — Q is the transition function.
4. s € Q is the start state.
5. F C Q is the set of final states.

Def If M is a DFA and x € * then M(x) accepts if when you
run M on x you end up in a final state.

Def If M is a DFA then L(M) = {x : M(x) accepts}.

Def Let L C X*. If there exists a DFA M such that L(M) = L then
L is regular.

Can Represent DFA’s as Diagram or Transition
Table

> If it's a particular example and not too many states, like those
drawn a few slides ago, then draw it.

Can Represent DFA’s as Diagram or Transition
Table

> If it's a particular example and not too many states, like those
drawn a few slides ago, then draw it.

» If it is many states or a general case (next slide) then give the
transition table (the definition of ¢).

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

Q={0,....,n—1}x{0,...,m—1}
s =(0,0)

F={(0,0)}

5((i,j),a) = (i +1 (mod n), j).
5((i,j), b) = (i,j+ 1 (mod m)).

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

Q@={0,...,n—1} x{0,...,m—1}

s =(0,0)

F={(0,0)}

3((i,j),a) = (i+1 (mod n),J).

5((i,j), b) = (i,j+ 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a
smaller DFA?

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

Q@={0,...,n—1} x{0,...,m—1}

s =(0,0)

F={(0,0)}

3((i,j),a) = (i+1 (mod n),J).

5((i,j), b) = (i,j+ 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a

smaller DFA?
No.

{w:#,(w) =0 (mod n) A #, =0 (mod m)}

Q@={0,...,n—1} x{0,...,m—1}

s =(0,0)

F={(0,0)}

3((i,j),a) = (i+1 (mod n),J).

5((i,j), b) = (i,j+ 1 (mod m)).

Number of states is nm. Is there a DFA for this lang with a

smaller DFA?
No. We may prove this later in the term.

