Let $\zeta_n = e^{2\pi i/n}$ be a primitive *n*th root of unity and let gcd(k,n) = 1. Then ζ_n^k is also a primitive *n*th root of unity. Therefore, the field $\mathbb{Q}(\zeta_n^k)$ has degree $\phi(n)$ over \mathbb{Q} . Complex conjugation is an automorphism of order 2 and

$$\cos(2\pi k/n) = \frac{1}{2}(\zeta_n^k + \zeta_n^{-k})$$

is fixed by complex conjugation. Therefore, $\mathbb{Q}(\zeta_n^k)$ is degree greater than one over the field $\mathbb{Q}(\cos(2\pi k/n))$. Since ζ_n^k is a root of the quadratic equation

$$X^2 - 2\cos(2\pi k/n)X + 1 = 0,$$

the field $\mathbb{Q}(\zeta_n^k)$ is degree at most 2 over the field $\mathbb{Q}(\cos(2\pi k/n))$, hence of degree exactly 2. Therefore, $\cos(2\pi k/n)$ is algebraic of degree exactly $\phi(n)/2$ over \mathbb{Q} .

Now consider $\cos(\pi a/b)$, where $\gcd(a, b) = 1$. If *a* is odd, rewrite this as $\cos(2\pi a/2b)$, which has degree $\frac{1}{2}\phi(2b)$ over \mathbb{Q} , since $\gcd(a, 2b) = 1$. If *a* is even, let a = 2a' and rewrite as $\cos(2\pi a'/b)$. Since $\gcd(a', b)$ divides $\gcd(a, b) = 1$, we have $\gcd(a', b) = 1$, so the cosine has degree $\frac{1}{2}\phi(b)$ over \mathbb{Q} .

So the final answer is: $\cos(\pi a/b)$ is algebraic of degree $\frac{1}{2}\phi(2b)$ is a is odd and is algebraic of degree $\frac{1}{2}\phi(b)$ when b is even.

Note that if b is odd, then $\phi(2b) = \phi(b)$, so the degree is $\frac{1}{2}\phi(b)$ for both parities of a.

The case of sine is similar, but more complicated. Given n, let n' = lcm(4, n) and let $\zeta = e^{2\pi i/n'}$ be a primitive n'th root of unity. Let gcd(k, n') = 1, so ζ^k is also a primitive n'th root of unity. Then $\sin(2\pi k/n')$ is in $\mathbb{Q}(\zeta)$ and is fixed by complex conjugation, so $\mathbb{Q}(\zeta)$ has degree at least 2 over $\mathbb{Q}(\sin(2\pi k/n'))$. But we have the sequence of fields

$$\mathbb{Q}(\sin(2\pi k/n')) \subset \mathbb{Q}(\sin(2\pi k/n'), i) \subseteq \mathbb{Q}(\zeta).$$

Since *i* is a root of $X^2 + 1 = 0$, the first containment is of degree exactly 2. Since ζ^k is a root of the quadratic equation $X^2 - 2i\sin(2\pi k/n')X + 1$, the second inclusion is of degree 1 or 2.

I believe that the latter degree is 1 when n' is a power of 2 and is 2 otherwise, but I haven't checked this. In any case, we get that $\sin(2\pi k/n')$ is algebraic of degree either $\frac{1}{2}\phi(n')$ or $\frac{1}{4}\phi(n')$. This can be converted to a statement about $\sin(\pi a/b)$.