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 ON CERTAIN CONTRACTION MAPPINGS IN A

 PARTIALLY ORDERED VECTOR SPACE'

 A. C. THOMPSON

 G. Birkhoff [1] and H. Samelson [4] have shown that a means of
 solving problems concerning the existence and uniqueness of eigen-

 vectors of positive operators is given by introducing a suitable metric

 on a subset of the cone with respect to which the operators are con-

 tractions. More specifically, they have proved the Perron theorem for
 matrices with positive elements by intersecting the positive quadrant

 with a hyperplane and by using the Hilbert metric (see, for example,

 [3]) on this section. Birkhoff was able to extend this method (using

 the same metric) to certain positive linear operators in a more gen-

 eral setting. Since the contraction mapping principle is essentially

 nonlinear it seemed likely that this method could be used for a class

 of nonlinear operators. In this paper we use a slightly different dis-

 tance function the domain of definition of which is not restricted to

 such a section of the cone and we obtain a theorem for a class of non-

 linear mappings which contract this metric.

 After giving necessary preliminaries the metric is defined in ?2 and

 the completeness of certain subsets is proved. This is followed by

 a theorem on nonlinear operators and two examples.

 1. Preliminaries. Throughout this paper X will denote a real,

 normed, linear space partially ordered by means of a positive cone K,

 that is to say K is a nonempty, closed subset of X with the following
 properties:

 (i) x,y EK=> x +y EK,

 (1) (ii) x C K, ae > 0 =>ax C K,

 (iii) x C K, -x C K X: x = O

 and we write x<y if and only if y-xGK. K is said to be normal if
 there exists a positive constant y such that 0? x ? y implies that

 llxll <-7IIYII

 LEMMA 1. If K is normal with constant Py then x < Xy, y < Xx, I Ix| | _ m,
 IlYl ?m together imply ||x-y|| <m(1+2-y)(X-1).

 Received by the editors March 28, 1962.
 1 This paper consists of part of the work done for a doctoral thesis at King's Col-

 lege, Newcastle upon Tyne.
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 CONTRACTION MAPPINGS IN A VECTOR SPACE 439

 PROOF. We have x-y?(X-1)y and y-x<(X-l)x hence there
 exist z, z'GK such that

 x-y + z = (X-1)y and y-x + z' =(X -1)x.

 Then

 lZ] -?'y z+z'Hl = Yx- y++y - x+z 'I
 = yII(x - l)y + (X - 1)x
 < 2m7y(X - 1).

 Hence

 I x - Y11 llx - Y + z - Zil
 < llx - y + zll + 11zfl

 < (X - 1)m(1 + 2'y).

 Elements x and y belonging to K but not both zero are said to be
 linked if and only if there exist finite (positive) real numbers X and ju
 with x?Xy and y_,ux. This is an equivalence relation which splits
 K into a set of mutually exclusive constituents (the equivalence
 classes) each of which is a "blunted" sub-cone, i.e., a subset of K
 with the properties (1) except that 0 does not belong and they are
 not closed. In R3, for example, with K taken to be the positive quad-
 rant, the constituents are the interior of K, the interiors of the three
 faces of K and the three edges of K (without the origin).

 2. The definition of an order metric. Let x and y be linked. Define
 a and : by the equations

 a = inf{X:x < Xy}, A= inf{, :y ? /x

 then, since K is closed, x<ay and y<?x so that if either a=O or
 =0 then x = y =0 which is excluded since x and y are linked. Let
 d(x, y) =log{max(a, 3 } .

 LEMMA 2. d( , ) defines a metric on each constituent of K.

 PROOF. That d(x, y) =d(y, x) is evident from the definition. If both
 x?y and y<x then, by property (1) (iii) of K, x=y so that, if x#y,
 either a or A is strictly greater than 1. Thus d (x, y) 0_ and d (x, y) = 0
 if and only if x = y. Finally, suppose x, y and z belong to a constituent
 and

 x-<?aly, y?<:1x
 x ? a2Z, z < :2X

 z ? a 3y, y?< 33Z
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 440 A. C. THOMPSON [June

 where ai, fL are the infima of all scalars satisfying the respective in-

 equalities. Then, if a,>_3i,

 d(x, y) = log al ? log(a2a3) = log a2 + log a3

 < log { max(a2, 32) } + log{ max(a3, /3) }

 = d(x, z) + d(z, y)

 and similarly if 3 ?>al.
 Note that in [ 1] and [4] the metric is defined on the intersection of

 K with a hyperplane and is, in fact, d'(x, y) = log(o3) which is equiva-
 lent to the above metric on such a section but does not define a metric
 on a constituent because d'(x, y) = 0 when x =Xy. We observe, also,
 that this construction only requires that K be closed in some linear
 topology.

 LEMMA 3. Let K be a normal cone which is complete in the norm

 topology, then each constituent, C, is complete with respect to d(, ).

 PROOF. Let { x, } be a sequence in C which is Cauchy with respect
 to d( , ) and let a,pq=inf{X: xp<Xxq} (p, q= 1, 2, * * * ). It is proved
 first that {Ix1 } is bounded in norm, secondly that it is a Cauchy se-
 quence in norm and therefore converges to an element uGK, and
 thirdly that the sequence converges to u in the metric and that u CC.

 (i) Since {xj} is a Cauchy sequence there exists N such that
 d (xp, xq) < 1 for all p, q > N i.e., max(apq, acq,) <exp (1) (p, q > N). In
 particular a,pN<exp (1) (p> N) so that xp<exp (1) XN?3XN. So,
 since K is normal, jx|pl,< 3'yjjXNjj. Thus t|xnII } is bounded by m
 where

 m = max{IIxl||, * IIXNH, 3,1y XN } .

 (ii) Given e >O there exists a >0, depending on E, such that

 exp(5)<1+((e/M) where M=m(1+2,y). Again because {1x4 is a
 Cauchy sequence there exists Ne such that

 d(xp, x,) < 5 (p, q >

 i.e., max(apq, acp) <1+(e/M). Thus xp _ (l+(E/M))xq and xq
 < (1 + (e/M))xp and so, by Lemma 1,

 ||xp - Xq|| < m(l + 2-y)(1 + (e/M) - 1) = e (p, q > NE).

 Hence {Ix1 } is a Cauchy sequence in norm and, since K is complete,
 there exists an element uCK such that lim,_. IIx'-uII =O.
 t (iii) As before, d(xp, xq) <E for all sufficiently large p and q, i.e.,
 xp?exp(E)xq and xq?exp(E)xp.
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 1963] CONTRACTION MAPPINGS IN A VECTOR SPACE 441

 But limqI I Ixq-uI =0 and K is closed in the norm topology there-
 fore

 xp ? exp(E)u and u < exp(c)xp

 for all sufficiently large p. This implies that uCC (it is linked with
 xp) and that d(xp, u) _ E for all large p but since e is chosen arbi-
 trarily this is the same as saying that xn } converges to u with re-
 spect to the metric.

 REMARKS. 1. X itself need not be complete. 2. This lemma and,
 consequently, the following theorem are true also for locally convex
 spaces when "normal" is given a suitable meaning. If X is a vector
 space with a locally convex topology generated by a system of semi-
 norms { pa } K is said to be normal if, for each a, there exists a positive
 real number -yz such that 0 ? x ? y implies pa(x) _ 'y,pa(y). See Bonsall
 [2] and also Schaefer [5]. Then the lemma is proved by replacing

 11 11 by pa(S) everywhere and "norm topology" by "locally convex
 topology. "

 3. Contraction mapping.

 THEOREM. Let K be a complete, normal cone and let T be a mapping
 of X into itself with the properties:

 (i) there exists p with 0 _p < 1 such that x, yCGK, x?<eay and y ?,Bx
 together imply Tx ?a'Ty and Ty _,B'Tx with max (a', d') ? max(aP, 3P),

 (ii) there exists an xo such that xo and Txo are linked.
 Then there exists a vector u belonging to the constituent containing xO

 such that Tu = u and this u is unique in that constituent. Moreover, the
 iterative sequence defined by xn = Tx.-, (n = 1, 2, * * * ) converges in
 norm to u.

 PROOF. Let C be the constituent containing xo, then T(C) C C. For,
 let yCC, then xo and y are linked and hence, by property (i), so are
 Txo and Ty, and therefore xo and Ty are linked (by property (ii)
 and the transitivity of the equivalence relation). This means that
 TyCC and shows, incidentally, that if (ii) is satisfied by one xo it is
 satisfied by all points in that constituent.

 Evidently, from property (i), T is a contraction of C with respect
 to d( , ) and C is complete in this metric by Lemma 3 so that the
 existence of a unique fixed point u in C follows from the contraction
 mapping principle. The fact that { x, } converges in norm follows from
 the fact that it is Cauchy in the metric and hence Cauchy in norm
 (from the proof of Lemma 3).

 COROLLARY. Suppose X>0, then there exists ux C C (which is unique
 in C) such that Tux = Xux.
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 442 A. C. THOMPSON [June

 PROOF. Apply the theorem to the operator Tx=X-'T.
 REMARKS. 1. The vector u belongs to C and, therefore, is not zero.
 2. With the hypotheses of the theorem it is possible to prove with-

 out any overt appeal to the subsidiary metric that x , } is Cauchy in
 norm, that its limit, u, is a fixed point of T and that this u is unique

 in the constituent containing xo. However, the proof is, in effect, the
 proof of the contraction mapping principle.

 3. Condition (i) on T can be replaced by the slightly more restric-
 tive but perhaps more natural criterion.

 (i)' There exists p with O? p < 1 such that x E K and x ay==>Tx
 _ aP Ty.

 4. It is not necessary to suppose that T is positive (i.e., that it
 maps K into itself) though, as has been seen, the assumptions do
 imply that T maps any constituent of K which contains an xo with
 property (ii) into itself.

 5. (ii) is satisfied if, for example, some order unit e is mapped into
 an order unit e'.

 6. The case p = 1 is critical for this method, and, in general, extra
 conditions are needed to obtain results; this is true, in particular,
 for linear operators which map K into itself. For example, Samelson's

 method, [4], will extend to infinite dimensional spaces if a restricted
 compactness condition is imposed on the operator while Birkhoff
 supposes in addition that T is "uniformly positive" which condition

 is sufficient to prove that an operator related to T is a contraction
 with respect to the metric d'(, ) mentioned above.

 4. Examples.

 1. Let X be the space C[O, 1] of continuous, real-valued functions
 on the unit interval and let T be defined by the equation,

 (Tf)(x) Lk(x, y, I f(y) I )dy (O < x < 1)

 where k(x, y, z) is a real-valued function of three variables which is a
 continuous function of (x, y, z)z [0, 1]2X [0, oo) and which has the
 properties:

 (a) k(x, y, z1) <k(x, y, Z2) for 0<z1< Z2 and all x, ye [0, 1];
 (O) there exists p with 0 _p <1 and k(x, y, az) _oaPk(x, y, z);

 ('y) f,k(x, y, 1)dy > O for all x C[O, 1 ].
 For example, let k(x, y, z) be of the form

 n

 E k7(x, y) zPr
 r=l

This content downloaded from 
�������������128.8.127.150 on Fri, 17 Jan 2025 23:06:36 UTC������������� 

All use subject to https://about.jstor.org/terms



 i963] CONTRACTION MAPPINGS IN A VECTOR SPACE 443

 where kr(x, y) are non-negative, continuous functions of x and y and
 0? P, <1 (r =1, , n). Then (a) and (3) together imply that T
 has property (i)' while (-y) ensures that the unit function is linked

 with its image under T. Thus the theorem is applicable to such an

 operator and there is a unique everywhere positive function which is

 a fixed point of T.

 2. With the same space X and with the same notation as in exam-

 ple 1, let p be an arbitrary positive number, then Tq defined by

 (Tqf) (x) = { (Tf) (x) } 1 /I (q > p)

 has properties (i)' and (ii) and hence there exists a function ug,
 everywhere positive, such that Tquq uq or

 (Tuq)(X) = {uq(X)}I (x E [0, 1]) (all q > p).
 I wish to thank Professor F. F. Bonsall for his help and encourage-

 ment in the preparation of this paper.
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