
Multiphono: Relative Positioning of Co-located Mobile
Devices

Adam O'Sullivan
Department of Computer Science

A.V. William Building
University of Maryland

College Park, MD 20742, USA
adamo@cs.umd.edu

ABSTRACT
Mobile devices continue to become increasingly common
in our daily lives, and many individuals carry a mobile
device most of the time. This leads to situations where
multiple co-located mobile devices are present. We view
these situations as an opportunity for new types of
interactions with mobile devices. Currently, determining
relative positioning information regarding two co-located
devices is a difficult task, and many solutions require the
use of specialized hardware or existing external
infrastructure to function. There are many potential
applications that could make use of relative positioning
information, if it were easily accessible using hardware
already included with mobile devices.

In this paper, we present Multiphono, a mobile application
that utilizes front-facing cameras and wireless
communication on mobile devices to enable the
determination and communication of relative positioning
information. The cameras capture images of the ceiling or
scene above the devices, after which the images are
transferred between the devices and then stitched together.
From this process, the relative positions of the two devices
can be determined. We developed a proof-of-concept
implementation, which demonstrates that this technology
works well when the devices are in close proximity, and
could be refined to function in other situations.

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Collaborative
Computing

General Terms
Human Factors; Design.

INTRODUCTION
Mobile devices are becoming ubiquitous in our daily lives.
It is very common for an individual to carry at least one

mobile device, often a mobile phone, much of the time. As
such, it is likely that multiple co-located individuals will
each have a mobile device. Situations such as these have
helped increase the popularity of many mobile applications.
For example: photo sharing, contact sharing, music
sharing, collaborative gaming, and instant messaging are all
useful applications in this context. Given their multi-user
nature, many of these applications utilize some form of
wireless communication for interaction. Applications of
this type are likely to continue to increase in popularity.

While keyboards and keypads (whether implemented with
physical buttons or on a touch screen) are still some of the
more typical forms of interaction, several other features are
becoming more common in commodity mobile devices. A
few examples include these additional types of sensors:
cameras, gyroscopes, accelerometers, and Global
Positioning System (GPS) receivers. These new types of
sensors provide opportunities for alternative forms of
interaction.

Location information can be extremely important on mobile
devices in a variety of situations. The aforementioned GPS
receivers can determine a device's approximate absolute
position in the world. However, there are many
applications where a given device's position relative to
other devices is even more useful. A few examples include:
gesturing (for a variety of purposes), pairing devices,
gaming, and sharing or displaying data objects.

Even with these types of additional sensors, it is non-trivial
to determine the relative positioning of two co-located
mobile devices. However, through the use of some of these
sensors, we can get a much closer fix on the relative
positioning.

This raises the primary question addressed in this paper:
How can the relative position of co-located devices be
determined? We define the problem as follows: two
devices located near each other need to know their own
location and orientation with respect to the location and
orientation of the other device. As previously mentioned,
determining the relative positioning of two devices is
difficult using only the hardware found in modern mobile
devices. Specialized hardware, such as in the ultrasonic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

"Bat" location sensor system's [20] use of ceiling mounted
receivers in combination with pulse emitting mobile
devices, can make this task easier, but often has a high cost
and may require an installed external infrastructure to
function. Another example of this type of external
infrastructure makes use of mounted cameras, computer
vision, and geometric world modeling, as described in the
EasyLiving project in [20]. Moreover, specialized
hardware for the purpose of interacting with these types of
systems, is not commonly found in mobile devices today.
These factors make using specialized hardware impractical
for this task. Additionally, absolute location information
provided by common existing systems (e.g. GPS, Wi-Fi)
generally lacks the precision necessary to determine the
relative positioning of co-located devices.

In this paper, we explore the idea of using hardware
commonly found in modern mobile devices to determine
relative positioning information between two co-located
mobile devices. We examine a proof-of-concept type
implementation and view this technology as a building
block that can be used to create some unique and interesting
applications. We will briefly discuss several possible
scenarios / examples that would particularly benefit from
this technology:

Information exchange - Transferring an image or some
other data object (document, contact information, etc.) from
one device to another could be made much simpler,
requiring very little configuration. For example: Use a
flick gesture on an image on a device (A) to transfer it to
another device (B), which is located in the relative direction
of the flick. This use is somewhat similar to that described
for photo sharing in [16].

Creating a large display from many smaller devices -
(similar to the Junkyard Jumbotron [17] and display tiling
[16] systems). This is accomplished by placing several
mobile devices together on a surface, then displaying an
image using the combination of all the devices' displays.
This would use the relative position of the devices to
determine which portion of the image to display on which
device.

Augmented Reality - The mobile device could display a
live video stream to the user, with overlays marking the
locations of other co-located devices. This information
would be determined using the relative positioning
information of the devices. This could be used to identify
both devices and potentially the users of said devices.

Gaming - Games could utilize the relative location of
multiple devices to extend the gaming area. For example,
one could create a large pong playing area using multiple
devices. Another example would be to create a racing
game with a track or map that spans multiple devices.
Sifteo cubes [15] can run some games that demonstrate this
concept using specialized hardware.

Interacting with a larger display - A user could interact with
a larger touch surface / display using his or her own smaller
mobile device. The relative position could be used to
determine which device touched or gestured toward the
larger display. Much research has been done in this area,
and relative positioning information could augment the
systems described in [1, 3, 5, 9, 10].

Pairing - Being aware of the relative position of devices
enables users' devices to know the location of other nearby
devices. This can enable an easy means of pairing two
devices for a game or other data transfer (e.g. Bluetooth
pairing). Users could hold the two devices next to each
other for a few seconds to pair. This would be particularly
useful, because as Lucero et al. [16] observed, unless users
can spontaneously join a group / start interacting with
others quickly, they may lose interest. Relative positioning
information would make joining a group and connecting
with other devices a very quick and simple process.

RELATED WORK
In this section, we examine some significant research that is
related to this work in a variety of ways. Some of these
projects are similar in their objectives and goals, while
others utilize relevant technologies. Many of these systems
could be enhanced if the devices involved had access to
their relative positioning information.

PhoneTouch [1] is a system that allows for interaction with
a touch table surface, using touches from a mobile device,
along with traditional finger touches. The mobile devices
and touch table surface use wireless communication in
combination with accelerometers to determine when a
mobile device touches the interactive surface. The devices
synchronize their clocks in an initial calibration phase,
thereby allowing touch events received by the touch table
surface to be corroborated with the mobile device sensor
data (e.g. a sharp spike detected by the accelerometer) to
determine when a specific mobile device touches the
surface (this is used to distinguish between multiple mobile
devices). This is an interesting example of how to use
accelerometers in combination with wireless
communication to facilitate interaction between co-located
devices.

Bump [13] is a smart phone application that allows users of
two mobile devices to transfer contact information or other
files by physically bumping their devices together. Each of
the bumped mobile devices record a variety of sensor data
(e.g. accelerometer, gyroscope, GPS / location
information), which is then sent to the central Bump servers
on the Internet. The Bump servers analyze the sensor data
and use it to match the two mobile devices, by determining
which two devices were involved in the same physical
bump. Once the devices have been matched, the
information is then transferred from one device to the other
via the Internet. This technology is a very effective

example of using sensor data and wireless connectivity to
allow devices to communicate and transfer data without
going through a complicated configuration or pairing
process.

The ConnecTable [2] system enables the coupling of single
user displays to form a larger display area and shared
workspace. A ConnecTable is an adjustable, pen-operated
display, mounted on a base with wheels. ConnecTables can
be couple dynamically and on demand. Coupling is
accomplished using built-in RFID tags (and corresponding
readers) to detect nearby devices. When connected,
information objects can be moved from one display to
another in the common workspace. These concepts, such as
dynamically coupling displays, can be applied to mobile
devices without the use of specialized hardware, if the
devices are aware of their relative positioning.

Sifteo cubes [15] are an interactive gaming system,
comprised of 1.5 inch blocks, each featuring a clickable
color screen, mobile CPU, accelerometer, wireless
communication, and a near-field object detecting sensor.
These blocks interact with each other based on their
position relative to other blocks. Users interact with the
blocks by clicking the screens, shaking or tilting the blocks,
and arranging the blocks next to each other. Sifteo cubes
are used for a variety of different types of games, making
use of their specialized hardware for this purpose. Some
example games involve building out a map of a virtual
world using multiple cubes, transferring objects between
cubes, using cubes to simulate real objects (e.g. turning a
key, opening a treasure chest), and so on. Sifteo cubes
demonstrate many interesting applications and features that
make use of relative positioning information. However,
they are clearly specialized hardware, made specifically for
this purpose. With Multiphono, we are trying to
accomplish many similar features, using commonly found
mobile devices instead.

Junkyard Jumbotron [17] is a system that allows a user to
create a large display by combining several smaller displays
(such as those found on laptops, smart phones, or tablets).
Once the devices / displays have been positioned, each one
visits a certain URL, which displays a unique visual code.
The user then photographs the displays while they are
showing these visual codes, and sends the photograph to a
certain email address, where it is processed. The software
then determines the relative positioning of each of these
devices by looking at where each unique visual code is
displayed in the image taken by the user. The displays are
then updated with their respective portions of a larger
image, thereby creating a larger display from several
smaller devices. Similarly, Lucero et al. [16] describe a
system of tiling devices to display a composite larger
version of an image. This system, however, is based on
placing the devices in a pre-determined configuration, with
the edges of each device being flush. In both of these
systems, multiple devices are combined to form a larger

display. If these devices were aware of their relative
positioning information in real time, they would be simple
to configure, and could be rearranged dynamically without
further configuration steps. This could lead to a wide
variety of unique applications.

The Swordfish [3] framework allows for user tailored
workspaces in Multi Display Environments (MDEs). User
defined connections (referred to as "lightweight personal
bindings") are made from the edge of one display to
another. These personal bindings can be created and
modified quickly and easily, thereby allowing users to
define workspaces according to their preferences. This
system allows multiple users to have individual functional
mouse pointers on the same display, simultaneously (with
some limitations relating to the operating system).
However, if the devices had their relative positioning
information, the creation of these personal bindings could
be completely automated, and allow users to quickly join
and interact with an MDE.

In this work, User-Defined Gestures for Connecting Mobile
Phones, Public Displays, and Tabletops [4], the authors
investigated whether gesturing with a mobile phone can
help users perform complex tasks involving two devices
(phone to phone, phone to tabletop, phone to public
display). This work focused primarily on the types of
gestures performed by participants, along with their
feedback. This data is used to discuss which sensors are
best used for gesture recognition in a phone. The authors
found that for the majority of gestures they observed,
relative distance from the mobile phone to the target device
changed. Thus, recognizing such gestures requires sensors
that can estimate the relative distance between said devices.
Additionally, they found that many gestures relied on
location changes, which could be detected using
accelerometers. Changes in rotation were also common,
and can be detected with accelerometers, gyroscopes, and
magnetometers. Absolute positioning in space was used in
some gestures, and is often difficult to determine precisely
in real time. One could use camera based techniques with
natural features or special markers in this case. Gesturing
could be an even more effective interaction technique if the
mobile devices involved (e.g. device gestured with, device
gestured toward) were aware of their relative positions

The RELATE [5] model is designed for spontaneous
interaction between mobile devices and services available
in the user's environment using "spatial references." This is
based on the spatial relationship of a user's device to other
nearby devices (e.g. those providing services). The authors
used specialized hardware for exchanging ultrasound and
radio signals between devices (Near Field Communication
(NFC), beacons / tags). These signals were used to infer
the relative spatial relationship among devices. The signals
were then used to display the relative locations on the user's
mobile device GUI (e.g. a device in front of a person would
appear in some form at the top of the screen on the mobile

device -- with the relative positions on the screen updating
as the device is moved). Despite its reliance on specialized
hardware, this system demonstrates how useful relative
positioning information can be.

BeepBeep [6] is a high accuracy acoustic range sensing
system that has two devices each send and receive sounds
to infer the distance between them. This is accomplished
using only low-cost hardware that is commonly available
on mobile devices -- microphones and speakers. BeepBeep
can achieve an average accuracy within two centimeters
over a range of more than ten meters. Point&Connect [7] is
a system based on the work from BeepBeep. It is an
intention based device pairing system that is also possible
on typical mobile devices without requiring specialized
hardware. To pair one's phone with another nearby device
in this system, one must perform the gesture of pointing the
phone in the direction of the target. The system will receive
the gesture, select the correct target, and pair the devices.
This target selection is accomplished by measuring the
maximum distance change based on acoustic signals. In
other words, the device at which the user is pointing should
report the largest relative distance change between two
emitted beeps (early and late in during pointing gesture).
This system makes good use of the existing hardware on
commodity devices to determine some positioning
information. However, this approach is limited in that
while it can determine the distances between devices, it
cannot determine their relative positioning.

In the Gesture Connect [8] system, the authors combine the
use of NFC tagging with a 3 axis accelerometer for gestures
in order to easily connect to and control objects from a
user's mobile device. The general idea is simply scan the
NFC tag, then use the mobile device to either perform a
gesture for common or simple tasks, or use the on screen
interface to interact. The goal is to streamline interaction
with objects using an individual's mobile device. This work
demonstrates the integration of commodity sensor data
(NFC and accelerometer) to perform tasks.

The ARC-pad [9] system supports controlling a large screen
using a mobile device's touch screen. This is facilitated by
simultaneous use of absolute and relative positioning,
without any explicit mode switching -- pointing / touching
the screen for absolute positioning of the cursor, or sliding /
swiping for relative positioning of the cursor. Generally,
users will utilize absolute positioning for rapid movement
across large distances and relative positioning for more fine
position control. This approach could be applied in a
variety of scenarios involving co-located devices.

Wallshare [10] is a client server system based on a "shared
zone," that is projected on a wall or large screen.
Participants can interact with the shared zone using a
mobile client application running on a mobile device. Each
user gets his or her own pointer on the shared zone. Users
can transfer files to and from the shared zone. When a new
resource is uploaded, it appears on the shared zone. To

download a resource, users simply double click the resource
in the shared zone using the client application.
Additionally, users can post chat messages or notes to the
shared zone. The server piece is made up of two
components: resource sharing and zone visualization. This
project has uses in many areas, such as entertainment,
games, science, and education. The concept of a shared
zone is well suited to situations involving co-located users
with mobile devices and could be extended to utilize the
relative positioning information of users' devices.

The Matrix Desk [11] is a device which is designed to
address three problems in a collaborative learning
environment: The "screen sharing problem," the "desk
configuration problem," and the "input identification
problem." The device is an embedded computer with a
large desktop surface display, which can receive input from
a digital pen. Each desk is equipped with wheels to
facilitate connecting and arranging. Students have digital
pens with unique electromagnetic identifiers which the
displays can identify (solving the input identification
problem). There are sensors on the sides of each Matrix
Desk, along with RFID to facilitate connecting desks.
These are used to determine when desks are attached and
how they are connected (e.g. on which sides). The
embedded computers communicate with a centralized
server for some tasks including organizing the connected
desks / analyzing the layout of the shared workspace for the
best viewing experience as well as for transferring data
objects. Connected desks can take a variety of
predetermined shapes, however any two connected sides
must be flush. Connected desks can form a square,
rectangle, T, L, or U type shapes. This concept can easily
be extended to mobile devices that are aware of their
relative positioning. In fact, connected mobile devices
could be aligned in any arrangement, and would not be
limited to predetermined patterns. Also, additional relative
positioning information could help address the three
problems discussed by the authors in this work.

GOALS
In exploring the concept of determining the relative position
of two mobile devices, we set the following goals:

 Be able to determine a device's relative position with
respect to another device

 Make use of hardware commonly found in smart phones

 Do not require any specialized hardware or installed
infrastructure

TECHNICAL APPROACH
In this section, we will discuss our experiences in
investigating, designing, and testing our ideas while trying
to achieve our goals.

When we began our investigation, we quickly ruled out the
idea of using specialized hardware, as it is impractical,
unlikely to be included on commodity devices, oftentimes
expensive, and may require an installed external
infrastructure to function. Instead, we wanted to develop a
system that would make use of hardware that is already
commonly found on devices today. We considered the
sensors we would likely have access to on a smart phone:
microphones, accelerometers, gyroscopes, GPS receivers,
cameras, and Wi-Fi.

An initial examination of using absolute location
information as provided by common existing sensors (e.g.
GPS, Wi-Fi) showed that the positioning information
lacked the precision required to determine relative
positioning of co-located devices. Next, we considered
using accelerometers and gyroscopes to calculate dead
reckoning / inertial positioning -- essentially to start with
the two devices in a known position (e.g. next to each
other), then track their movement in relation to that initial
position using accelerometers and gyroscopes (e.g. the
device has moved 1 meter in the X direction, and 2 meters
in the Y direction). Using that information, we could then
determine the relative positioning of the two devices.

We began testing an initial implementation of the dead
reckoning / inertial navigation approach in a very simple
case: two devices moving in only two dimensions, on a flat
surface. Unfortunately, we found that this approach was far
too imprecise at the scale in which we were interested. The
accelerometers and gyroscopes generated a great deal of
noise in the sensor data, which made it difficult to identify
small movements. Moreover, significant error accumulated
very quickly. This testing indicated that the dead reckoning
/ inertial navigation approach was unlikely to work for what
we were trying to accomplish.

Additionally, we considered using the device's microphone
to determine relative location. However, since most
devices only have one microphone, we would generally
only be able to determine the distance between two devices,
not the direction, and thus not their relative positioning.

This lead us to investigate the use of cameras and image
processing for determining relative positioning information.
We decided to approach the problem using the front-facing
cameras on mobile devices to take images of the ceiling or
scene directly above each device. The devices would then
transmit their respective images to each other, and perform
something along the lines of image stitching [18]. This
computation is used to understand how the images are
positioned in relation to each other. Using this information,
we have a good idea of where the cameras, and thus the
devices, are positioned relative to each other. Our initial
tests were promising, and lead us to improve our approach
and implementation.

Figure 1. Sample images to demonstrate the image
stitching process. (a) The original sample images. (b)

The sample images with features having been detected in
both images and matched with the their respective

counterparts in the other image (matching features are
connected between the images using thin white lines.) (c)

The final image, where one image has been warped to
match the other, and then one image is overlaid on the
other. The thin white line connects the center points of

both images, prior to any warping. Starting from image
1, following this line takes you in the direction of image 2

in relation to image 1.

IMPLEMENTATION
Multiphono is implemented as a mobile application on the
iOS operating system. It utilizes Wi-Fi for communication
between devices and the OpenCV [12] library for image
processing. We used two Apple iPod Touch (4th
generation) devices for our test implementation.

When the Multiphono application is first launched, it uses
Apple's Bonjour [19] protocol to attempt to discover and
locate another device running Multiphono. Once the other
device has been located, a socket connection is established
between the applications, making use of the
GCDAsyncSocket library [25]. The applications then begin
regularly capturing images from their respective devices'

front-facing cameras, by making use of Apple's
AVFoundation [22], CoreVideo [23], and CoreMedia [24]
frameworks to create an AVCaptureSession and interface
directly with the camera. Next, the each application will
store its captured image in memory and transmit it across
the socket connection to the other device. Each device will
then have a copy of both images (this is represented in
Figure 1a.). When the application receives an image from
the connection, it begins using OpenCV [12] for image
processing. It uses the OpenCV implementation of SURF
(Speeded Up Robust Features) [14] to calculate and extract
feature points (via the cvExtractSURF(...) function) from
both the local image and the received image. These feature
points are generally specific areas in the image, such as
edges or points that make up objects in the image.

The next step is to match the feature points from one image
to another. This is accomplished using a simple nearest
neighbor search (though other algorithms can be applied
here as well) (This is represented in Figure 1b. The
matched features are connected using a thin white line. The
features are located at the endpoints of each line).

Once the feature points have been matched, we compute a
transform (from one image to the other) called a
homography. This homography transform maps straight
lines to straight lines. The homography is computed using
the RANSAC [26] (Random Sample Consensus) algorithm
(through the use of the OpenCV cvFindHomography(...)
function).

This homography relates the pixel coordinates in image 1
and image 2. When the homography matrix is applied to
every pixel to image 2, image 2 becomes warped to fit
image 1. This is represented in Figure 1c. Image 2 has been
warped to fit image 1, and is then overlaid and blended with
image 1. In this example, a white line is drawn from the
center of image 1 to the center of image 2 (before it was
warped). This points us in the direction of image 2 as it
relates to image 1, starting from the center of image 1. We
can use this data to determine the relative location of each
camera, which in turn tells us the relative location of each
device (as the cameras are built in to the devices). This
image stitching type process is described in further detail in
[18]. A full working example of this type of code is
distributed as a sample with OpenCV (in find_obj.cpp).

Currently, the Multiphono user interface simply displays
the stitched together images (with the most recent locally
captured image at the center, and the received image
transformed according to the homography matrix and
overlaid with the local image). Additionally, a line is
drawn in the computed direction of the device which sent
the image (as seen in Figure 1c). This is simply to facilitate
the testing and investigation of this technology. Many
types of applications can be built on top of this framework.

Figure 2. The testing position layout for the two devices.
One device was always placed at the base (B) position,

while the other was placed in one of the numbered
positions.

Figure 3. An image of the ceiling / area above the devices,
as was visible during the evaluation. The devices were
tested on a table that was partially underneath a glass

shelf (pictured from the devices' perspective).

EVALUATION
The primary test involved running Multiphono on two
devices, each placed in one of a set number of positions,
one device always being placed in the base (B) position,
and the other in one of the numbered positions (see Figure
2). The ceiling (pictured in Figure 3) was approximately 1
meter above the table surface on which the devices were
placed. For each set of positions, we tested Multiphono for
one minute. At each second mark during the testing

minute, we recorded whether the application running on the
device in the base (B) position had correctly determined its
position relative to the other device. If the application drew
a line pointed in the correct direction of the other device
(within 30 degrees of the other device's center), we
recorded a success, otherwise we recorded a failure for that
second. We performed this test at each set of positions
three times, and averaged the results. Table 1 shows the
results for each set of positions.

Positions % of Minute Successful

B, 1 87.22%

B, 2 78.33%

B, 3 70.0%

B, 4 38.33%

B, 5 48.33%

B, 6 < 10.0%1

Table 1. Shows the average percentage of each minute
that the base device successfully determined its position,

relative to the other device. (1 in this particular
condition, the software did not perform well, and was

difficult to measure consistently)

Examination of the results show a clear trend: The
closeness of the two devices is correlated with their success
at determining relative positioning. We believe this is
because the closer the devices are together, the closer their
cameras are, which leads to the images they capture being
more similar (in the sense that they capture many of the
same parts of the scene from only slightly different
perspectives), and thus easier to stitch together.

Additionally, we tested Multiphono in a variety of other
ways (though in a less formal manner). Some of the other
tests included moving the devices around each other as well
as rotating the devices to various angles in real time and
verifying that the devices updated correctly with respect to
their relative positions. Throughout this testing, we found
the previously mentioned trend to be true as well. A
device's success at determining relative positioning is
correlated with its closeness to the other device in our
implementation.

FUTURE WORK
While we have discussed the strengths and limitations of
our Multiphono implementation, it is clear that additional
work needs to be done before this technology is fully
realized. Many of the potential areas for improvement are
closely related. One improvement would be to capture
higher resolution images from the front-facing cameras on
the mobile devices. This would allow for more accurate
matching and image stitching. However, processing higher
resolution images would require a more powerful CPU.
Moreover, a faster CPU would allow developers to build
complex applications on top of this technology. In our
implementation, the CPU is occupied by the real time
image processing that is taking place, leaving very little
processing ability for applications running simultaneously.
Significantly more powerful mobile processors will likely
become a reality, though, as mobile processors continue to
improve (both in terms of speed and number of cores).

Another potential area for improvement would be for the
application to utilize the GPU for processing the images, as
opposed to simply using the main CPU. This would also
likely allow for faster image processing, as well as the
processing of higher resolution images.

Additionally, it may be possible to incorporate sensor data
from sensors other than the front-facing camera.
Accelerometer and gyroscope data may be used to enhance
the application's model of the situation and enable a more
accurate determination of relative positioning. Integration
of sensor data could also lead to a variety of forms of
interaction as well.

As discussed in the introduction, a wide variety of
applications could be made possible by or benefit from the
use of this technology.

CONCLUSION
We presented Multiphono, an application which
demonstrates that the relative positioning of two devices
can be determined using the devices' front-facing cameras.
We described our proof-of-concept implementation, and an
initial evaluation of the accuracy and effectiveness of this
technology. Multiphono meets the three goals we set out to
accomplish and can be used as a building block for new
types of applications. This implementation indicates that
while more work is needed, this technology could work
very well for determining the relative positioning of co-
located mobile devices in a variety of contexts.

REFERENCES
1. Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, and

Hans Gellersen. 2010. PhoneTouch: a technique for
direct phone interaction on surfaces. In Proceedings of
the 23nd annual ACM symposium on User interface
software and technology (UIST '10). ACM, New York,
NY, USA, 13-16.

2. Peter Tandler, Thorsten Prante, Christian Müller-
Tomfelde, Norbert Streitz, and Ralf Steinmetz. 2001.
Connectables: dynamic coupling of displays for the
flexible creation of shared workspaces. In Proceedings
of the 14th annual ACM symposium on User interface
software and technology (UIST '01). ACM, New York,
NY, USA, 11-20.

3. Vicki Ha, Kori Inkpen, Jim Wallace, and Ryder Ziola.
2006. Swordfish: user tailored workspaces in multi-
display environments. In CHI '06 extended abstracts on
Human factors in computing systems (CHI EA '06).
ACM, New York, NY, USA, 1487-1492.

4. Christian Kray, Daniel Nesbitt, John Dawson, and
Michael Rohs. 2010. User-defined gestures for
connecting mobile phones, public displays, and
tabletops. In Proceedings of the 12th international
conference on Human computer interaction with mobile
devices and services (MobileHCI '10). ACM, New
York, NY, USA, 239-248.

5. Hans Gellersen, Carl Fischer, Dominique Guinard,
Roswitha Gostner, Gerd Kortuem, Christian Kray,
Enrico Rukzio, and Sara Streng. 2009. Supporting
device discovery and spontaneous interaction with
spatial references. Personal Ubiquitous Comput. 13, 4
(May 2009), 255-264

6. Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin
Li, and Kun Tan. 2007. BeepBeep: a high accuracy
acoustic ranging system using COTS mobile devices. In
Proceedings of the 5th international conference on
Embedded networked sensor systems (SenSys '07).
ACM, New York, NY, USA, 1-14.

7. Chunyi Peng, Guobin Shen, Yongguang Zhang, and
Songwu Lu. 2009. Point&Connect: intention-based
device pairing for mobile phone users. In Proceedings of
the 7th international conference on Mobile systems,
applications, and services (MobiSys '09). ACM, New
York, NY, USA, 137-150.

8. Trevor Pering, Yaw Anokwa, and Roy Want. 2007.
Gesture connect: facilitating tangible interaction with a
flick of the wrist. In Proceedings of the 1st international
conference on Tangible and embedded interaction (TEI
'07). ACM, New York, NY, USA, 259-262.

9. David C. McCallum and Pourang Irani. 2009. ARC-Pad:
absolute+relative cursor positioning for large displays
with a mobile touchscreen. In Proceedings of the 22nd
annual ACM symposium on User interface software and

technology (UIST '09). ACM, New York, NY, USA,
153-156.

10.Pedro Gonzalez Villanueva, Ricardo Tesoriero, and Jose
A. Gallud. 2010. Multi-pointer and collaborative system
for mobile devices. In Proceedings of the 12th
international conference on Human computer interaction
with mobile devices and services (MobileHCI '10).
ACM, New York, NY, USA, 435-438.

11.Hercy N. H. Cheng, Yi-Chan Deng, Ben Chang, and
Tak-Wai Chan. 2005. MatrixDesks: interactive
computing desks toward one-on-two educational
computing environments. In Proceedings of th 2005
conference on Computer support for collaborative
learning: learning 2005: the next 10 years! (CSCL '05).
International Society of the Learning Sciences 48-52.

12.OpenCV. http://code.opencv.org/projects/opencv/wiki,
April 2013.

13.bump: The easiest way to share.
http://bu.mp/company/, April 2013.

14.Herbert Bay, Tinne Tuytelaars, and Luc Van Gool12.
SURF: Speeded Up Robust Features. Computer Vision
– ECCV 2006, pages 404–417.

15.David Merrill, Emily Sun, and Jeevan Kalanithi. 2012.
Sifteo cubes. In CHI '12 Extended Abstracts on Human
Factors in Computing Systems (CHI EA '12). ACM,
New York, NY, USA, 1015-1018.

16.Andrés Lucero, Matt Jones, Tero Jokela, and Simon
Robinson. 2013. Mobile collocated interactions: taking
an offline break together. interactions 20, 2 (March
2013), 26-32.

17.Rick Borovoy, and Brian Knep. 2012. Junkyard
Jumbotron. MIT Center for Future Civic Media. Web 25
(2012).

18.Matthew Brown and David G. Lowe. Automatic
panoramic image stitching using invariant features.
International Journal of Computer Vision 74.1 (2007),
59-73.

19.Apple Bonjour. https://developer.apple.com/bonjour/,
April 2013.

20.Mike Addlesee, Rupert Curwen, Steve Hodges, Joe
Newman, Pete Steggles, Andy Ward and Andy Hopper.
2001. Implementing a Sentient Computing System.
Computer 34, 8 (Aug. 2001), 50-56.

21.Barry Brumitt, John Krumm, Brian Meyers, and Steven
Shafer. "Ubiquitous computing and the role of
geometry." Personal Communications, IEEE 7.5
(2000), 41-43.

22.Apple AVFoundation Framework Reference.
https://developer.apple.com/library/mac/#documentation
/AVFoundation/Reference/AVFoundationFramework/_i
ndex.html, April 2013.

23.Apple CoreVideo Framework Reference.
http://developer.apple.com/library/ios/#documentation/
CoreVideo/Reference/CVFrameworkRef/_index.html,
April 2013.

24.Apple CoreMedia Frmaework Reference.
https://developer.apple.com/library/mac/#documentation
/CoreMedia/Reference/CoreMediaFramework/_index.ht
ml, April 2013.

25.CocoaAsyncSocket libraries.
https://github.com/robbiehanson/CocoaAsyncSocket,
April 2013.

26.Martin A. Fischler and Robert C. Bolles. Random
sample consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Communications of the ACM 24.6 (1981):
381-395.

