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Abstract
The Common Component Architecture (CCA) is a standard for building

high performance component-based applications, and CCaffeine is a CCA
framework that supports SPMD style parallel components, in addition to
standard sequential components. However, commmunication between parallel
components is limited when using CCaffeine, only allowing communication
between components in the same process. The Maryland InterComm library,
on the other hand, is designed to enable efficient communication between
parallel SPMD-style applications. We present the component version of
InterComm, to allow CCA compliant application components to efficiently
and flexibly transfer data. We describe two approaches to building components
from a complex library such as InterComm within the Ccaffeine framework.
More specifically, we discuss in detail how to enable CCaffeine to support
a multiple component multiple data (MCMD) model using the InterComm
components. Since the CCaffeine framework uses threads to implement
components, and the InterComm components use a library that is not thread-
safe, we describe how we have modified the basic MCMD model to avoid
multi-threading thread problems. To manage multiple parallel and sequential
components within the CCaffeine framework, we have designed a Manager
component that performs various initialization and bookkeeping functions to
enable MCMD component execution. We also present experimental results to
show that the componentized version of InterComm performs as well as the
original library version.

1. Introduction
As physical models become better understood and advances

in computer hardware continue, complex computer simulations
of those physical models are becoming ubiquitous. Often a
single research group is only able to focus on a particular
aspect of a real world phenomenon due to limited resources.
In order to get a holistic understanding of the real world
phenomenon it becomes necessary for these different sim-
ulations, each simulating a particular aspect of the entire
problem, to interact so that the phenomenon or model can
be fully analyzed. One common way for the simulations to
interact is through data transfers at physical boundaries or in
overlapping regions. Such coupled simulations create many
difficulties in modern computing environments, because the
different simulation components are often written in different
programming languages, run on multiple processes as parallel
programs and their data is distributed across those multiple
processes. The problem of data transfer among high perfor-
mance simulation components has even greater complexity
when each application component runs on a different number
of processes, also known as the MxN problem [1].

The Maryland InterComm library [2] provides functionality
that enables parallel applications running in a high perfor-
mance computing environment to exchange data efficiently
and flexibly, supporting MxN process topologies. Since there
has been widespread interest in the high performance com-

puting community in moving from libraries and monolithic,
highly complex application-specific frameworks to compo-
nents based applications and lightweight component frame-
works, a component-based implementation of InterComm
functionality would components running in a framework to
exchange data, with efficient communication of paramount
importance, especially for parallel components. In this work,
we focus on the Common Component Architecture [3], a
lightweight component architecture targeted at high perfor-
mance computing environments. More specifically, we target
the Ccaffeine CCA framework [4], which supports both paral-
lel and sequential components. While the Ccaffeine framework
supports communication between parallel components, such
support is very limited, only enabling communication between
components running in the same framework process (so only
among corresponding component processes for 2 or more
parallel components). We address this limitation by creating
CCA compliant components that encapsulate the InterComm
library functionality, and then run those components within
the Ccaffeine framework to enable parallel components to
exchange data with other components (parallel or sequential)
within the Ccaffeine framework. This work can benefit any
CCA-compliant components by providing them with generic
MxN data exchange capabilities, and also serves as a guide to
implementing such functionality in any component framework
that requires MxN capabilites to efficiently support parallel
components.

In addition to describing the basic funcionality of the Inter-
Comm components, we also provide feedback to component
framework developers by identifying several issues related to
creating and running components created from libraries or
applications that are not necessarily thread-safe. These issues
stem from the way that component frameworks manage the
components. Component frameworks often use threads, and
not separate processes, to efficiently implement applications
containing large numbers of components. This can cause
problems for libraries or applications with shared state that
may not allow those components to be used by more than one
other component at the same time.

The rest of the paper is structured as follows. Section 2
provides additional details on the InterComm library, the Com-
mon Component Architecture and the Ccaffeine framwork.
Section 3 describes how CCA components were created from
the InterComm library, and also elaborates on the problems
encountered in running the components in CCaffeine. We con-



clude and describe directions for future research in Section 4.

2. Background
2.1. InterComm Library

The InterComm library provides software support for simu-
lating complex physical systems that require multiple physical
models, potentially at multiple scales and resolutions and im-
plemented using different programming languages and distinct
parallel programming paradigms [2]. The individual models
are coupled to allow them to exchange information either at
boundaries where the models align in physical space or in
areas where they overlap in space. InterComm enables these
coupled simulation components to easily and efficiently ex-
change data, with minimal changes to the existing simulation
code.

InterComm requires the application developer to specify an
XML Job Description (XJD) file to determine which simu-
lation components are to be run and which data objects will
be transferred between pairs of components. It also provides
calls for specifying what data should be transferred between
the coupled components at runtime, no matter how the data is
distributed across processes for a parallel program. Decisions
about when a data transfer would actually take place are
different between the two available versions of InterComm.
In the earlier version, the data exchange times are completely
specified by corresponding export and import calls in the two
participating components. In the latest version of InterComm
a coordination policy is specified in the XJD file to allow
a component to specify its data transfer requirements inde-
pendent of other components. It becomes the responsibility
of the application developer connecting the components to
ensure that the data transfer requirements of each component
are met. InterComm is responsible for performing the data
transfers properly according to the coordination policy. The
coordination specification includes a range of matching poli-
cies which match timestamps a user provides for each import
and export requests, resulting in a variety of options for the
application developer to determine when data is transferred on
each connection. The policies allow for matching timestamps
within a given window, rather than an exact match, giving
more flexibility in deciding when to transfer data.

2.2. Common Component Architecture
The Common Component Architecture [5] is designed to

cope with the increasing complexity of large scale scientific
software systems. As supercomputers on which these software
systems are run grow more powerful, simulations with greater
complexity and sophistication become more common. The
need to manage the development of these simulations has
been alleviated somewhat by using libraries or computational
engines that provide parameterized algorithms to suit each
individual target computer system [3]. However those efforts
do not sufficiently address many issues related to building and
running large, complex software systems. One reason is that

many legacy scientific application codes can’t for technical
or practical reasons be rewritten to use these higher level
solutions. Exploring other venues to tackle this problem leads
us to component based programming which has already gained
foothold in other areas of computing.The Object Management
Group’s CORBA [6], Microsoft’s COM and DCOM [7], and
Sun’s Enterprise JavaBeans [8] are examples of very popular
component environments in the business and internet areas.

Components may be thought of as objects that encapsulate
useful units of functionality and interact with other compo-
nents only through well-defined interfaces. The component
approach facilitates reuse and interoperability of code. The
crux of CCA is the concept of ports through which the
components interact with eachother. Ports can be thought of as
implementation independent interfaces. A component wishing
to offer some functionality to other components does so
through the functions defined on the port it provides. Similarly,
a component wishing to utilize the functionality of another
component does so by declaring that it uses the port provided
by the other component. The CCA mandates a Uses/Provides
connection design pattern for a component to invoke another
component’s methods.

Components get connected to other components to form a
whole application within a framework. Given this approach
constructing a complex scientific application could be a mat-
ter of minutes by joining all the appropriate connections
amongst components. Furthermore, the required components
can already be made available through a component repository
where each component has been written by the experts in their
respective fields.
2.3. Ccaffeine Framework

Ccaffeine is a framework implementation compliant with
the CCA core specification [4]. A number of parallel scien-
tific software frameworks already exist such as POOMA [9],
Sierra [10], Overture [11], HYPRE [12], GrACE [13], [14],
PetSC [15], CCAT [16] and Uintah [17], all of which seek
to automate parallel computations for a particular scientific or
numerical domain. Among all these frameworks the closest to
Ccaffeine is Uintah, however Uintah is a more heavyweight
framework. CCAT is a CCA compliant framework that focuses
on distributed computing.The Ccaffeine framework’s forte
include its ease of use. This ease of use however comes at
a cost of Ccaffeine having to provide specialized components
for additional functionality. This less automatic approach that
Ccaffeine adopts is made up for by the framework’s exten-
sibility. Ccaffeine is fast and lightweight providing frame-
work services by using external portable components instead
of integrating all services into a single heavy framework
core [4]. The Ccaffeine framework extensibility, ease of use,
and support for parallel components makes it a good choice
for componentizing InterComm library.

3. Steps To Componentizing InterComm
The problem that we are trying to solve is enabling data

exchange among high performance computing applications



Fig. 1. 2x2 Exporter & Importer Running in Two Seperate
Frameworks

efficiently and flexibly. The InterComm library provides just
that ability for HPC applications however in the component
based programming world there is an absence of a component
providing data exchange abilities similar to the ones that the
InterComm library provides. Thus we seek to fill this void
by creating a component version of the InterComm library.
Converting a library into a component isn’t a trivial task
because a library can have global states and parallel libraries
can complicate matters further by use of PVM or MPI which
may or may not be thread safe.

3.1. InterComm Library As a Component
InterComm library isn’t thread safe and the component

version of the library too suffers from the same problem.
The most straightforward solution to resolve thread safety
issues for the InterComm component is to run the applications
participating in the data transfer in separate instances of the
Ccaffeine framework thus ensuring that only one component
instance is running in a process at one time and calls to
the InterComm library are made by a single thread running
in a process. We experimented with two application compo-
nents; one exporter and the other importer both running in
two separate Ccaffeine frameworks. Though the InterComm
library’s componentized version successfully works in this
scenario however the solution in addition to being inelegant is
cumbersome for the user who now has to start two separate
Ccaffeine frameworks. This would turn into a nightmare for
the user if the number of components using the InterComm
component is higher for instance five or ten where now the user
would be obliged to run five or ten separate instances of the
Ccaffeine framework. Note that this straightforward solution
doesn’t require the use of a parenting or managing component
as is required in our next approach.

The first approach can be better understood with Figure 1.
This is a trivial example of an importer and an exporter each
running with two instances in seperate frameworks. This is in
contrast to Figure 2 where each of the application component
runs in a single framework. Figure 2 depicts our second
approach. Note that in Figure 2 each application component
is running within a seperate processes even though they have
been instantiated within the same framework.

The InterComm library isn’t monolithic and consists of

Fig. 2. 2x2 Exporter & Importer Running in a Single
Framework

Fig. 3. Connections amongst InterComm Components
and Application Component

different portions of code performing distinct functionalities.
In keeping with this view of the library we have broken down
the corresponding InterComm component into three distinct
sub-components. Two of the components relate to initialization
routines and the third is involved in the actual communication
of data. The three components are the XJD Component, the
Schedule component and the Communication component. Any
application component in Ccaffeine wishing to use InterComm
capabilities needs to connect to its own set of these three
components.

The XJD component provides the XJD port which is used
by the application components. The XJD component reads in
the XJD file which is similar to the one written for InterComm
library version. The XJD component in turn uses the Schedule
port which is provided by the Schedule component. The
Schedule component computes the schedules for the data
exchange, which only need to be computed once at startup.
Finally the application component uses the communication
port provided by the Communication component to import or
export data. The application component doesn’t need to use
the XJD component for second or any subsequent data transfer
rather it directly uses the Communication port. The connec-
tions among components for a typical InterComm scenario are
shown in Figure 3.



3.2. Need for a Manager Component and the Result-
ing MCMD Design

Any data transfer operation within Ccaffeine would involve
at least two components both of which would be running in
their respective processes at the time of the transfer. That is
neither of the two components can be blocked on a uses port
call or be inactive at the time of the transfer. Unlike a typical
application model in Ccaffeine where only one component is
active or is blocked while it makes a uses port call to another
component we require both the exporter and the importer
to be able to send and receive data using the Communi-
cation component’s port. This necessitates that a overseeing
component be created which starts up both the exporter and
the importer components as threads and then waits for them
to finish processing. We call this parenting component the
Manager Component and we envision it to be responsible for
a whole lot of other bookkeeping and connection management
activities in the future when we introduce dynamic connections
within the InterComm library.

The Manager Component is started up with the go port
and runs in every instance of the framework. Each instance of
the Manager Component decides which application component
would it run on the same framework instance as the one on
which it is running itself. In our case the Manager Component
instance could run either the exporter or the importer by
calling the functions defined on the port that the importer
or the exporter provides and the Manager Component uses.
Since the same code is executed by all the instances of the
Manager Component each instance is able to figure out if it is
required to start up the exporter or the importer on the same
framework instance as it is running on. Note that the Manager
Component instance would only run one of the importer or the
exporter but not both. The call to the application component
by the Manager Component isn’t blocking that is the Manager
simply invokes a function on the application component where
a thread is spawned with the main function of the application
component as the target. This allows the Manager to get
back control and perform other functions if need be while
the application component also keeps running. Finally the
Manager waits upon the application components to signal it
that they have completed their processing thus allowing the
Manager to exit too. For sequential components the Manager
Component starts up the component on a single instance of
the framework.

Another reason to use the Manager component is to realize
the MCMD model within Ccaffeine. The real power of the
InterComm library lies in enabling transferring data between
two applications when each of them is running on a differ-
ent number of processes also known as the MxN problem.
Ccaffeine trivially launches every component on every process
requiring additional intervention by the application developer
to ensure that components run on only a subset of processes.
This additional supervision in our case is provided by the
Manager component which makes sure that the components
are only started on the specified number of processes in the

Fig. 4. Multiple Component Multiple Data (MCMD) model
for a possible scenario

XJD file.The MCMD model is illustrated in Figure 4.

3.3. Overcoming Thread Safety And Implementation
Issues

A further subtlety in the design of the InterComm compo-
nent lies in the use of PVM by the underlying implementation
of the InterComm library. Unfortunately PVM isn’t thread
safe. This means that if the importer and the exporter are
running in the same process and make calls to their respective
InterComm components, the entire framework would crash
because of PVM failure. In order to address this issue the
Manager component ensures that the importer and exporter
run on different subsets of processes i.e. disjoint subsets of
processes. Note that this requirement mandates that there
must be atleast M+N processes assuming the exporter and the
importer run on M and N processes respectively. Thus no two
components using InterComm component would run on the
same process or for that matter no two components making
PVM calls can run in the same process.

The next issue we tackle relates to the way InterComm
library has been implemented. The InterComm library re-
quires that each application’s instances running on different
processes be numbered starting from zero i.e. their ranks
should start from zero. Say, we have an exporter and an
importer running on two and three processes respectively
for a total of five processes as depicted in Figure 5. Now
for the exporter component running on processes zero and
one the library doesn’t complain since the numbering of that
application component’s instances starts from zero however
for the importer component which has instances running in
processes two, three and four the library complains since the
instances are not numbered starting from zero. To address
this issue we create disjoint MPI groups and their related
MPI communicators in the Manager component to ensure
that every component’s instances get numbered starting from
zero. The manager passes the communicators when starting



Fig. 5. MxN example of an Importer and Exporter. The
Importer runs on 3 processes and the Exporter on 2

up each of the application component so that the instances of
each application component running on different processes can
communicate amongst themselves if need be using the passed
in MPI communicators.

The MCMD model of InterComm can be understood from
Figure 5 which shows a 2x3 case where the exporter runs
on two processes and the importer on three.The manager and
the InterComm components run on every process however
the manager starts up the exporter only on processes zero
and one. On the other hand, the importer is started up on
the remaining three processes numbered from two to four.
Note that the manager would create a separate MPI groups
and communicators both for the importer and the exporter
thus ensuring that the instances of the importer are numbered
starting from zero to two. Also notice that the importer and
the exporter run on disjoint sets of processes to make sure
simultaneous calls to PVM aren’t made

The thread-safety issues uncovered while implementing
the component version of InterComm offer good feedback
for CCA compliant framework design. Each instance of a
framework runs as a separate process and the components
the framework contains run as threads within that process.
Running components as threads within a single process turned
out to be an issue with InterComm in particular but this
also reveals a more general problem in designing frameworks
with this approach. Component based programming advocates
ease of use, interoperability and reusability however these
ideals might be hard to achieve for developers of application
components which aren’t thread-safe. Using two or more
instances of an application component which either itself isn’t
thread-safe or makes function calls to a library such as PVM
which isn’t thread safe can lead to inconsistent states for the
components or incorrect results.

Our work suggests that given the present capabilities of the
Ccaffeine framework all scenarios where application compo-
nents aren’t thread-safe would require the use of a parenting
component similar to the one that we have as the Manager
Component to make sure that only a single instance of an
application component runs in a single process thus elim-
inating any potential inconsistent behavior. Ideally, though
the component developer shouldn’t be bothered about thread-
safety issues when designing and developing an application
component to truly conform to the goals of component based
programming. Thread safety issues can prove to be significant
interia in the faster adoption of the component based program-
ming paradigm by the scientific community.

3.4. How InterComm Can Help Other Components
Addition of the InterComm component for Ccaffeine will

allow application components to exchange data flexibly and
more efficiently within the Ccaffeine framework, however the
real benefit comes to application components which require the
MxN setting which Ccaffeine has no way of providing trivially.
Furthermore, application components within Ccaffeine who
don’t use MPI have now an alternate way to exchange data
using the InterComm component.

4. Conclusion And Future Research
We have thus shown a general MCMD pattern that could

be adopted to overcome thread-safety issues for application
components by allowing only one application component
instance which isn’t thread-safe to run in a single process. We
apply this approach to the InterComm library and successfully
produce a component version of the library which will enable
components within Ccaffeine to exchange data in a MxN
topology. Lastly, we offer food for thought for component
framework developers who design frameworks to run compo-
nents as threads rather than as seperate processes within the
framework as the latter approach makes using and developing
components which aren’t thread-safe nontrivial. Note that the
CCA standard doesn’t mandate one or the other approach.

We have progressed from a simple static version of Inter-
Comm by adding dynamic timestamp matching and conversion
of the library into a component for the Ccaffeine framework.
These steps are intermediate milestones along our way to
ultimately allowing dynamic connections to enable data trans-
fer among application components which would eliminate the
need for defining connections in the XJD file which is read
in at initialize time for now. This would entail calculation of
the schedules at runtime and the Manager component would
play a vital role in coordinating runtime connections among
components in the future.
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