10-725/36-725: Convex Optimization

Fall 2016
Lecture 2: August 31
Lecturer: Lecturer: Ryan Tibshirani

Scribes: Scribes: Lidan Mu, Simon Du, Binzuan Huang

2.1 Review
A convex optimization problem is of the form

mingep  f(x)
subjectto

where f and g¢;, i = 1,...,m are all convex, and hj,j = 1,...,7 are affine. A local minimizer for a convex
optimization is a global minimizer.

2.2 Convex Sets
2.2.1 Definition

Convex set is a set C C R" such that

zyyeC=te+(1—-t)yeCloral0<t <1
In other words, line segment joining any two elements lies entirely in the set.

Figure 2.1: A convex set and a nonconvex set

Convex combination of z1,...,z; € R" is any linear combination

0121 + ... + Oxp
with 6; >0, i =1,....k, and ¢ 6, = 1.

Convex hull of set C, conv(C), is all convex combinations of elements. A convex hull is allways convex,
but set C' is not required to be convex.
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2.2.2 Examples of Convex Sets

Here are some examples of convex sets:

Trivial ones: empty set, point, line

Norm ball: {z : ||z|| < r}, for given norm || - ||, radius r.
Hyperplane: {z : a’z = b}, for given a, b.

Halfspace: {z: a7z <b}

Affine space: {x : Ax = b}, for given A,b.

Polyhedron: {z : Az < b}, where inquality < is interprated componentwise—for any vectors z,y = < y
means x; < y; for all i. Note: the set {z : Az < b, Cz = d} is also a polyhedron, because it is equivalent to
{z: Ax < b,Czx < d,—Cz < —d} Simplex: it is a special case of polyhedra, given by conv{xy, ..., 2 }, where

az

ag

az

ay

Figure 2.2: A polyhedron in two dimensional space, where {a;} is A’s row.

these points are affinely independent. The canonical example is the probability simplex, conv{es,...,e,} =
{w:w>0,1Tw=1}.

Two related definition:
Zg, ..., ) are affinely independent means x1 — xq, ..., Ty — T are linear independent.
Zg, ...z} are linear independent means agzg + ... + agxry =0=ag = ... = a =0

2.3 Cones

2.3.1 definition

Cone is a set C C R" such that
zeC=treCforallt>0

Convex cone is a cone that is also convex, i.e.,

T1,T0 € C' = t1x1 +toxg € C for all t1,t3 >0
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Figure 2.3: A convex cone in two dimensional space

Note there exist some non-convex cones. One example is two intersecting lines.
Conic combination of z1, ...,z € R" is any linear combination

0121 + ... + Orxy,
with 6, >0,i=1,....k.

Conic hull of {z1,...,2)} is collection of all conic combinations {, 6;z; : 0 € R }.

2.3.2 Examples of Convex Cones

Norm cone: {(x,t_(: ||z|| < t}, for a norm|| - ||. Under Iz norm || - ||, it is called second-order cone.
Normal cone: given any set C' and point x € C, we can define normal cone as

Ne(z) ={g: g7z > gTy for all y € C}
Normal cone is always a convex cone.

Proof: For g1,92 € No(z), (tigr + tage)"® = tigi @ + tagg © > tigl y + tags y = (t1g1 + tage)"y for all
t1,t2 20

Positive semidefinite cone is ST = {X € §" : X > 0}, where X > 0 means that X is positive semidefinite
(and S™ is the set of n X n matrices)

Positive semidefinite: a matrix X is positive semidefinite if all the eigenvalues of X are larger or equal to
0 <— aTXa>0forallae R"

2.4 Key properties of convex sets

Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them.
A formal definition is: if C, D are nonempty convex sets with C' N D = () then there exists a, b such that

CC{r:a"z<b}
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Dg{x:aszb}

Figure 2.4: A line separates two disjoint convex sets in two dimensional space

Supporting hyperplane theorem: if C is a nonempty convex set, and xog € boundary(C), then there
exists a such that

C Clx:a"r <a’xo}

Figure 2.5: A supporting hyperplane that passing a boundary point of a convex set in two dimensional space
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2.5 Operations Preserving Convexity of Convex Sets

intersection: the intersection of convex sets is convex.

Scaling and translation: if C' is convex, then
aC+b={ax+b:zeC}

is convex for any a,b.

Affine images and preimages: if f(z) = Az + b and C is convex then

f(X)={f(x) :z€C}

is convex, and if D is convex then
fHD) ={z: f(z) € D}

is convex. Note here f~! does not mean f must be inversible.

2.5.1 Example: linear matrix inequality solution set

Given A, ..., Ax, B € S", a linear matrix inequality is of the form
1 A1 + 20As + ... + 2 A = B

for a variable z € R*.

Let’s prove the set C' of points x that satisfy the above inequality is convex.
Approach 1: directly verify that z,y € C =tz + (1 —t)y € C.

Then for any v,

k
v"(B - Z(tﬂ?i + (1= t)yi)Ai)v

=T [t(B — Z z; A +oT[(1 - ) (B — Z yi A

>0
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Approach 2: let f: RF — S" f(z) = B — Zle z;A;. Note that C' = f~1(S7), affine preimage of convex

set.

2.6 Convex Functions

2.6.1 Definitions

Convex function is a function f : R — R" such that dom(f) C R™ convex, and

Fltr+(1—t)y) < tf(2) + 1 -0 f(y) for0<t<1
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Figure 2.6: Convex function

and all z,y € dom(f). In other words, f lies below the line segment joining f(x), f(y) as shown in the
following figure.

Concave function is a function f : R — R™ such that dom(f) C R™ convex, and
fltz+ (1= t)y) = tf(@) + (1 -0 f(y) for0<t<1
and all z,y € dom(f). So that we have

f concave < —f convex.

Important modifiers:

Strictly convex means that
Fltr+(1—t)y) < tf(x) + 1 -0 f(y) for0<t<1

for z # y and 0 < t < 1. In other words, f is convex and has greater curvature than a linear function.

Strongly convex with parameter m > 0 means that f — ||| |2 is convex. In words, f is at least as convex
as a quadratic function.

Note that strongly convex = strictly convex = convex. For example, function f(z) = % is strictly convex
but not strongly convex.

2.6.2 Examples of Convex Functions

Univariate functions

¢ Exponential function e*”

is convex for any a over R
e Power function z® is convex for a > 1 or a < 0 over R, and concave for 0 < a < 1 over R,

e Logarithmic function logz is concave over R, |

Affine function a”z + b is both convex and concave
Quadratic function %:z:TQx +b"z + ¢ is convex provided that Q > 0

Least squares loss ||y — Az||3 is always convex (since AT A is always positive semidefinite)
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Norm ||z|| is convex for any norm. For example, I, norms,

n \ /P
||x|p=<2> 2} forp>1, |lalle = max |z,

=/ =l

and also operator (spectral) and trace (nuclear) norms,
[1X]lop = 01(X), 11Xl =D on(X)
i=1

where 01(X) > ... > 0,.(X) > 0 are the singular values of the matrix X
Indicator function if C' is convex, then its indicator function

ST

is convex

Support function for any set C' (convex or not), its support function

P = maxx?
ic(x) yeg}ﬂﬁy

is convex

Max function f(z) = max{xi,...,x,} is convex

2.7 Key Properties of Convex Functions

A function is convex if and only if its restriction to any line is convex.

Epigraph characterization A function f is convex if and only if its epigraph is a convex set, where the
epigraph is defined as

epi(f) = {(z,t) € dom(f) x R: f(z) <t}
Intuitively, the epigraph is the set of points that lie above the graph of the function.

Convex sublevel sets If f is convex, then its sublevel sets

{z € dom(f): f(z) <t}

are convex, for all ¢ € R. The converse is not true. For example, f(z) = 1/|z| is not a convex function but
each of its sublevel sets are convex sets.

First-order characterization If f is differentiable, then f is convex if and only if dom(f) is convex, and
fly) > f(x) + Vf(x)T (yx) for all z,y € dom(f). In other words, f must completely lie above each of its
tangent hyperplanes. Therefore for a differentiable f, z minimizes f if and only if V f(x) = 0.

Second-order characterization If f is twice differentiable, then f is convex if and only if dom(f) is
convex, and the Hessian matrix V2 f(x) = 0 for all z € dom(f).

Jensens inequality If f is convex, and X is a random variable supported on dom(f), then f(E[X]) >

E[f(X)]. -
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2.8 Operations Preserving Convexity of Convex Functions

Nonnegative linear combination f1, ..., f;, convex implies a; f1 +... + G fn convex for any aq, ..., @, > 0.

Pointwise maximization if f; is convex for any s € S, then f(x) = maxeg fs(2) is convex. Note that the
set s here can be infinite.

Partial minimization if g(x,y) is convex in x,y, and C is convex, then f(z) = minyec g(x,y) is convex.

2.8.1 Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C' under an arbitrary norm ||.||:

r) = ma T —
(o) = max o = y]

Proof: f,(z) = ||z — y|| is convex in z for any fixed y, so by pointwise maximization rule, f is convex. M

Let C be convex, and consider the minimum distance to C:
T) = min ||x —
() = min |2yl

Proof: g(x,y) = ||z — yl|| is convex in x,y jointly, and C is assumed convex, so by applying partial mini-
mization rule, f is convex.



