
 1

University of Maryland College Park
Dept of Computer Science

CMSC132 Fall 2018
Exam #1

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):__

STUDENT ID (e.g. 123456789): _______________________________

Instructions

• Please print your answers and use a pencil.
• Do not remove the staple from the exam. Removing it will interfere with the Gradescope scanning process.
• To make sure Gradescope can recognize your exam, print your name, write your grace login id at the bottom of each

page, provide answers in the rectangular areas provided, and do not remove any exam pages. Even if you use the
provided extra pages for scratch work, they must be returned with the rest of the exam.

• This exam is a closed-book, closed-notes exam, with a duration of 50 minutes and 200 total points.
• Your code must be efficient.
• You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem #1 (Miscellaneous) 16
#2 Problem #2 (Class Implementation) 184

Total Total 200

 2

Problem #1 (Miscellaneous)

1. (3 pts) Does the following class rely on encapsulation? If it does, write YES; otherwise NO and fix it. Notice the

 getName method returns a string and not a StringBuffer.

 public class Name {
 private StringBuffer name;

 public String getName() {
 return name.toString();
 }
 }

2. (3 pts) Which of the following describes procedural abstraction? Circle all that apply.

a. Specify actions that should be performed, hiding any algorithms.
b. Specify actions that should be performed, providing partial information about algorithms.
c. Specify actions that should be performed and the objects for the problem, hiding any algorithms or data

representation.
d. None of the above.

3. (3 pts) Which of the following can be part of an interface? Circle all that apply.

a. Abstract methods (no body).
b. Instance variables.
c. Static methods.
d. None of the above.

4. (3 pts) A class called Beverage is defined as follows:

public class Beverage {
 protected String name;
 protected int calories;

 public Beverage(String name, int calories) {
 this.name = name;
 this.calories = calories;
 }

 public int getCalories() { return calories; }
}

Another class called Coffee extends Beverage. Indicate what will happen if one of the methods below were to be
added to the Coffee class. Circle RIDE to indicate the method will override getCalories, LOAD to indicate it will
overload getCalories, and ERROR if it will generate a compilation error. Notice that you should consider each of
them individually (assume you only are adding a., or b. or c.) when answering each item.

a. private int getCalories() { return 1; } RIDE / LOAD / ERROR
b. public int getCalories(int x) { return 1; } RIDE / LOAD / ERROR
c. public double getCalories(int x) { return 1; } RIDE / LOAD / ERROR

5. (2 pts) Would the compiler provide a default constructor for the Beverage class? Yes / No

6. (2 pts) Would the following compile if b1 is an instance of the Beverage class, the code is in the main method of a

class that does not extend Beverage, and the class is in a package different than the one associated with Beverage?
 Yes / No.

 int x = b1.calories;

 3

Problem #2 (Class Implementation)

For this problem you will complete the implementation of the Flight and IntFlight classes (whose partial definitions are
provided below) and a class called InvalidMergeException. The Flight class specifies a flight number (num field) and
the flight duration in hours/minutes using the hrs and mins fields. For example, a flight with a duration of 6.5 hours will
have a value of 6 for hrs and 30 for mins. The IntFlight class represents an international flight using the country field to
represent the destination country.

Methods for the Flight and IntFlight classes are public, non-static methods, unless specified otherwise. Below you will
see a sample driver and expected output that illustrates the functionality of the classes you need to implement. The driver
relies on methods and classes you don’t need to implement (e.g., toString() and DomFlight). Feel free to ignore the driver
if you know what to implement.

public abstract class Flight implements Comparable<Flight> {
 private int num, hrs, mins;

}

public class IntFlight extends Flight {
 private String country;
}

Sample Driver / Output

Flight f1 = new IntFlight(250, 6, 29, "Italy");
Flight f2 = new IntFlight(868, 10, 0, "Spain");
Flight f3 = new IntFlight(1600, 8, 50, "Greece");

String result = f1 + "\n" + f2 + "\n" + f3;
result += "\nComp: " + f1.compareTo(f2);
f1.merge(f3);
result += "\nMerged: " + f1;
Flight f4 = new DomFlight(7, 1, 30);
Flight f5 = new IntFlight(41, 18, 0, "Australia");
ArrayList<Flight> list = new ArrayList<Flight>();
list.add(f4);
list.add(f5);
result += "\nUtilities.info method output";
System.out.println(result);
Utilities.info(list);

FLT: num=250, hrs=6, mins=29, cou=Italy
FLT: num=868, hrs=10, mins=0, cou=Spain
FLT: num=1600, hrs=8, mins=50, cou=Greece
Comp: -211
Merged: FLT: num=250, hrs=15, mins=19, cou=Italy
Utilities.info method output
Fli #: 7
Fli #: 41, Country: Australia

1. (16 pts) InvalidMergeException Class - Implement a class named InvalidMergeException that extend the Exception
class and defines a constructor that takes a string parameter.

GraceLoginId:

 4

2. Flight Class Methods

a. (14 pts) Constructor - It has as parameters the flight number, followed by duration information (hours and minutes).

b. (10 pts) getFliNumber - Returns the flight number.

c. (22 pts) compareTo – Flights will be compared based on duration; those with shorter duration will appear first if a

list of flights were to be sorted.

d. (10 pts) getCost – This is an abstract method that takes an integer named miles as parameter and returns a double.

GraceLoginId:

 5

e. (40 pts) merge – This method merges the current object flight with the parameter flight. When two flights are
merged the flight number of the merged flight will correspond to the current object’s flight number. The duration
will be sum of the duration of the current object duration and the flight parameter duration. The method will return a
reference to the current object. This method will throw an InvalidMergeException (class you defined above) with
the message “Invalid Parameter” if the flight parameter is null or if it is the same as the current object.

3. InFlight Class Methods

a. (20 pts) Constructor - It has as parameters the flight number, followed by duration information (hours and minutes)

followed by a string representing the country.

b. (14 pts) getCost – Returns a cost value that corresponds to the product of miles parameter and .50.

GraceLoginId:

 6

c. (8 pts) getCountry - Returns the country value.

4. (30 pts) info Static Method – Implement a static method named info (see prototype below) that is part of an Utilities
class. For each flight, the method prints the flight number, but if the flight is an international flight, the flight number
will be followed by the country value associated with that flight. For example, if the ArrayList has one domestic flight
followed by an international flight, the method will generate the following output:

 Fli #: 7
 Fli #: 41, Country: Australia

 Use the above example for the format to use while generating output.

public static void info(ArrayList<Flight> flights)

GraceLoginId:

 7

EXTRA PAGE IN CASE YOU NEED IT (SUBMIT WITH THE EXAM)

GraceLoginId:

 8

EXTRA PAGE IN CASE YOU NEED IT (SUBMIT WITH THE EXAM)

GraceLoginId:

LAST PAGE

