
Heaps and Priority Queue

Reference: Chapter 2, Algorithms,4rd Edition, Robert Sedgewick, Kevin Wayne

Outline

• Priority Queue

• Binary Heaps

• Implementation and demo

• HeapSort

7/14/18 Prioriry Queue 2

Example 1: Scheduling

• EDF (Earliest Deadline First) Scheduling
• Tasks wait in the queue

• A task with a shorter deadline has a higher priority

• Executes a job with the earliest deadline

T1 …T3 T2 Tn …Q

37/14/18 Prioriry Queue

Example 1: Cont.

• Task T1 is dispatched and removed from the Task waiting
queue.

• Before T1 is completed, Task Tn+1 arrives. It has the earliest
deadline. Tn+1 will be dispatched next.

T1 …T3 T2 Tn …Q

Tn+1 …T3 T2 Tn …Q

47/14/18 Prioriry Queue

Priority Queue

• EDF scheduler processes Tasks in order. But not necessarily
in full sorted order and not necessarily all at once.

• An appropriate data type for Task Waiting Queue supports
two operations: remove the maximum priority task and
insert new tasks. Such a data type is called a priority queue.

• Priority queues are characterized by the remove the
maximum and insert operations.

57/14/18 Prioriry Queue

Priority Queue Interface

public interface PriorityQueue <T extends Comparable<T> >
{

void insert(T t);
void remove() throws EmptyQueueException;
T top() throws EmptyQueueException;
boolean empty();

}

67/14/18 Prioriry Queue

Example 2: Statistics

• Find the largest M items in a stream of N items
(N huge, M large)
• N is huge, cannot sort in memory
• M is large, insert, remove must be fast.

77/14/18 Prioriry Queue

Implementation Time Space

Sort N log N M

Array N M M

Order of growth of finding the largest M in a stream of N items

Elementary Implementations

• Unordered Array:
• Ordered Array:
• Linked List:
• Binary Tree
Order-of-growth of running time for priority queue with N
items

87/14/18 Prioriry Queue

Implementation Insert Remove Max Max

Unordered Array 1 N N
Ordered Array N 1 1
Linked List (unsorted) 1 N N
Goal Log N Log N 1

5 1 4 8 2 7 6 3

1 2 3 4 5 6 7 8

Binary Heap

• Complete Binary Tree
• Each node is larger than (or equal to) its two children (if

any).

97/14/18 Prioriry Queue

Complete Binary Tree in Nature

107/14/18 Prioriry Queue

Binary Heap Properties

• The largest is found at the root.
• Height of complete tree with N nodes is ⌊ lg N⌋
• Height only increases when N is a power of 2

117/14/18 Prioriry Queue

Binary Heap Representations

127/14/18 Prioriry Queue

• Array representation of a complete binary tree
• Take nodes in level order
• No explicit links needed

Binary Heap Representations

137/14/18 Prioriry Queue

• Largest key is a[1], which is
root of binary tree.
• Can use array indices to move
through tree.
• Parent of node at k is at k/2.
• two children of the node at k
are in positions 2k and 2k + 1.

Algorithms on Heaps

147/14/18 Prioriry Queue

Promotion: Child's key becomes larger key than its parent's key.

To eliminate the violation:
• Exchange key in child with key in parent.
• Repeat until heap order restored.

private void swim(int k) {
while (k > 1 && less(k/2, k)){

swap(k, k/2);
k = k/2;

}
}

Algorithms on Heaps

157/14/18 Prioriry Queue

Insertion in a heap:
• Insert. Add node at end, then swim it up.
• Cost. At most lg N compares.

public void insert(T t){
pqArray.add(t);
Size++;
swim(Size);

}

Algorithms on Heaps

167/14/18 Prioriry Queue

Demotion: Parent's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:
• Exchange key in parent with key in larger child.
• Repeat until heap order restored.

private void sink(int k){
while(2 * k <= Size){
int j = 2*k;
if(j< Size && less(j,j+1)) j++;
if(!less(k,j)) break;
swap(k,j);
k = j;

}
}

Algorithms on Heaps

177/14/18 Prioriry Queue

Remove the maximum in a heap:
• Delete max: Replace root with node at end,
then sink it down.
• Cost: At most 2 lg N compares.

public void remove(){
if(Size == 0){
throw new EmptyQueueException("Queue is

empty.");
}
pqArray.set(1,pqArray.get(Size));
pqArray.remove(Size);
Size--;
sink(1);

}

Binary Heap Demo

187/14/18 Prioriry Queue

35

26
33

15 24

12 1 23 21

5 4

2 Insert 34
34

Violation.
swim

Insertion

35
2
6

33 15 24 5 4 12 1 23 21 2-- 34

Binary Heap Demo

197/14/18 Prioriry Queue

35

26
33

15 24

12 1 23 21

5 4

2 34

Violation.
swim

Insertion

35
2
6

33 15 24 5 4 12 1 23 21 2-- 34

34

Binary Heap Demo

207/14/18 Prioriry Queue

35

26
33

15 24

12 1 23 21

5 4

2

34

Violation.
swim

Insertion

35
2
6

33 15 24 5 4 12 1 23 21 2--

Binary Heap Demo

217/14/18 Prioriry Queue

35

26
33

15 24

12 1 23 21 5

4

2

34

Done!

Violation.
swim

Insertion

3435
2
6

33 15 24 54 12 1 23 21 2--

Binary Heap Demo

227/14/18 Prioriry Queue

35

26
34

15 24

12 1 23 21 5

4

2

Remove max:

33

Move the last
leaf to root

5 Delete the
last leaf

3335
2
6

34 15 24 54 12 1 23 21 2-- 5

Binary Heap Demo

237/14/18 Prioriry Queue

5

26
34

15 24

12 1 23 21

4

2

Remove

33

Violation. sink

Violation. sink

33
2
6

34 15 24 4 12 1 23 21 2-- 5

Binary Heap Demo

247/14/18 Prioriry Queue

526

34

15 24

12 1 23 21

4

2

Remove

33

Violation. sink

332
6

34 15 24 4 12 1 23 21 2-- 5

Binary Heap Demo

25Prioriry Queue

3326

34

15 24

12 1 23 21

4

2

Remove

5

Done!

52
6

34 15 24 4 12 1 23 21 2-- 33

Binary Heap Java Code Demo

267/14/18 Prioriry Queue

File name Description

PriorityQueue.java Interface
MaxPQ.java PQ implementation
GraphVizWrite.java Visualize the heap
EmptyQueueException.java Exception
MaxPQTest.java main method
InputHelper.java input utility

Cost summary

277/14/18 Prioriry Queue

Implementation Insert Remove Max Max

Unordered Array 1 N N
Ordered Array N 1 1
Linked List (unsorted) 1 N N
Binary Heap Log N Log N 1

Immutability of keys

287/14/18 Prioriry Queue

• Assumption: client does not change keys while they're on the PQ.
• Best practice: use immutable keys.

Immutability: implementing in Java
• Immutable data type. Can't change the data type value once

created.
• Immutable. String, Integer, Double, Color, Vector, Transaction,

Point2D.
• Mutable. StringBuilder, Stack, Counter, Java array.

